EXPERIMENTAL RESEARCH OF MAGNETIC FIELD SENSORS SPATIAL ARRANGEMENT INFLUENCE ON EFFICIENCY OF CLOSED LOOP OF ACTIVE SCREENING SYSTEM OF MAGNETIC FIELD OF POWER LINE

Authors

  • B. I. Kuznetsov State Institution "Institute of Technical Problems of Magnetism of the NAS of Ukraine", Ukraine https://orcid.org/0000-0002-1100-095X
  • T. B. Nikitina Kharkov National Automobile and Highway University, Ukraine https://orcid.org/0000-0002-9826-1123
  • A. V. Voloshko State Institution "Institute of Technical Problems of Magnetism of the NAS of Ukraine", Ukraine
  • I. V. Bovdyj State Institution "Institute of Technical Problems of Magnetism of the NAS of Ukraine", Ukraine
  • E. V. Vinichenko State Institution "Institute of Technical Problems of Magnetism of the NAS of Ukraine", Ukraine
  • B. B. Kobilyanskiy State Institution "Institute of Technical Problems of Magnetism of the NAS of Ukraine", Ukraine

DOI:

https://doi.org/10.20998/2074-272X.2017.1.03

Keywords:

power frequency magnetic field, high voltage power lines model, active screening system model, experimental research

Abstract

Purpose. Experimental research of magnetic field sensors spatial arrangement influence on efficiency of closed loop active screening system by magnetic field of high voltage power lines developed a three-phase single-circuit high voltage power lines, creating a rotating magnetic field with the most complex space-time structure. Methodology. Optimal spatial arrangement of the magnetic field sensors is determined by solving the active magnetic field screening system synthesis problems with which the system provides the greatest efficiency of the active magnetic field shielding. Synthesis of active screening system is reduced to the problem of multi-criteria nonlinear programming with constraints in which calculation of the objective functions and constraints are carried out on the basis of Biot-Savart-Laplace law. The problem is solved by a stochastic multi-agent optimization by multiswarm of particles which can significantly reduce the time to solve it. Calculated arrangement of magnetic field sensors in a given space defined by the points at which the values of the corresponding components of the vector of magnetic induction take minimal values. Results. For the first time experimentally that changes in the position of the magnetic field sensors relative to their calculated position reduces the effectiveness of screening. The optimum position of the magnetic field sensors are the points at which the levels of the magnetic induction vector of projections orthogonal to the planes of the compensating coils are minimum values. Originality. For the first time invited to place sensors closed loop active screening system by magnetic field of high voltage power lines at the points where the calculated levels of corresponding projections of the magnetic induction vector orthogonal planes compensating windings are minimum values. Practical value. Practical recommendations for evidence-based selection of the spatial arrangement of the magnetic field sensors in a given area to ensure maximum efficiency of the active magnetic field screening system.

Author Biography

B. I. Kuznetsov, State Institution "Institute of Technical Problems of Magnetism of the NAS of Ukraine"

д.т.н., профессор, отдел проблем управления магнитным полем

References

1. Pravila ulashtuvannya electroustanovok. Vyd. 3, pererob. i dop [Electrical Installation Regulations. 3rd edition, revised and enlarged]. Kyiv, Мinpalyvenergo of Ukraine Publ., 2010. 736 p. (Ukr).

2. Active Magnetic Shielding (Field Cancellation). Available at: http://www.emfservices.com/afcs.html (accessed 10 September 2012).

3. Beltran H., Fuster V., García M. Magnetic field reduction screening system for a magnetic field source used in industrial applications. 9 Congreso Hispano Luso de Ingeniería Eléctrica (9 CHLIE), Marbella (Málaga, Spain), 2005, pр. 84-99.

4. Celozzi S., Garzia F. Active shielding for power-frequency magnetic field reduction using genetic algorithms optimization. IEE Proceedings – Science, Measurement and Technology, 2004, Vol.151, no.1, pp. 2-7. doi: 10.1049/ip-smt:20040002.

5. Ter Brake H.J.M., Wieringa H.J., Rogalla H. Improvement of the performance of a mu -metal magnetically shielded room by means of active compensation (biomagnetic applications). Measurement Science and Technology, 1991, Vol.2(7), pp. 596-601. doi: 10.1088/0957-0233/2/7/004.

6. Yamazaki K., Kato K., Kobayashi K. MCG Measurement in the environment of active magnetic shield. Neurology and Clinical Neurophysiology, 2004, Vol. 40, pp. 1-4.

7. Celozzi S. Active compensation and partial shields for the power-frequency magnetic field reduction. Conference Paper of IEEE International Symposium on Electromagnetic Compatibility. Minneapolis (USA), 2002, Vol.1, pp. 222-226. doi: 10.1109/isemc.2002.1032478.

8. Shenkman A., Sonkin N., Kamensky V. Active protection from electromagnetic field hazards of a high voltage power line. HAIT Journal of Science and Engineering. Series B: Applied Sciences and Engineering, Vol. 2, Issues 1-2, pp. 254-265.

9. Ter Brake H.J.M., Huonker R., Rogalla H. New results in active noise compensation for magnetically shielded rooms. Measurement Science and Technology, 1993, Vol. 4, Issue 12, pp. 1370-1375. doi: 10.1088/0957-0233/4/12/010.

10. Kazuo Kato, Keita Yamazaki, Tomoya Sato, Akira Haga, Takashi Okitsu, Kazuhiro Muramatsu, Tomoaki Ueda, Masahito Yoshizawa. Shielding effect of panel type active magnetic compensation. IEEJ Transactions on Fundamentals and Materials, 2005, Vol. 125, Issue 2, pp. 99-106. doi: 10.1541/ieejfms.125.99.

11. Rozov V.Yu., Reutskyi S.Yu. Pyliugina O.Yu. The method of calculation of the magnetic field of three-phase power lines. Tekhnichna elektrodynamika, 2014, no.5, pp. 11-13. (Rus).

12. Nikolova N.K., Bakr M.H. Electromagnetics I. Matlab Experiments Manual for EE2FH3. Department of Electrical and Computer Engineering McMaster University, 2012. 96 р.

13. Clerc M. Particle Swarm Optimization. London, ISTE Ltd., 2006. 244 p. doi: 10.1002/9780470612163.

14. Gazi V., Passino K.M. Swarm Stability and Optimization. Springer, 2011. 318 p. doi: 10.1007/978-3-642-18041-5.

Published

2017-02-26

How to Cite

Kuznetsov, B. I., Nikitina, T. B., Voloshko, A. V., Bovdyj, I. V., Vinichenko, E. V., & Kobilyanskiy, B. B. (2017). EXPERIMENTAL RESEARCH OF MAGNETIC FIELD SENSORS SPATIAL ARRANGEMENT INFLUENCE ON EFFICIENCY OF CLOSED LOOP OF ACTIVE SCREENING SYSTEM OF MAGNETIC FIELD OF POWER LINE. Electrical Engineering & Electromechanics, (1), 16–20. https://doi.org/10.20998/2074-272X.2017.1.03

Issue

Section

Electrotechnical complexes and Systems