A TECHNIQUE OF EXPERIMENTAL INVESTIGATIONS OF LINEAR IMPULSE ELECTROMECHANICAL CONVERTERS

Authors

  • V. F. Bolyukh National Technical University "Kharkiv Polytechnic Institute", Ukraine https://orcid.org/0000-0001-9115-7828
  • A. I. Kocherga National Technical University "Kharkiv Polytechnic Institute", Ukraine
  • S. V. Oleksenko Joint-stock company «Kharkivoblenergo», Ukraine
  • I. S. Schukin Firm Tetra, LTD, Ukraine

DOI:

https://doi.org/10.20998/2074-272X.2017.2.03

Keywords:

linear impulse electromechanical converter, shock-power device, electromechanical accelerator, experimental investigations technique, mathematical model

Abstract

Purpose. Development of a technique of experimental studies linear pulse electromechanical converters parameters, which are used as shock-power devices and electromechanical accelerators, and comparing the experimental results with the calculated indices obtained using the mathematical model. Methodology. Method of experimental investigations of linear electromechanical converter is that the electrical parameters are recorded simultaneously (inductor winding current) and mechanical parameters characterizing the power and speed indicators of the joke with actuator. Power indicators are primarily important for shock-power devices, and high velocity - for electromechanical accelerators. Power indices were investigated using piezoelectric sensors, a system of strain sensors, pressure pulsation sensor and high-speed videorecording. Velocity indicators were investigated using a resistive movement sensor which allows to record character of the armature movement with actuating element in each moment. Results. The technique of experimental research, which is the simultaneous recording of electrical and mechanical power and velocity parameters of the linear electromechanical converter pulse, is developed. In the converter as a shock-power device power indicators are recorded using a piezoelectric transducer, strain sensors system, pressure pulsation sensor and high-speed video. The parameters of the inductor winding current pulse, the time lag of mechanical processes in relation to the time of occurrence of the inductor winding current, the average speed of the joke, the magnitude and momentum of electrodynamics forces acting on the plate strikes are experimentally determined. In the converter as an electromechanical accelerator velocity performance recorded using resistive displacement sensors. It is shown that electromechanical converter processes have complex spatial-temporal character. The experimental results are in good agreement with the calculated figures obtained by means of a mathematical model that describes the ultrafast electromagnetic, thermal and mechanical processes that occur when the yoke moves relative to the inductor. Originality. For the first time offered during experimental studies of impulse linear electromechanical converter to both to measure the electrical parameters, namely the inductor winding current, and mechanical parameters characterizing the power and velocity performance with yoke actuator. Practical value. The technique of experimental investigations the parameters of the linear pulse electromechanical converter that can be used to investigate the shock-power devices and electromechanical accelerators is proposed.

Author Biography

V. F. Bolyukh, National Technical University "Kharkiv Polytechnic Institute"

к.т.н., доцент каф. электрических аппаратов

References

1. Bissal A. Licentiate thesis on the design of ultra-fast electro-mechanical. Stockholm, Sweden. 2013. 120 p.

2. D.-K. Lim, D.-K. Woo, I.-W. Kim, D.-K. Shin, J.-S. Ro, T.-K. Chung, H.-K. Jung. Characteristic Analysis and Design of a Thomson Coil Actuator Using an Analytic Method and a Numerical Method. IEEE Transactions on Magnetics, 2013, vol.49, no.12, pp. 5749-5755. doi: 10.1109/tmag.2013.2272561.

3. Bolyukh V.F., Vinnichenko A.I. Concept of an induction-dynamic catapult for a ballistic laser gravimeter. Measurement Techniques, 2014, vol.56, iss.10, pp. 1098-1104. doi: 10.1007/s11018-014-0337-z.

4. Bolyukh V.F., Luchuk V.F., Rassokha M.A., Shchukin I.S. High-efficiency impact electromechanical converter. Russian electrical engineering, 2011, vol.82, no.2, pp. 104-110. doi: 10.3103/s1068371211020027.

5. Bolyukh V.F., Shchukin I.S. Lineinye induktsionno-dinamicheskie preobrazovateli [Linear induction-dynamic converters]. Saarbrucken, Germany, LAP Lambert Academic Publ., 2014. 496 p. (Rus).

6. Podoltsev A.D., Kucheriava I.N. Mul'tifizicheskoe modelirovanie v elektrotekhnike [Multiphysical modeling in electrical engineering]. Kyiv: Institute of Electrodynamics of NAS of Ukraine, 2015. 305 p. (Rus).

7. L. Shoubao, R. Jiangjun, P. Ying, Z. Yujiao, Z. Yadong. Improvement of Current Filament Method and Its Application in Performance Analysis of Induction Coil Gun. IEEE Transactions on Plasma Science, 2011, vol.39, no.1, pp. 382-389. doi: 10.1109/tps.2010.2047276.

8. Bolyukh V.F., Oleksenko S.V., Schukin I.S. Experimental study of ferromagnetic core parameters influence on electromechanical characteristics of a linear induction-dynamic converter. Electrical engineering and electromechanics, 2014, no.5, pp. 13-18. (Rus). doi: 10.20998/2074-272X.2014.5.02.

9. Bolyukh V.F., Oleksenko S.V. The influence of the parameters of a ferromagnetic shield on the efficiency of a linear induction-dynamic converter. Russian Electrical Engineering, 2015, vol.86, no.7, pp. 425-431. doi: 10.3103/s1068371215070044.

10. Bolyukh V.F., Shchukin I.S. The thermal state of an electromechanical induction converter with impact action in the cyclic operation mode. Russian electrical engineering, 2012, vol.83, no.10, pp. 571-576. doi: 10.3103/s1068371212100045.

11. Comsol Multiphysics modeling and simulation software. Available at: http://www.comsol.com (accessed 05 May 2015).

12. Bolyukh V.F., Luchuk V.F., Rassokha M.A., Shchukin I.S. High-efficiency impact electromechanical converter. Russian electrical engineering, 2011, vol.82, no.2, pp. 104-110. doi: 10.3103/s1068371211020027.

13. Naumov I.V, Bolyukh V.F., Breslavskiy D.V. Deformation and fracture of the plates during loading cylindrical drummer. Mechanics and engineer, 2010, no.1, pp. 207-216. (Rus).

Published

2017-04-29

How to Cite

Bolyukh, V. F., Kocherga, A. I., Oleksenko, S. V., & Schukin, I. S. (2017). A TECHNIQUE OF EXPERIMENTAL INVESTIGATIONS OF LINEAR IMPULSE ELECTROMECHANICAL CONVERTERS. Electrical Engineering & Electromechanics, (2), 18–28. https://doi.org/10.20998/2074-272X.2017.2.03

Issue

Section

Electrotechnical complexes and Systems