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Finite-time robust position tracking control for DC motors under uncertain dynamics

Introduction. This study proposes a finite-time robust control law for position tracking of a DC motor under conditions of model
uncertainty and external disturbances. The motor operates through a pulse-width modulation (PWM) unit and an H-bridge power
circuit, aiming to achieve finite-time position tracking while minimizing the effects of model uncertainties and external disturbances.
Problem. The main challenge lies in achieving accurate and rapid position and speed regulation for the DC motor while maintaining
high performance, despite model inaccuracies and external disturbances. The goal of this paper is to design a robust finite-time position
tracking control law for a DC motor based on the differential geometric approach, ensuring high tracking accuracy and control
efficiency in the presence of disturbances and parameter uncertainties. Scientific novelty. The integration of finite-time control based on
a virtual system, diffeomorphism transformation, and disturbance compensation introduces an innovative solution for DC motor position
tracking under incomplete modeling and external perturbations. Methodology. The study employs the differential geometric method to
construct a virtual system with finite-time characteristics and uses Lyapunov theory to prove global stability in the presence of
uncertainties and disturbances. A finite-time virtual system is proposed after analyzing the incomplete dynamic model of the DC motor.
Results. To validate the proposed approach, MATLAB simulations were conducted and compared with a conventional sliding mode
controller. The results demonstrate improved settling time and robustness of the proposed method in DC motor position tracking. The
findings confirm that the proposed controller provides intuitive and precise control, accurate position tracking, and enhanced
performance regulation. It also exhibits strong robustness against model uncertainties and external disturbances. The practical value of
the proposed method is considerable, as it offers a reliable and efficient position control scheme for DC motors using PWM. The method
ensures precise position control and robust performance under varying conditions and external interferences, making it well-suited for
real-world DC motor control applications. References 23, tables 1, figures 12.

Key words: DC motor, finite-time control, sliding mode control, diffeomorphism transformation, differential geometric method.

Bemyn. 'Y oocniosicenni npononyemocsi pobacmuuti 3aKOH KepyBaHHA 3i CKIHYEHHUM HAcOM Ol GIOCMEICEHHSI NOJNOINCEHHS OBU2YHA
NOCMILIHO20 CIMPYMY 8 YMOBAX HEGUZHAUEHOCH MO0 Ma 306HIHIX 30ypetb. [leueyn npayroe yepes 610K WupomHO-iMIYIbCHOT MOOYIAYIT
(PWM) ma cxemy srcuenenuss H-nodibnozo mocma, mMemoro 4020 € 00CASHEHHs1 6I0CMENCEHHS NOJIONCEHHS! 31 CKIHYEHHUM YACOM, MIHIMIZVIouU
6nue HegusHaueHocmetl Mooeni ma 306Hiunix 30ypens. Ilpoonema. Ocnoena npobiema nonseac 6 OOCAHEHHI MOYHO20 MA WEUOKO2O
De2YNIoBanHs NONONCEHHS MA WEUOKOCH 08USYHA NOCMITHO20 CIMPYMY, 30epiearoyu npu YbOMY 6UCOKY NPOOYKIMUGHICIb, HE36ANHCAIOYU HA
Hemoynocmi mMooeni ma 306HiwHi 30ypenns. Memoro pobomu € po3pobka pobacmHo20 3aKOHY KepYBaHHs GIOCHMENCCHHAM NON0JICEHHS
0BUSYHA NOCMITIHO20 CIPYMY 31 CKIHUEHHUM YACOM HA OCHOSI OUpEPEHYIaIbHO-2e0MEMPUUHO20 NIOXOOY, WO 3a0e3nedye 6UCOKY MOUHICHb
8i0cmediceHHss ma eghekmugHicmes Kepyeanis 3a HaseHocmi 30ypeHb ma Hesusnauenocmeli napamvempis. Haykoea noeusna. Inmezpayis
KepyBanHs 3i CKIHUEHHUM YaCOM MHA OCHOBI GIPMYanbHOi cucmemu, nepemeoperHs Ougeomopizmy ma Komnencayii 30ypeHs npononye
iHHOBaYilIHe pilieHHs 0N BIOCMEIHCEHHST NOIONCEHHsL OBUSYHA NOCMILIHO2O0 CMPYMY 30 HENOBHO20 MOOETIOBAHHS MA 306HIUHIX 30)PeHb.
Memooonozia. Y Oocniodcenni 8UKOpUCMOBYEMbC OupepeHyianbHo-2eOMempuyHuil Memoo 01 nobyo0osu GipmyanbHoi cucmemu 3
Xapakmepucmukamu 3i CKiHUeHHUM Yacom ma meopist JIanyHoea 0iist 008e0eHHs1 2100aNbHOT CIMIUKOCMI 30 HASIBHOCMI HeGU3HAYeHOCmell ma
30ypens. 1licnsa ananizy HenoeHol OUHAMIUHOT MOOeT J8U2YHA NOCMIIHO20 CIMPYMY 3anpPONOHOBAHO GIPMYATLHY CUCIEMY 3 CKIHYEHHUM
uacom. Pezynomamu. /[ns nepesipku 3anpononoéano2o nioxody 6yno npogedero mooemosanns 6 MATLAB ma nopisnano 3i 36uuaiinum
KOHMPONEPOM K083H020 pedicumy. Pezynbmamu demoncmpyromes nokpaweHuli 4ac 6CMaHoenenHs ma Cmitikicms 3anponoHOBaH020 Mmooy
8I0CMECEHHS NONIOAHCEHHA 08USYHA NOCMILIHO20 cmpymy. Ompumani 0aui NiOMeepo’CyoNb, WO 3aNPONOHOBAHUL KOHMPOep 3a0e3neyye
iHmyimueno 3po3ymine ma moune KepyeaHHs, MoyHe 6I0CMedICeH sl NONOJICeH s MA NOKpawjene pezyriosantis npooykmueHocmi. Bin maxooic
0eMOHCMPYE BUCOKY CITUKICIb 00 HegUHaUeHOCHell MoOen ma 3068HiuHIX 30ypetb. IIpakmuuna 3nayumicme 3anponoHo8anoeo mMemooy €
3HAUHOIO, OCKINbKU BiH NPONOMYE HAOWIMY MA epeKmueHy cxemy KepyBaHHs NONOJCEHHAM ON OBUSYHIE ROCMILHO20 CMpYyMy 3
suropucmannsim PWM. Memoo 3abesneuye moune kepysantst NOJONCSHHSIM Ma CMILKY pOOOmMY 3a PI3HUX YMO8 MA 306HIUHIX NEPEUKO0, WO
Pobumb 11020 00Ope NPUOAMHUM OJist PEATIbHUX 3ACIMOCY68AHb KePYBAHHA 08USYHaMU nocmiinozo cmpymy. bion. 23, Tabn. 1, puc. 12.

Kniouogi cnosa: TBUTYH NOCTIHHOTO CTpyMy, KiHIleBe KepyBaHHsl, KOB3HHIi peskMM KepyBaHHsl, Iu(eoMop(He TNepeTBOPEHHs,
qudepeHIiaIbHO-TeOMEeTPUYHMIA MeTO.

Introduction. A DC motor has been widely applied
in various fields such as robotics, servo systems,
biomedical devices, and embedded systems due to its
simple structure, ease of control, and low cost [1, 2].
However, achieving precise control of DC motors remains
a significant challenge because of their strong nonlinear
characteristics, parameter uncertainties (such as friction,
inductance, and back electromotive force), and external
disturbances including load variations or dead zones [3].
In particular, for small-scale DC motors driven by pulse-
width modulation (PWM), direct measurement of the
armature current is often difficult, which highlights the
need for developing control strategies based on
incomplete or uncertain models [4].

Over the past decades, numerous control approaches
have been proposed to improve the trajectory-tracking
performance of DC motors. However, the conventional
PID control method cannot accurately capture the dynamic

variations of motor excitation [4, 5]. Consequently, with
the growing interest in nonlinear systems, a wide range of
control theories and techniques related to nonlinear
dynamics have been employed to address DC motor drive
control problems, such as backstepping control [3], sliding
mode control (SMC) [6, 7], adaptive control [8, 9], fuzzy
control [2, 10], neural network-based control [11], and
robust control [12]. In studies [13-15], several
optimization-based methods were proposed for tuning
controller parameters using nature-inspired optimization
algorithms, aiming to minimize steady-state error and
shorten the transient response. However, these studies did
not consider the finite-time response of the system and
were limited to ensuring only asymptotic stability.

The finite-time control technique [16-19] offers
significant advantages, including rapid response,
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predefined convergence time, and strong robustness
against disturbances. The application of finite-time
control in tracking problems has yielded remarkable
results. In many practical cases, DC motors require real-
time control, and the system must achieve stability within
a short period. Therefore, employing finite-time control
techniques for DC motors under disturbances and model
uncertainties has attracted considerable attention from
researchers seeking to enhance control performance. In
[16], a controller was developed to ensure that the
transient motion process is almost completed within a
predetermined finite time, after which the desired
trajectory is tracked with a specified precision. In [17], a
novel finite-time disturbance observer was proposed for
trajectory tracking of DC motors with model uncertainties
and exogenous disturbances. The application of finite-
time control has also produced impressive results in
electromechanical systems with DC motor actuators, as
reported in [18, 19]. Furthermore, studies [20-23] have
introduced an approach to control law design based on the
diffeomorphic control method. This method utilizes
geometric transformations to map the actual system into a
simplified virtual system, enabling the design of a control
law that ensures the real system states are embedded into
a desired invariant manifold [20]. The main advantage of
diffeomorphic control lies in its flexible design
framework, which can be readily extended to various
nonlinear systems, allowing the designer to specify
desired manifold properties directly.

Purpose and objectives of the article. This paper
proposes a synthesis technique for a finite-time robust
control law based on geometric control theory. The
approach involves constructing a virtual system with both
asymptotic and finite-time stability properties and
establishing a diffeomorphic transformation between the
real and virtual systems to derive the control law. The
proposed control law ensures the equivalence of dynamic
properties between the real and virtual systems, meaning
that the real system also achieves finite-time stability. To
guarantee the robustness of the control system under
model uncertainties and external disturbances, a
disturbance compensation component is incorporated. A
Lyapunov-based stability analysis is then carried out to
rigorously prove the global finite-time robust stability of
the overall system.

1. System description and modeling.

1.1. Experimental setup and operating principle.
The study of the motor control algorithm was conducted
on an experimental system. Figure 1 illustrates the
connection diagram of the motor control model based on
a microcontroller platform. The experimental setup for
DC motor position control was developed in the Control
Systems Laboratory at Le Quy Don Technical University
and serves as the research object.

The nominal parameters of the motor were
approximately determined through measurements and the
manufacturer’s datasheet. The YFROBOT Metal
Gearmotor GA25 operates at a 12 V DC supply and is
equipped with a 34:1 gearbox, which increases torque
while reducing rotational speed. Additionally, a Hall-
effect encoder is directly mounted on the motor shaft to
provide position feedback.

13 CPR Encoder
Hal Q

7

BTS7960 Motor
Driver

Embedded board
STM32F4 DIS

YFROBOT Metal
Gearmotor GA25 12V

Fig. 1. Block diagram of the experimental DC motor control setup

The embedded controller is implemented on an
STM32F411 microcontroller. The microcontroller acquires
the motor shaft’s angular position through a 13-CPR Hall-
effect encoder, whose signals are read via the built-in
external interrupt interface. The rotational speed of the
motor shaft and the control algorithm are executed within
the embedded software. The control signal is generated in
the form of PWM using the microcontroller’s internal timer
and transmitted via GPIO to the BTS7960 motor driver
module, enabling the motor to rotate precisely to the
desired position.

1.2. Nonlinear mathematical model of the DC
motor. The schematic diagram of the DC motor is shown
in Fig. 2, where R is the armature resistance, L is the
armature inductance, v is the applied voltage, i is the
armature current, e is the back electromotive force (back
EMF), Jy, = J + AJ is the load moment of inertia, J is the
nominal inertia, 4J represents its bounded variation, B is
the viscous friction coefficient, 7 is the electromagnetic
torque generated by the motor, 6 is the angular position,
and o the angular velocity of the motor shatft.

Fig. 2. Model of the permanent magnet DC motor system

The dynamic equations of the DC motor, according
to [4], are expressed as

do) _

” (1);
d;([) W(t) = Ri(t) — k(1) )
799D _ ity = Beo(t)— C sen(e) +d, (1),

where k,, is the back EMF constant; k; is the motor torque
constant, C is the static friction of the motor. The
disturbance term d(¢) accounts for external disturbance
torques and model uncertainties (for example, inertia
variations AJ).

For small-scale DC motors, the control method
typically employs PWM signals applied to an H-bridge
circuit, which makes accurate and efficient current
measurement highly complex. The electrical time
constant (L/R) is typically much smaller than the
mechanical time constant (J/B). Therefore, the current
dynamics reach steady state much faster than the
mechanical dynamics. This allows the armature current i
to be considered nearly steady, meaning that i=v/R.
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Nevertheless, when operating in high-frequency or large-
angle regimes, the inductance L can influence the
transient response, and this approximation may require
further validation through experimental comparison. Let
the state variables be defined as 6=x,, w=x, and v=u. The
dynamic model of the DC motor can be rewritten in the
following form [5, 8, 10]:

X = X3
. B C k; ()
Xy =——Xy ——sgn(x,)+—u+d(1),
257X 2788 (x2) TR (0
where d(f) represents both the electrical model

uncertainties and the disturbance term d,(¢).

Assumption 1. The disturbance term d(¢) is bounded
within the interval (—D, D), where D is a positive
constant.

In this study, the DC motor is coupled to the load
through a gearbox with minimal backlash. The stiffness of
the coupling and the gearbox is assumed to be sufficiently
high, allowing the elastic effects to be neglected.
Therefore, the system can be reasonably modeled as a
single-mass electromechanical system rather than a two-
mass one. The control objective is to design a finite-time
robust position-tracking controller for the DC motor to
follow a given reference trajectory x,,(f), based on the
incomplete mathematical model (2) in the presence of the
disturbance d(z).

2. Synthesis of a finite-time robust position-
tracking control law (RFTC) for the DC motor.

2.1. Fundamentals of finite-time control theory.

Consider a nonlinear system that can be described as
follows:

x(0) = f(x(0),u), x(0)=xo, €)

where xeR, is the state vector of the system; f{0)=0. The
function f{x) is the continuous nonlinear function defined
in an open neighborhood around the origin.

Definition 1 [23]. Given an initial time ¢, a positive
constant 7, and two state sets X, and X, system (3) is said
to be finite-time stable with respect to (¢, T, Xo, X)) if

X0 eX0:>x(t):Xt, fE[fo,to-l-T], (4)
where x(f) denotes the solution of (3) starting from the
initial state x, at time f,.

Lemma 1 [20]. Assume there exists a continuously
differentiable  function V(x)eC', defined in a
neighborhood UcR" of the origin, and real constants ¢>0
and 0<a<l1 such that:

1) V(x) is positive definite on U;

2) V(x)+cV¥(x)<0, VxeU.

Then, the origin of the system is finite-time stable. The
settling time depends on the initial state x, and satisfies

V' (xo)
k(—a)

for all x, within some open neighborhood of the origin. If
U=R" and V(x) is radially unbounded (i.e., V(x) — +o as
Xx — +o0), then system (4) is globally finite-time stable at
the origin of the coordinate system.

Lemma 2. Consider the strict-feedback system
given by

Ti(xg) < (5)

Z'l =2y,

. 2p-1 Z 6
Zp = —ﬂ,Sgl’l(C'lZl +Zz)|(,’121 +Zz| & +ov ﬁ —C12p, ( )
VZ] +&
where vi>0, >0, >0, S<(0.5, 1), ¢;>0. Then, system (6)
is globally finite-time stable.
Proof. Consider the Lyapunov function

Vi =055 =05(c1z +25)°. (7)
Taking the time derivative yields
Vf = (clzl + Zz)(CIZ.I + 22) =
21 2
= (clzl + 22)(— isgn(clzl + Z2)|C121 + Z2| ﬂ ) = —A|S| ﬂ
From this, we obtain:
V2P v P <o, ®)
From Lemma 1, it follows that the virtual system
(6) is globally finite-time stable, which guarantees that
system (6) evolves on the manifold s=0. Next, it is
necessary to show that the motion on the manifold s=0
drives the system (6) states to the origin z=0.
With s=0, we have
Zp =—C171. (9)
Substituting this into (6) gives
Z1

—— .
Jo2 4 a2

Now, consider estimating the settling time of (10)
with the initial condition z,(0)=z,, and define ¢, as the
minimum time after which |z| does not exceed a
prescribed value 4.

To analyze convergence, consider the Lyapunov
function

(10)

le = —Vl

szlz, (11)

whose time derivative is
+ Cl 212 < 0 .

V:2212.1 =-2 V1 (12)

_a

Vzt +&?
From (13), it is evident that the solution of (10)

converges to the origin. Moreover, from (12) we obtain

Zl 2
V<=2 v——t¢ |72 (13)
Jo2+e?
dV Z]
A R —— T (14)
v NEmE

Integrating this inequality for ¥ evolving from V,
corresponding to the time interval from O to ¢,, yields

2 2

VZioté 21,0

» <———In|——|.
V1+Cl»\’212’0+€2 A

In classical linear control theory, the settling time ¢,
is defined as the time after which the deviation between
the instantaneous response and the steady-state value does
not exceed a specified threshold 4. The results above
demonstrate that system (6) is finite-time stable with
respect to the manifold s=0 and that the state variable z;

t

(15)
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converges to within the prescribed bound 4 in the finite
time f,, determined by the initial conditions and the
chosen value of 4.

Therefore, according to Definition 1, it can be
concluded that system (6) is globally finite-time stable.

2.2. Synthesis of a robust finite-time control
(RFTC) law based on the differential geometric
method. To design the finite-time control law u for
system (2), it is assumed that the system operates without
disturbances, i.e., d(f)=0. Based on the differential
geometric method, a diffeomorphic transformation is
established between the nonlinear system (2) and the
virtual system (6) with respect to x; Consider the
transformation z,=x,—x,,, where x,, is the desired angular
position of the motor shaft. Under this construction, the
diffeomorphic transformation is expressed as follows

Z1=X ~ Xeps

(16)

. Z

Zp=Xp—X +V]ﬁ.
V21 +&

sp
This means that z; depends only on x;. Therefore, by
substituting z, from the last equation of transformation
(16) into the last equation of system (2), and combining it
with system (6), the following control law is obtained:

Xp—X
EXZ +£sgn(x2)+)’ésp—€2v12—‘§p5
J J (212+32)L
R _
uzi{— —lsgn(clzl+22)|clzl+22|2/j1 - (17)
1 Zl
+CIV1—05—C122
2 2
(Zl +& )
The control law is acceptable only if a

diffeomorphic mapping exists between system (3), when
d(t)=0, and system (6), meaning that the Jacobian matrix
of the mapping between the two systems must be non-
singular, which implies that:

& o

1 0
ox; Ox

det| 21 2= 2" 4|%0. 18
2 o (212 o
8x1 6)62 1

According to Lemma 2, the control law (17)
guarantees that system (2), in the absence of disturbances,
achieves finite-time stability, where the settling time is
determined by the sum of the time required for the state to
reach the manifold s=0 (5) and the time ¢, (15).

To mitigate the effect of the disturbance term d(f) on
the stability and control performance of the DC motor under
control law (17), a disturbance compensation component is
further incorporated into the control law as follows:

u, :u—i—R5sgn(clzl+zz). (19)
1

Theorem 1. Under the conditions of parameters
vi>0, >0, >0, f<(0.5, 1), ¢;>0, 6>4 and Assumption 1,
the control law (19) ensures that system (2) is globally
asymptotically stable.

Proof. Consider the Lyapunov function defined in
(7). Taking its time derivative and substituting from (2),

(6), and (9), we obtain:

24-1
—ftsgn(qzl +22)|clzl +22| B _

Vi=(c1z1+23) = 20

—o0sgn(cizy +zp)+d(t)
=281 P ~|eyz) + 2,|(6 — sgn(eyz) + 25)d(0))

According to Assumption 1, if 6>D is chosen, it
always follows that ¥, <0. Consequently, system (3) is

globally asymptotically stable. The structural block
diagram of the DC motor control system employing
control law (19) is shown in Fig. 3. It is noteworthy that
the saturation blocks in the figure constrain the
controller’s voltage, considering the electromechanical
limits of both the power circuitry and the motor. This
ensures that the motor accurately and feasibly tracks the
reference trajectory.

B

=x, —Eign(x )+X, —&™, L =
S e 7’ X
o u | »
% —Asgn(cz + 2|z +o" + ' % = 5
; 2

oy,

4
1 2 2
Jz+e

X,

-Gz,

i

Xsp

Fig. 3. Block diagram of the DC motor control system

2.3. Design of the SMC law. From system (2), the
control signal must be determined so that the control
objective x;=xg, is achieved. The output tracking error of
the system is defined as:

€1 =X —xsp. (21)
The sliding surface of the controller is chosen as:
s =é+e. (22)

where y>0 is the parameter ensuring the asymptotic stability
of the sliding surface. Applying SMC theory, we obtain:

Xy —Xgp )+ y\X1 —Xgp )= —Ksgn(s), (23)
where K is the positive constant.
Hence, the SMC law is expressed as:
B C .
:ﬁ 7)62 +7sgn(x2)+xsp (24)

ki - 7(x2 _xsp )_ngn(s)

3. Simulation and experimental results.

3.1. Simulation results. To validate the effectiveness
of the proposed finite-time control law for the DC motor,
numerical simulations were carried out in the MATLAB
environment. The parameters of the motor and its load in
the mathematical model were determined from the
datasheet and through direct measurements on the physical
system, given as: J = 0.225 kg-mz; R=9.1 Q; L=6 mH;
C=0.001 N'm; B = 6.25 10° N-m-s/rad; £=6.8 N-m/A,
k, = 0.015 N-m/A. The parameters of the proposed
control law, ¢, vy, 4, £, and &, were selected to satisfy the
global stability conditions derived in the previous section.
In this study, these parameters were chosen as: c¢,=15,
vi=2, =20, =0.9, e=0.001 and 6=7. For comparison, the
parameters of the SMC were set as K=380, y=100. To
alleviate the chattering phenomenon in the control law
(24), the sign function sgn(s) was replaced by a linear
saturation function bounded within [-1, 1]. The
simulations were performed on the dynamic model of the
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DC motor (1) over a period of 10 s, under a disturbance
di(f) = 5+sin(0.05f), an additional pulse-like external
torque was applied to the load, resulting in a total
disturbance of d(¢) +9. The initial conditions of the motor
shaft were set to the origin, i.e., x;=0, x,=0.

In the first simulation scenario, the reference signal
varied over time as follows: from 0 s to 2 s, the desired
position was set to x,, = 1 rad; from 2 s to 8 s, x,, = —1 rad;
and from 8 s to 10 s, x;, = 0 rad. The simulation results
presented in Fig. 4-6 demonstrate that both control laws,
SMC and RFTC, enable the DC motor shaft to accurately
track the reference signal with negligible steady-state error.
As shown in Fig. 4, the position responses during the
transient phase reveal that the SMC controller exhibits
noticeable oscillations, a longer settling time, and a higher
overshoot compared to the RFTC controller (as
summarized in Table 1). Figure 5 shows the position
tracking errors over time, showing that both controllers
quickly eliminate the steady-state error; however, their
transient behaviors differ: SMC presents small local
oscillations around transition points, while RFTC achieves
a smoother response. The most remarkable comparison
appears in Fig. 6, where the SMC controller generates high-
amplitude control pulses at step transitions, whereas the
RFTC provides a smoother and more continuous control
signal. During the disturbance period between 3.5 s and 4 s,
the angular response, tracking error, and control voltage of
the RFTC controller clearly outperform those of SMC.
Specifically, the RFTC achieves a faster settling time —
approximately 1.25 s shorter — with less oscillation in the
control input u and lower overall energy consumption.
These findings indicate that when fast response, vibration
attenuation, and enhanced robustness and accuracy are
required, the RFTC controller proves to be more effective
and reliable than the SMC law.

1.5

-
S

P
I —x,(SMC)

—x,(RFTC)

0.5~

0 2 4 6 8 1510

Fig. 4. Position tracking response of the DC motor
using RFTC and SMC controllers (1st scenario)

e, rad. | | —— ¢, (SMC)
| | ——¢,(RFTC)
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1Fr----14------- ‘F fffff 4‘ fffff =
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Fig. 5. Position tracking error of the DC motor
using RETC and SMC controllers (1st scenario)
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Fig. 6. Control voltage applied to the DC motor
using RFTC and SMC controllers (1st scenario)
Table 1
Position response performance indices in the first scenario
t=(0-2)s t=(2-8)s t=(8-10)s
RFTC |SMC| RFTC |SMC| RFTC | SMC
Settling time, s| 0.5 |0.863| 0.6 |0.94 | 0.52 0.88
Overshoot, % 10 29.1 0.2 3.6 11 31

Steady-state ) 5} 4l4.10412.5.10|4.104(2.8-104.9-10~
error, rad

Variable

In the second simulation scenario, the reference signal
was defined as xg,=cos(¥)+0.3sin(0.5¢). The simulation
results presented in Fig. 7-9 demonstrate that both SMC
and RFTC control laws achieve effective trajectory
tracking performance for the DC motor. As shown in
Fig. 7, the position responses obtained using both
controllers closely follow the reference trajectory x,,.
However, during the transient period, the RFTC controller
exhibits a noticeably faster response and avoids the
oscillations observed in the SMC controller. In particular,
under external disturbances, the RFTC controller provides
superior tracking capability and converges more rapidly to
the desired trajectory. Figure 8 illustrates the position
tracking error, where both controllers achieve very small
errors that quickly converge to zero after the initial
transient phase. Nevertheless, the proposed RFTC
controller yields smaller transient errors. Remarkably,
RFTC achieves faster error stabilization with nearly no
oscillations, whereas the SMC controller still exhibits local
high-frequency oscillations during the early response stage.
The control input signals shown in Fig. 9 clearly highlight
the distinction between the two methods. The SMC
controller generates large-amplitude, abrupt control pulses
at the beginning of the response and exhibits chattering
under sudden disturbances. In contrast, the RFTC controller
produces a smoother and more continuous control signal.
This observation suggests that RFTC can effectively reduce
vibration and mechanical wear compared to SMC.

0 2 4 6 8

ts 10
Fig. 7. Position tracking response of the DC motor
using RFTC and SMC controllers (2nd scenario)
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ts 10
Fig. 8. Position tracking error of the DC motor
using RFTC and SMC controllers (2nd scenario)
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Fig. 9. Control voltage applied to the DC motor
using RFTC and SMC controllers (2nd scenario)

3.2. Experimental results. In this section, the
objective is to validate the proposed controller on a real-
time hardware setup in the laboratory, using the same
reference signals as in the previous simulations. The
experimental drive system is illustrated in Fig. 10. The
motor shaft is coupled with a flywheel-type load to
introduce additional inertia. The complete control
algorithm was implemented on an embedded STM32 board
programmed using STM32CubelDE, while data acquisition
was performed through the STMStudio software.
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Fig. 10. The experimental drive system

Figures 11, 12 present the angular position responses
of the real DC motor system under the SMC and RFTC
control laws for two types of reference signals: step and
sinusoidal. The results indicate that both controllers ensure
satisfactory tracking performance; however, there are
noticeable differences in the quality of the responses. For
the step reference, both controllers enable the motor shaft
to follow the desired trajectory with negligible steady-state
error. Nevertheless, the RFTC controller achieves
significantly faster response times compared to SMC, with
settling times of approximately 0.2 s, 0.5 s, and 0.19 s for
each transition, respectively. It should be noted, however,
that the proposed controller exhibits a slightly larger
overshoot than the SMC controller. When tracking the
sinusoidal reference, the RFTC demonstrates superior

continuous tracking capability and faster recovery under
external disturbances. In contrast, the SMC controller
responds more slowly, although it still maintains acceptable
tracking accuracy. Furthermore, variations in the SMC
controller parameters can lead to oscillations around the
reference trajectory. Overall, the experimental results
confirm that the RFTC controller provides accurate and
well-damped responses in the real system, particularly
excelling in fast and smooth tracking of continuous
trajectories, while the SMC controller retains its advantage
in robustness against disturbances.
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Fig. 11. Position response of the DC motor in the real system
under the 1st scenario
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Fig. 12. Position response of the DC motor in the real system
under the 2nd scenario

Conclusions. This paper presents a synthesis
method for a robust finite-time control law based on
differential geometry, applied to position control of a DC
motor under external disturbances. The proposed control
law guarantees finite-time stability of the system in the

presence of model uncertainties and external
perturbations. By constructing a virtual system with a
nonlinear  feedback  structure and applying a

diffeomorphic transformation, the control law is designed
such that the system state trajectories converge to a
neighborhood of the equilibrium point within a finite
time. The finite-time stability and disturbance rejection
capability are rigorously proven using Lyapunov theory.
Both simulation and experimental results, compared with
the conventional SMC under two reference signal
scenarios, demonstrate the superiority of the proposed
method. In future work, the authors plan to incorporate
observers, neural networks, and fuzzy logic to further
improve the performance and overcome the remaining
limitations of the proposed control strategy.
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