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Development of a NARX neural network for a tribo-aero-electrostatic separator
with rotating disk electrodes

Introduction. The exponential growth of waste electrical and electronic equipment (WEEE) requires efficient strategies for plastic waste
management. Plastics, a major fraction of WEEE, represent both an environmental challenge due to low biodegradability and a valuable
source of secondary raw materials. Problem. Tribo-aero-electrostatic separators with rotating disk electrodes offer a promising solution for
fine plastic separation. However, their performance depends on multiple, nonlinear, and time-varying factors such as disk speed, voltage,
and particle properties. These complex interactions make analytical modeling and stable process control difficult, limiting industrial
implementation. The goal of this work is to develop a reliable dynamic model based on NARX neural networks capable of predicting the
real-time evolution of key process variables such as recovered mass and particle charge. Methodology. The proposed NARX neural network
learns temporal nonlinear relationships directly from experimental data, avoiding the need for explicit physical equations. Experiments were
conducted on a synthetic 50:50 mixture of Acrylonitrile Butadiene Styrene (ABS) and Polystyrene (PS) particles (500-1000 um) to assess
model performance under varying disk speeds, voltages, and air flow rates. Results. The developed model accurately predicts the recovered
mass and acquired charge of both ABS and PS over a wide range of operating conditions. The predictions show strong agreement with
experimental measurements, maintaining low error levels even at parameter extremes. Scientific novelty. This work represents the first
application of NARX neural networks to model the dynamic behavior of a two-rotating-disk tribo-aero-electrostatic separator. The approach
captures essential time-dependent interactions that conventional static or analytical models fail to describe. Practical value. The NARX
model exhibits high predictive accuracy and robustness across an extended operating domain (4-20 kV, 15-60 rpm, 7-9 m’/h), with errors
limited to the 10° g and 107° uC ranges. These characteristics demonstrate its potential for real-time intelligent control and adaptive
optimization of electrostatic separation processes in plastic waste recycling. References 39, tables 3, figures 9.
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Bemyn. Excnonenyiansie 3pocmants Kitbkocmi 6i0X00i@ enekmpuunoco ma enekmponnozo oonaonanns (WEEE) eumacace eghexmugHux
cmpameeiii ynpasninia niacmukosumu gioxooamu. Ihacmuxu, octosna wacmuna WEEE, cmanoenamy sK exonoeiuny npoonemy uepes
HU3LKY OIOpO3KIadHicmb, mak [ yinHe Ooicepeno emopunHoi cuposunu. Ilpobnema. Tpuboaepoenexmpocmamuuni cenapamopu 3
00epmosUMU  OUCKOBUMU  eNIEKMPOOaMU  HPONOHYIOMb NEPCHEKMUeHe piuteHHs: 0Nl MOHKo20 posdinenns naacmuxy. OOwak  ixus
NPOOYKMUGHICIb  3A/1eNCUMb IO YUCTICHHUX, HEMHIUHUX Mma 3MIHHUX Y Yaci ¢hakmopis, maxux sK weuokicms Oucka, Hanpyea ma
enacmugocmi uacmuHox. Lli cknaomi e3aemooii ycknaouiooms ananimuume MOOEN0BAHHA Ma CMadinbHe KepyeanHs Npoyecom, 00Medcyiodu
npomucnose 6npogadicents. Memorw podbomu € po3pobka HAOIIHOT OUHAMIYHOT MOOeni Ha OCHO8I HelpoHHux mepedc NARX, 30amuux
NpOHO3YBAMU eBOTIOYII0 KIIOYOBUX 3MIHHUX NpoYecy, Makux sK 6IOHOGIeHA MaAcCa ma 3apso0 YACMUHOK, ) peansHomy uaci. Memooonozia.
3anpononosana netiponna mepexca NARX eusuac yacosi neninitini 3anezicHocmi 6e3nocepeoHbo 3 eKCnepuMeHmanbHux OaHUX, YHUKAYU
HeoOXIOHocmi A6HUX DI3UUHUX PIGHAHb. EXcnepumenmu nposoounucs Ha CUHMEMUYHIT CyMiutl YaCMUHOK aKpUIOHIMpUIOymaoieHCmupony
(ABS) ma nonicmupony (PS) y cniggionowenni 50:50 ona oyinku npoOyKmugHocmi mMooeni 3a PizHUX WeUOKOCmell OUCKIS, Hanpye ma
wisuoxocmeti nomoky nogimps. Pezynemamu. Po3po6iena mooens mouHo npoeHo3ye 6i0H06NeHy mMacy ma Habymuti 3apsio sax ABS, max i PS
¥y wupoxkomy oianazomi pobouux ymos. I[IpocHosu OemMoHcmpyiomb 6UCOKY GIONOGIOHICMb 3 eKCHepUMEHMANbHUMU SUMIPIOBAHHAMU,
nIOMpUMyIOUU HU3LKULL pieerb NOXUOKU HAGIMb NpU eKcmpemanbHux 3nauennax napavempie. Haykoea noeusna. L[a poboma asnse coboio
nepute 3acmocyéants Heuporunux mepexc NARX ona mooentosanns ounamiunoi nogedinku mpuboaepoenekmpocmamuyHo2o cenapamopa 3
0dgoma obepmosumu ouckamu. Lleti nioxio epaxosye 8axciusi 3anexcHi 6i0 uacy 63aemooii, AKi 36UNALiHI CIamuyHi ab0 aHATIMUYHI MoOeri He
modicyms onucamu. Ilpakmuuna 3snauumicms. Mooerns NARX oemoncmpye 8ucoky npocHocmutHy mOYHICHs Ma CIIUKICMb Y PO3UIUPEHitl
pobGouiii onacmi (420 kB, 15-60 06/x6, 7-9 m*/200), 3 noxubkamu, oomexncernmu dianasonavy 10° 2 ma 107 yxKn. Lfi xapaxmepucmuxu
OeMOHCIPYIOmb 1020 NOMEHYIan Osl IHMENEKMYWIbHO20 KEPYSAHHS 6 PEXCUMI PeaibHO20 4acy ma aoanmueHoi onmumizayii npoyecie
ENeKMpPOCMAamuyHo20 Po30LIeHHs npu nepepobyi niacmurosux eioxoodis. bion. 39, Tabn. 3, puc. 9.

Kniouogi cnosa: eleKTpocTATHYHA cenapanisi, BICOKA HAaNpyra, JMHAMiYHe MO/leJIIOBaHHs, HelipoHHa Mepe:xka NARX, nepepo0ka.

Introduction. The management of plastic waste from
electrical and electronic equipment (WEEE) has become a
global priority in the face of the exponential growth of such
waste and the environmental challenges they pose. Plastics,
which account for a significant portion of WEEE streams,
represent a major problem due to their low biodegradability
and their impact on ecosystems when not properly recycled
[1, 2]. The recycling of these plastics offers both economic
and environmental opportunities, allowing for a reduction
in their impact while meeting the growing demand for
secondary raw materials [3].

In this context, several electrostatic separation devices
have been developed in research laboratories [4-6]. The
tribo-electrostatic separator with two rotating disks, in
particular, has shown high efficiency in sorting
submillimetric granular mixtures, where charging occurs in
a fluidized bed containing the material mix to be separated.
In this system, a pair of electrodes in the form of two
rotating stainless steel disks, driven by a variable-speed

motor and connected to high-voltage power supplies with
opposite polarities, is immersed to generate an intense
electric field [7, 8].

However, the performance of this process is strongly
influenced by a combination of nonlinear, interacting, and
time-varying factors, including disk rotational speed,
applied voltage, particle charge, and air flow rate [9].
Moreover, environmental factors (such as relative humidity
and temperature of ambient air) influence the separation
process [10-12]. These dependencies make process
behavior highly dynamic and sensitive to perturbations,
resulting in difficulties in maintaining stable and optimal
separation conditions. This complexity limits the industrial
application of separators due to the difficulty in
maintaining optimal performance in a stable manner [13].

Consequently, it becomes essential to develop
dynamic models capable of accurately describing the
transient behavior of tribo-aero-electrostatic separators
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and predicting their performance under varying
operational conditions. The design of advanced control
systems for such devices relies on the availability of
internal models able to capture their nonlinear and time-
dependent  dynamics. Traditional analytical and
phenomenological modeling approaches, while useful for
simplified cases, fail to adequately describe these
complex dynamics, particularly when multiple coupled
parameters evolve simultaneously in time [14].

In this context, artificial intelligence (AI) offers a
powerful and innovative alternative. Artificial neural
networks (ANNS), in particular, have emerged as tools of
choice for modeling and identifying complex processes
[15-19]. Unlike traditional approaches, neural networks
do not require explicit knowledge of the underlying
physical relationships. They are capable of learning
directly from experimental data by identifying complex
nonlinear relationships between input and output
variables. This learning ability makes them particularly
well-suited for multifactorial processes where interactions
are difficult to model analytically.

ANNs have been effectively used to model and
optimize electrostatic separation processes. For instance,
in roll-type electrostatic separation, ANNs combined with
genetic algorithms have been employed to maximize
insulation product yield by optimizing control variables
such as high voltage and roll electrode speed [20]. In the
context of industrial electrostatic separators with rotating
electrodes, ANNs facilitate multicriterion optimization,
addressing the complexity of adjusting control variables
in dynamic industrial environments [21, 22]. ANNs also
play a crucial role in predicting the performance of
electrostatic  separation in food waste recovery,
demonstrating high accuracy in aligning experimental and
predicted results [23].

Nevertheless, most ANN-based models reported in
the literature remain static or empirical, which limits their
ability to represent the temporal evolution and dynamic
interactions inherent to electrostatic separation systems.
This limitation is particularly critical for tribo-aero-
electrostatic separators with rotating electrodes, where the
charging, transport, and separation of particles evolve over
short and long time scales [24]. To overcome these
limitations, this study focuses on the development and
validation of a Nonlinear Autoregressive with Exogenous
Inputs (NARX) neural network model designed to capture
the dynamic behavior of a tribo-aero-electrostatic separator
equipped with two rotating disk electrodes operating under
high-voltage conditions. The NARX structure, known for
its ability to represent systems with memory and feedback,
has demonstrated strong performance in modeling
nonlinear time-series processes [25-28], making it
particularly suitable for this application.

The goal of this work is to develop a reliable
dynamic model based on NARX neural networks capable
of predicting the real-time evolution of key process
variables such as recovered mass and particle charge.
Experiments are carried out on a synthetic 50:50 mixture
of acrylonitrile butadiene styrene (ABS) and polystyrene
(PS), two representative thermoplastic polymers of
WEEE streams, with particle sizes ranging from 500 to
1000 um. The dataset is acquired through a LabVIEW

based data acquisition system, allowing accurate and real-
time monitoring of operational parameters such as disk
rotational speed, applied voltage, and air flow rate.

Materials and methods. A tribo-aero-electrostatic
separator equipped with two rotating disk electrodes (Fig.
1) was used for this study. In this device, the separation of
fine granular materials is achieved under the combined
influence of electrostatic and aerodynamic forces.
Granular materials are first introduced into a fluidized bed
inside the separation chamber, where repeated particle—
particle and particle—wall collisions induce tribo-electric
charging. Simultaneously, a controlled air flow maintains
the particles in suspension, ensuring homogeneous mixing
and frequent collisions. Inside the chamber, two stainless-
steel disk electrodes rotate at adjustable seeds and are
polarized by high-voltage supplies of opposite polarity.

3

Fig. 1. Tribo-aero-electrostatic separator with two rotating disks:
1 — control panel; 2 — variable speed DC motors; 3 —vibrating
feeder; 4 — cylindrical feeder; 5 — separation chamber with two
rotating disk electrodes; 6 — Faraday cages; 7 — balances;

8 — blower; 9 — electrometers (Keithley 6514); 10 — portable
colorimeter NH310; 11 — computer [7]

The charged particles are driven toward the electrode
of opposite sign and adhere to its surface under the
combined effect of electrostatic and aerodynamic forces
(Fig. 2). Brushes or scrapers then detach the particles from
the disks and direct them to separate collectors. Less-
charged or neutral particles remain suspended until they
acquire sufficient charge to be collected [29].

Fig. 2. Collection of insulating particles in the two-rotating-disk
tribo-aero-electrostatic separator

Previous investigations on  this  separator
configuration have demonstrated its capability to
selectively sort fine polymer mixtures and confirmed the
strong influence of parameters such as electrode voltage,
disk speed, and air flow rate on separation efficiency [24,
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30-33]. Building upon these findings, the present work
extends the analysis toward continuous operation and
dynamic modeling to support the development of a data-
driven predictive model based on NARX neural networks.
The material mixture used consists of two polymer types:
brown ABS and white PS (0.5-1 mm), supplied by
APR2 (France), a company specializing in WEEE
recycling (Fig. 3). The studied mixture is balanced (50 %
ABS / 50% PS) and continuously fed by a vibratory
mechanism. According to their positions in the tribo-
electric series, ABS becomes positively charged while PS
becomes negatively charged, and they are collected
respectively by the negative and positive electrodes [30].

1000 pm
Fig. 3. Micrographs of ABS and PS particles composing the
studied materials

The separator is equipped with a monitoring and
control panel that enables real-time acquisition of key
operating data: high-voltage levels, disk rotation speed, fan
speed, and air flow rate. Separated materials are gathered in
Faraday-type tanks connected to Keithley 6514
electrometers and placed on electronic balances (0.1 g
resolution, 2 kg capacity). Measurements of electric charge
and mass are recorded through a LabVIEW based data
acquisition system. All experiments are conducted under
controlled ambient conditions (relative humidity 40-50 %,
temperature 17-21 °C).

The data collected in this study come from multiple
experimental series as described in [31]. The effect of high
voltage was evaluated in experiments conducted at a fixed
disk rotational speed of 30 rpm and a constant air flow rate
of 8 m/h, for voltages of +4 kV, £8 kV, £12 kV, £16 kV,
and £20 kV. In the second series of experiments, the disk
rotational speed was successively adjusted to 15 rpm,
30 rpm, 40 rpm, 50 rpm, and 60 rpm, while maintaining a
constant voltage of £12 kV and an air flow rate of 8 m*/h.
Finally, a separation experiment was carried out with the
fluidization air flow rate varied by adjusting the blower
speed to 7 m’/h, 7.5 m3/h, 8 m*/h, 8.5 m’/h, and 9 m*/h, at a
constant rotational speed of 30 rpm and voltage of + 12 kV.

The resulting dataset, composed of synchronized
time-series measurements of mass and charge, served as
the basis for training and validating the proposed NARX
neural network model.

Architecture and implementation of the NARX
neural network. There are currently several types of
ANNSs used in various applications [32]. In this work, we
focus specifically on the NARX neural network model,
which is a type of recurrent neural network well suited for
modeling nonlinear systems, particularly time series [33].
Figure 4 illustrates the topology of the NARX network
defined in study. The equation defining the NARX model
is as follows:

y(e+1)= fIp(e).. v —d, + Dsule)....u(t —d, + 1], (1)
where u(?), y(f) are the input and output of the network at
time f; d,, d, are the input and output orders; f is the

nonlinear function.
Equation (1) can be expressed in vector form as:
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Fig. 4. NARX neural network with delayed input

The input vector u=[U, N, O]" consists of 3
elements: the high voltage applied to the electrodes (U),
the rotational speed of the electrodes (V;) and the air flow
rate of the blower (Q); T is the transpose of the vector. In
contrast, the output vector y = [mygs, Mps, qaps qPS]T
consists of 4 elements: the collected mass of ABS and BS
(m4ps, mps) and the electrical charge of the collected mass
of ABS and PS (guss ¢ps). This network also employs
tapped delay lines to store previous values of the input
sequence u(f) and output sequence y(f). Moreover, the
NARX network output, y(¢), is fed back to the network
input (through delays), since u(f) depends on y(+1),
W(t=2),....(t-d,). However, for efficient training, this
feedback loop can be opened.

To optimize the training conditions of the network, data
preprocessing is highly recommended. Therefore, all data
used for training and testing are normalized within the range
[-1, +1]. This normalization helps reduce training time while
improving the network’s performance [34]. The dataset is
typically divided into training, validation, and, if available,
test sets, with common splits of 70/30 or 70/15/15 [35]. For
temporally correlated data, block-wise segmentation is
required to preserve the dynamics, with each subset
including at least one complete cycle.

In this study, the entire dataset of mass and mass
charge measurements collected in the previous section
was used to train the NARX network in order to
determine the optimal number of neurons in the hidden
layer. These dynamic data consist of a total of 6950
measurement points, of which 70 % (4864 points) were
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used for training and 30 % (2086 points) for testing, to
validate the performance of the NARX neural network.
The model characteristics are summarized in Table 1, and
the implementation was carried out in MATLAB using
the Neural Network Toolbox.
Table 1
Structure of the studied neural network

Neural network type NARX
Training algorithm Levenberg-Marquardt
Initialization algorithm Nguyen-Widrow
Hidden neurons activation function| Hyperbolic tangent
Output neurons activation function Identity

There is no universal rule to determine the optimal
neural network structure (number of layers, number of
neurons, types of connections) or its parameters
(activation functions, input delays, feedback delays). An
iterative process, inspired by previous work [36-39], was
implemented to optimize the NARX network structure.
This process determines the number of neurons in the
hidden layer as well as the delays on the inputs and
feedback outputs by testing various configurations and
selecting the best one based on a performance criterion.

Based on the above, the search for the optimal structure
was conducted using the parameters listed in Table 2.

Table 2
NARX network parameters
Search range of number of neurons (NN) in the hidden layer|[5, 30]
Search range for the number of input delays [1,3]
Search range for the number of output delays [1, 6]
Number of reinitializations per configuration 10
Total number of final reinitializations 50

The selection of the optimal model is based on the
mean squared error (MSE) given by (3) and the maximum
coefficient of determination (R-squared), which defines
the goodness of fit of the experimental data (4), mean
error (ME) (5) and mean absolute error (MAE) (6):

N
MSE =Y (M, —Y,~)2/N; 3)

i

R? =1—§(Mi —Yi)z/]z\_/:(Mi ‘;")2 > @

1

ME:Z(M,.—Y,.)/Ne; ®)
MAE:Z|M,.—Y,.|/N, (6)

where N is the number of samples used for training; N, is
the number of experiments performed for each variation
parameter; M; is the measured value; ¥; is the average
output; ¥; is the output provided by the network.

The total number of configurations tested is 540
(30%3x%6). Each configuration is tested 10 times, and the
best one is tested again 50 times, resulting in a total of
5,450 training runs (540x10+50) (Fig. 5). The search for
the optimal structure was performed on a machine
equipped with an Intel® Core™ i7-11800X 2.3 GHz
processor. The optimization results are shown in Table 3.
Using 24 hidden neurons, an input delay of 1 step, and an
output delay of 2 steps achieves the best performance.

Table 3
Results of the optimal structure search
Number of neurons (NN) in the hidden neurons 24
Input delays 1
Output delays 3
Number of elements 169
MSE 21.2:10°°
R’ >0.9999
h J |!_‘\ MSE—s— RIEM Best value| R
> 0,99992
a 150
=
0,99984
100 —
0,99976
50 ‘ 0,99968
053 10 15 20 25 30 NN

Fig. 5. Performance of the NARX network as a function
of the number of neurons in the hidden layer

In Fig. 6 the graphs a, b, e and f show the model
prediction results at different voltages (4-20 kV). The
train and test training data, represented by a circle symbol
and blue and black discontinuous line, are compared to
the data predicted by the NARX network, represented by
a cross symbol and red and orange solid line.

Visual inspection reveals exceptional agreement
between experimental measurements and model predictions
across all voltage levels. Both recovered mass (Fig. 6,a,b)
and acquired charge (Fig. 6,ef) show a strong positive
correlation with applied voltage, following expected physical
principles of electrostatic separation. The nearly perfect
overlap between prediction curves and experimental data
demonstrates the model’s capability to capture the
underlying system dynamics without explicit physical
modeling.

Quantitative analysis confirms this observational
assessment. The average prediction errors remain below
0,035 for mass recovery (Fig. 6,c,d) and 0,05 for charge
acquisition (Fig. 6,g,h) across the entire voltage range.
Notably, the model maintains its predictive accuracy for
both training and testing data sets, indicating excellent
generalization capabilities without over fitting. The slight
error increase at voltage extremes (particularly at 4 kV)
can be attributed to signal-to-noise ratio challenges in
low-intensity separation conditions.

The investigation of disk rotational speed influence
(Fig. 7) shows that, unlike the applied voltage, this
parameter does not exert a significant effect on particle
recovery. Across the full range of tested speeds (15-60
rpm), the collected masses remain nearly constant, with
variations within +2 g for ABS and #3 g for PS,
indicating that rotational speed is not a critical factor in
the overall separation performance.

The NARX model accurately reproduces this
insensitivity. In the test dataset, the mean error (ME) is
around 5.5 mg for ABS and 7 mg for PS, while for
the charges it remains limited to +9-10° uC.
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A temporal analysis, however, reveals transient
fluctuations up to 8-10° at the beginning of the
sequences, reflecting the short-term instability induced by
particle motion initiation and air flow turbulence in the
fluidized bed. These fluctuations quickly decay, and the
prediction errors converge back to zero in the steady-state
regime.

The comparison between training and validation
datasets highlights a remarkable consistency, as the errors
remain of the same order of magnitude in both cases. This
robustness confirms that the NARX model not only captures
the overall stability of the process but also its transient
regimes, while reinforcing the finding that disk rotational
speed does not significantly influence the recovery outcome.
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The investigation of air flow rate influence (Fig. 8)
shows that this parameter has a noticeable effect on the
recovery of both ABS and PS particles. As the air flow
increases from 7 to 9 m’/h, the collected masses exhibit
measurable variations, reflecting the direct role of
fluidization intensity on particle suspension and residence
time. The NARX model accurately captures these
dynamics. In the test dataset, ME remains within 4.2 mg
for ABS and 6.8 mg for PS, while charge prediction errors
are confined to +9-10° pC. A temporal analysis
highlights transient fluctuations of about 7.8-107 at the
beginning of the sequences, attributed to turbulence
effects and rapid redistribution of particles when air flow
is modified. These deviations quickly stabilize, and the
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errors converge toward values close to zero once steady-
state conditions are reached.
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Figure 9 shows MAE for the prediction of recovered
mass and acquired charge of ABS and PS materials, as a
function of voltage, disk rotational speed, and air flow
rate, with a distinction between training and testing data.

The results show that the NARX model provides
good accuracy during the training phase, with low MAE
values for all variables. In the tests, slight increases in error
appear at the extreme values of the parameters, reflecting
sensitivity to extrapolation. For ABS, the errors are more
pronounced for electrical charge prediction, especially at
high air flow rates, where they reach values of 7.75 mC and

8.88 mC for air flow values of 8.5 m’/h and 8.9 m’/h,
respectively. This is probably due to unmodeled complex
electrostatic phenomena. PS shows better stability,
especially for mass prediction (it does not exceed 9.6 mg,
see Fig. 9,b), although errors also slightly increase under
reaches 9.5 mg for test data (see Fig. 9,c).
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Fig. 9. MAE of predicted mass and charge for ABS and PS as
functions of voltage, disk speed, and air flow rate (training vs.
testing data): MAE of the predicted ABS (a) and PS (b) mass;

MAE of the predicted ABS (c¢) and PS (d) charge

The main contribution of Fig. 9 lies in its ability to
precisely identify the model’s weak spots, without
undermining its overall robustness. Indeed, MAE values
remain largely within acceptable limits, even during
testing, confirming that the NARX model provides a
reliable approximation of the system’s behavior over a
wide range of operating conditions.
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Conclusions. In this work, a NARX neural network
has been developed and applied to model the dynamic
behavior of a two-rotating-disk tribo-aero-electrostatic
separator operating under high-voltage electric fields. The
proposed model considers key process variables,
including applied voltage, disk rotational speed, and air
flow rate, as inputs, while the predicted outputs are the
recovered mass and the acquired electrical charge of the
separated particles.

The main objective of the study was to develop a
dynamic model capable of accurately reproducing the
nonlinear and time-dependent behavior of the separation
process, thereby overcoming the limitations of traditional
static or empirical approaches. The dynamic and recurrent
structure of the NARX network enables it to capture
complex temporal interactions between electrical,
aerodynamic, and tribo-electric phenomena. The model
was trained and tested using time-series data collected
under multiple experimental conditions, allowing a
thorough evaluation of its generalization capability.

Quantitative validation results confirm the high
predictive accuracy and robustness of the proposed
approach. Across the full operating range (4-20 kV,
15-60 rpm, 7-9 m’/h), the ME for mass prediction remains
below 5.5 mg for ABS and 7 mg for PS, while the MAE for
charge prediction is limited to £9-10 uC. Even at extreme
conditions (e.g., £4 kV or high air flow rates), the model
maintains acceptable accuracy, with maximum deviations
not exceeding 9.6 mg for mass and 8.9 uC for charge,
confirming its robustness to parameter variations.

From a scientific standpoint, this work represents the
first application of a NARX neural network to the
dynamic modeling of a tribo-aero-electrostatic separator
equipped with two rotating disk electrodes. The model
successfully bridges the gap between analytical modeling
and real-time predictive intelligence, providing a reliable
foundation for further system optimization.

From a practical perspective, the robustness of the
model across a wide range of operating conditions (420 kV,
15-60 rpm, 7-9 m’/h) confirms its suitability for integration
into intelligent control architectures for industrial
electrostatic separation processes.

Future research will focus on developing a closed-
loop control strategy that leverages the NARX model to
optimize separation efficiency in real time. Such an
intelligent control system will enable adaptive process
regulation and enhanced operational stability in industrial
plastic recycling applications.
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