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Introduction. The exponential growth of waste electrical and electronic equipment (WEEE) requires efficient strategies for plastic waste 
management. Plastics, a major fraction of WEEE, represent both an environmental challenge due to low biodegradability and a valuable 
source of secondary raw materials. Problem. Tribo-aero-electrostatic separators with rotating disk electrodes offer a promising solution for 
fine plastic separation. However, their performance depends on multiple, nonlinear, and time-varying factors such as disk speed, voltage, 
and particle properties. These complex interactions make analytical modeling and stable process control difficult, limiting industrial 
implementation. The goal of this work is to develop a reliable dynamic model based on NARX neural networks capable of predicting the 
real-time evolution of key process variables such as recovered mass and particle charge. Methodology. The proposed NARX neural network 
learns temporal nonlinear relationships directly from experimental data, avoiding the need for explicit physical equations. Experiments were 
conducted on a synthetic 50:50 mixture of Acrylonitrile Butadiene Styrene (ABS) and Polystyrene (PS) particles (500-1000 μm) to assess 
model performance under varying disk speeds, voltages, and air flow rates. Results. The developed model accurately predicts the recovered 
mass and acquired charge of both ABS and PS over a wide range of operating conditions. The predictions show strong agreement with 
experimental measurements, maintaining low error levels even at parameter extremes. Scientific novelty. This work represents the first 
application of NARX neural networks to model the dynamic behavior of a two-rotating-disk tribo-aero-electrostatic separator. The approach 
captures essential time-dependent interactions that conventional static or analytical models fail to describe. Practical value. The NARX 
model exhibits high predictive accuracy and robustness across an extended operating domain (4–20 kV, 15–60 rpm, 7–9 m3/h), with errors 
limited to the 10–3 g and 10–3 µC ranges. These characteristics demonstrate its potential for real-time intelligent control and adaptive 
optimization of electrostatic separation processes in plastic waste recycling. References 39, tables 3, figures 9. 
Key words: electrostatic separation, high voltage, dynamic modeling, NARX neural network, recycling. 
 

Вступ. Експоненціальне зростання кількості відходів електричного та електронного обладнання (WEEE) вимагає ефективних 
стратегій управління пластиковими відходами. Пластики, основна частина WEEE, становлять як екологічну проблему через 
низьку біорозкладність, так і цінне джерело вторинної сировини. Проблема. Трибоаероелектростатичні сепаратори з 
обертовими дисковими електродами пропонують перспективне рішення для тонкого розділення пластику. Однак їхня 
продуктивність залежить від численних, нелінійних та змінних у часі факторів, таких як швидкість диска, напруга та 
властивості частинок. Ці складні взаємодії ускладнюють аналітичне моделювання та стабільне керування процесом, обмежуючи 
промислове впровадження. Метою роботи є розробка надійної динамічної моделі на основі нейронних мереж NARX, здатних 
прогнозувати еволюцію ключових змінних процесу, таких як відновлена маса та заряд частинок, у реальному часі. Методологія. 
Запропонована нейронна мережа NARX вивчає часові нелінійні залежності безпосередньо з експериментальних даних, уникаючи 
необхідності явних фізичних рівнянь. Експерименти проводилися на синтетичній суміші частинок акрилонітрилбутадієнстиролу 
(ABS) та полістиролу (PS) у співвідношенні 50:50 для оцінки продуктивності моделі за різних швидкостей дисків, напруг та 
швидкостей потоку повітря. Результати. Розроблена модель точно прогнозує відновлену масу та набутий заряд як ABS, так і PS 
у широкому діапазоні робочих умов. Прогнози демонструють високу відповідність з експериментальними вимірюваннями, 
підтримуючи низький рівень похибки навіть при екстремальних значеннях параметрів. Наукова новизна. Ця робота являє собою 
перше застосування нейронних мереж NARX для моделювання динамічної поведінки трибоаероелектростатичного сепаратора з 
двома обертовими дисками. Цей підхід враховує важливі залежні від часу взаємодії, які звичайні статичні або аналітичні моделі не 
можуть описати. Практична значимість. Модель NARX демонструє високу прогностичну точність та стійкість у розширеній 
робочій області (4–20 кВ, 15–60 об/хв, 7–9 м3/год), з похибками, обмеженими діапазонами 10–3 г та 10–3 мкКл. Ці характеристики 
демонструють його потенціал для інтелектуального керування в режимі реального часу та адаптивної оптимізації процесів 
електростатичного розділення при переробці пластикових відходів. Бібл. 39, табл. 3, рис. 9. 
Ключові слова: електростатична сепарація, висока напруга, динамічне моделювання, нейронна мережа NARX, переробка. 
 

Introduction. The management of plastic waste from 
electrical and electronic equipment (WEEE) has become a 
global priority in the face of the exponential growth of such 
waste and the environmental challenges they pose. Plastics, 
which account for a significant portion of WEEE streams, 
represent a major problem due to their low biodegradability 
and their impact on ecosystems when not properly recycled 
[1, 2]. The recycling of these plastics offers both economic 
and environmental opportunities, allowing for a reduction 
in their impact while meeting the growing demand for 
secondary raw materials [3]. 

In this context, several electrostatic separation devices 
have been developed in research laboratories [4–6]. The 
tribo-electrostatic separator with two rotating disks, in 
particular, has shown high efficiency in sorting 
submillimetric granular mixtures, where charging occurs in 
a fluidized bed containing the material mix to be separated. 
In this system, a pair of electrodes in the form of two 
rotating stainless steel disks, driven by a variable-speed 

motor and connected to high-voltage power supplies with 
opposite polarities, is immersed to generate an intense 
electric field [7, 8]. 

However, the performance of this process is strongly 
influenced by a combination of nonlinear, interacting, and 
time-varying factors, including disk rotational speed, 
applied voltage, particle charge, and air flow rate [9]. 
Moreover, environmental factors (such as relative humidity 
and temperature of ambient air) influence the separation 
process [10–12]. These dependencies make process 
behavior highly dynamic and sensitive to perturbations, 
resulting in difficulties in maintaining stable and optimal 
separation conditions. This complexity limits the industrial 
application of separators due to the difficulty in 
maintaining optimal performance in a stable manner [13]. 

Consequently, it becomes essential to develop 
dynamic models capable of accurately describing the 
transient behavior of tribo-aero-electrostatic separators 
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and predicting their performance under varying 
operational conditions. The design of advanced control 
systems for such devices relies on the availability of 
internal models able to capture their nonlinear and time-
dependent dynamics. Traditional analytical and 
phenomenological modeling approaches, while useful for 
simplified cases, fail to adequately describe these 
complex dynamics, particularly when multiple coupled 
parameters evolve simultaneously in time [14]. 

In this context, artificial intelligence (AI) offers a 
powerful and innovative alternative. Artificial neural 
networks (ANNs), in particular, have emerged as tools of 
choice for modeling and identifying complex processes 
[15–19]. Unlike traditional approaches, neural networks 
do not require explicit knowledge of the underlying 
physical relationships. They are capable of learning 
directly from experimental data by identifying complex 
nonlinear relationships between input and output 
variables. This learning ability makes them particularly 
well-suited for multifactorial processes where interactions 
are difficult to model analytically. 

ANNs have been effectively used to model and 
optimize electrostatic separation processes. For instance, 
in roll-type electrostatic separation, ANNs combined with 
genetic algorithms have been employed to maximize 
insulation product yield by optimizing control variables 
such as high voltage and roll electrode speed [20]. In the 
context of industrial electrostatic separators with rotating 
electrodes, ANNs facilitate multicriterion optimization, 
addressing the complexity of adjusting control variables 
in dynamic industrial environments [21, 22]. ANNs also 
play a crucial role in predicting the performance of 
electrostatic separation in food waste recovery, 
demonstrating high accuracy in aligning experimental and 
predicted results [23]. 

Nevertheless, most ANN-based models reported in 
the literature remain static or empirical, which limits their 
ability to represent the temporal evolution and dynamic 
interactions inherent to electrostatic separation systems. 
This limitation is particularly critical for tribo-aero-
electrostatic separators with rotating electrodes, where the 
charging, transport, and separation of particles evolve over 
short and long time scales [24]. To overcome these 
limitations, this study focuses on the development and 
validation of a Nonlinear Autoregressive with Exogenous 
Inputs (NARX) neural network model designed to capture 
the dynamic behavior of a tribo-aero-electrostatic separator 
equipped with two rotating disk electrodes operating under 
high-voltage conditions. The NARX structure, known for 
its ability to represent systems with memory and feedback, 
has demonstrated strong performance in modeling 
nonlinear time-series processes [25–28], making it 
particularly suitable for this application. 

The goal of this work is to develop a reliable 
dynamic model based on NARX neural networks capable 
of predicting the real-time evolution of key process 
variables such as recovered mass and particle charge. 
Experiments are carried out on a synthetic 50:50 mixture 
of acrylonitrile butadiene styrene (ABS) and polystyrene 
(PS), two representative thermoplastic polymers of 
WEEE streams, with particle sizes ranging from 500 to 
1000 µm. The dataset is acquired through a LabVIEW 

based data acquisition system, allowing accurate and real-
time monitoring of operational parameters such as disk 
rotational speed, applied voltage, and air flow rate. 

Materials and methods. A tribo-aero-electrostatic 
separator equipped with two rotating disk electrodes (Fig. 
1) was used for this study. In this device, the separation of 
fine granular materials is achieved under the combined 
influence of electrostatic and aerodynamic forces. 
Granular materials are first introduced into a fluidized bed 
inside the separation chamber, where repeated particle–
particle and particle–wall collisions induce tribo-electric 
charging. Simultaneously, a controlled air flow maintains 
the particles in suspension, ensuring homogeneous mixing 
and frequent collisions. Inside the chamber, two stainless-
steel disk electrodes rotate at adjustable seeds and are 
polarized by high-voltage supplies of opposite polarity. 

 

 
Fig. 1. Tribo-aero-electrostatic separator with two rotating disks: 

1 – control panel; 2 – variable speed DC motors; 3 –vibrating 
feeder; 4 – cylindrical feeder; 5 – separation chamber with two 

rotating disk electrodes; 6 – Faraday cages; 7 – balances; 
8 – blower; 9 – electrometers (Keithley 6514); 10 – portable 

colorimeter NH310; 11 – computer [7] 
 

The charged particles are driven toward the electrode 
of opposite sign and adhere to its surface under the 
combined effect of electrostatic and aerodynamic forces 
(Fig. 2). Brushes or scrapers then detach the particles from 
the disks and direct them to separate collectors. Less-
charged or neutral particles remain suspended until they 
acquire sufficient charge to be collected [29]. 

 

 
Fig. 2. Collection of insulating particles in the two-rotating-disk 

tribo-aero-electrostatic separator 
 

Previous investigations on this separator 
configuration have demonstrated its capability to 
selectively sort fine polymer mixtures and confirmed the 
strong influence of parameters such as electrode voltage, 
disk speed, and air flow rate on separation efficiency [24, 
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30–33]. Building upon these findings, the present work 
extends the analysis toward continuous operation and 
dynamic modeling to support the development of a data-
driven predictive model based on NARX neural networks. 
The material mixture used consists of two polymer types: 
brown ABS and white PS (0.5–1 mm), supplied by 
APR2 (France), a company specializing in WEEE 
recycling (Fig. 3). The studied mixture is balanced (50 % 
ABS / 50% PS) and continuously fed by a vibratory 
mechanism. According to their positions in the tribo-
electric series, ABS becomes positively charged while PS 
becomes negatively charged, and they are collected 
respectively by the negative and positive electrodes [30]. 

 

 
Fig. 3. Micrographs of ABS and PS particles composing the 

studied materials 
 

The separator is equipped with a monitoring and 
control panel that enables real-time acquisition of key 
operating data: high-voltage levels, disk rotation speed, fan 
speed, and air flow rate. Separated materials are gathered in 
Faraday-type tanks connected to Keithley 6514 
electrometers and placed on electronic balances (0.1 g 
resolution, 2 kg capacity). Measurements of electric charge 
and mass are recorded through a LabVIEW based data 
acquisition system. All experiments are conducted under 
controlled ambient conditions (relative humidity 40–50 %, 
temperature 17–21 °C). 

The data collected in this study come from multiple 
experimental series as described in [31]. The effect of high 
voltage was evaluated in experiments conducted at a fixed 
disk rotational speed of 30 rpm and a constant air flow rate 
of 8 m3/h, for voltages of ±4 kV, ±8 kV, ±12 kV, ±16 kV, 
and ±20 kV. In the second series of experiments, the disk 
rotational speed was successively adjusted to 15 rpm, 
30 rpm, 40 rpm, 50 rpm, and 60 rpm, while maintaining a 
constant voltage of ±12 kV and an air flow rate of 8 m3/h. 
Finally, a separation experiment was carried out with the 
fluidization air flow rate varied by adjusting the blower 
speed to 7 m3/h, 7.5 m3/h, 8 m3/h, 8.5 m3/h, and 9 m3/h, at a 
constant rotational speed of 30 rpm and voltage of ± 12 kV. 

The resulting dataset, composed of synchronized 
time-series measurements of mass and charge, served as 
the basis for training and validating the proposed NARX 
neural network model. 

Architecture and implementation of the NARX 
neural network. There are currently several types of 
ANNs used in various applications [32]. In this work, we 
focus specifically on the NARX neural network model, 
which is a type of recurrent neural network well suited for 
modeling nonlinear systems, particularly time series [33]. 
Figure 4 illustrates the topology of the NARX network 
defined in study. The equation defining the NARX model 
is as follows: 

      )]1(,,);1(,[1  uy dtutudtytyfty  , (1) 

where u(t), y(t) are the input and output of the network at 
time t; du, dy are the input and output orders; f is the 
nonlinear function. 

Equation (1) can be expressed in vector form as: 
      ttft uyy ;1  .                    (2) 

 

 
Fig. 4. NARX neural network with delayed input 

 
The input vector u=[U, Nd, Q]T consists of 3 

elements: the high voltage applied to the electrodes (U), 
the rotational speed of the electrodes (Nd) and the air flow 
rate of the blower (Q); T is the transpose of the vector. In 
contrast, the output vector y = [mABS, mPS, qABS, qPS]

T 
consists of 4 elements: the collected mass of ABS and BS 
(mABS, mPS) and the electrical charge of the collected mass 
of ABS and PS (qABS, qPS). This network also employs 
tapped delay lines to store previous values of the input 
sequence u(t) and output sequence y(t). Moreover, the 
NARX network output, y(t), is fed back to the network 
input (through delays), since u(t) depends on y(t–1), 
y(t–2),…,y(t–dy). However, for efficient training, this 
feedback loop can be opened.  

To optimize the training conditions of the network, data 
preprocessing is highly recommended. Therefore, all data 
used for training and testing are normalized within the range 
[–1, +1]. This normalization helps reduce training time while 
improving the network’s performance [34]. The dataset is 
typically divided into training, validation, and, if available, 
test sets, with common splits of 70/30 or 70/15/15 [35]. For 
temporally correlated data, block-wise segmentation is 
required to preserve the dynamics, with each subset 
including at least one complete cycle. 

In this study, the entire dataset of mass and mass 
charge measurements collected in the previous section 
was used to train the NARX network in order to 
determine the optimal number of neurons in the hidden 
layer. These dynamic data consist of a total of 6950 
measurement points, of which 70 % (4864 points) were 
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used for training and 30 % (2086 points) for testing, to 
validate the performance of the NARX neural network. 
The model characteristics are summarized in Table 1, and 
the implementation was carried out in MATLAB using 
the Neural Network Toolbox. 

Table 1 
Structure of the studied neural network 

Neural network type NARX 
Training algorithm Levenberg-Marquardt
Initialization algorithm Nguyen-Widrow 
Hidden neurons activation function Hyperbolic tangent 
Output neurons activation function Identity 

 

There is no universal rule to determine the optimal 
neural network structure (number of layers, number of 
neurons, types of connections) or its parameters 
(activation functions, input delays, feedback delays). An 
iterative process, inspired by previous work [36–39], was 
implemented to optimize the NARX network structure. 
This process determines the number of neurons in the 
hidden layer as well as the delays on the inputs and 
feedback outputs by testing various configurations and 
selecting the best one based on a performance criterion. 

Based on the above, the search for the optimal structure 
was conducted using the parameters listed in Table 2. 

Table 2 
NARX network parameters 

Search range of number of neurons (NN) in the hidden layer [5, 30]
Search range for the number of input delays [1, 3]
Search range for the number of output delays [1, 6]
Number of reinitializations per configuration 10 
Total number of final reinitializations 50 

 

The selection of the optimal model is based on the 
mean squared error (MSE) given by (3) and the maximum 
coefficient of determination (R-squared), which defines 
the goodness of fit of the experimental data (4), mean 
error (ME) (5) and mean absolute error (MAE) (6): 
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ii  2YM ;                    (3) 
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where N is the number of samples used for training; Ne is 
the number of experiments performed for each variation 
parameter; Mi is the measured value; Ῡi is the average 
output; Yi is the output provided by the network. 

The total number of configurations tested is 540 
(30×3×6). Each configuration is tested 10 times, and the 
best one is tested again 50 times, resulting in a total of 
5,450 training runs (540×10+50) (Fig. 5). The search for 
the optimal structure was performed on a machine 
equipped with an Intel® Core™ i7-11800X 2.3 GHz 
processor. The optimization results are shown in Table 3. 
Using 24 hidden neurons, an input delay of 1 step, and an 
output delay of 2 steps achieves the best performance. 

Table 3 
Results of the optimal structure search 

Number of neurons (NN) in the hidden neurons 24 
Input delays 1 
Output delays 3 
Number of elements 169 
MSE 21.210–6 

R2 >0.9999 
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Fig. 5. Performance of the NARX network as a function 

of the number of neurons in the hidden layer 
 

In Fig. 6 the graphs a, b, e and f show the model 
prediction results at different voltages (4–20 kV). The 
train and test training data, represented by a circle symbol 
and blue and black discontinuous line, are compared to 
the data predicted by the NARX network, represented by 
a cross symbol and red and orange solid line. 

Visual inspection reveals exceptional agreement 
between experimental measurements and model predictions 
across all voltage levels. Both recovered mass (Fig. 6,a,b) 
and acquired charge (Fig. 6,e,f) show a strong positive 
correlation with applied voltage, following expected physical 
principles of electrostatic separation. The nearly perfect 
overlap between prediction curves and experimental data 
demonstrates the model’s capability to capture the 
underlying system dynamics without explicit physical 
modeling. 

Quantitative analysis confirms this observational 
assessment. The average prediction errors remain below 
0,035 for mass recovery (Fig. 6,c,d) and 0,05 for charge 
acquisition (Fig. 6,g,h) across the entire voltage range. 
Notably, the model maintains its predictive accuracy for 
both training and testing data sets, indicating excellent 
generalization capabilities without over fitting. The slight 
error increase at voltage extremes (particularly at 4 kV) 
can be attributed to signal-to-noise ratio challenges in 
low-intensity separation conditions. 

The investigation of disk rotational speed influence 
(Fig. 7) shows that, unlike the applied voltage, this 
parameter does not exert a significant effect on particle 
recovery. Across the full range of tested speeds (15–60 
rpm), the collected masses remain nearly constant, with 
variations within ±2 g for ABS and ±3 g for PS, 
indicating that rotational speed is not a critical factor in 
the overall separation performance. 

The NARX model accurately reproduces this 
insensitivity. In the test dataset, the mean error (ME) is 
around 5.5 mg for ABS and 7 mg for PS, while for 
the charges it remains limited to ±910–3 µC. 
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A temporal analysis, however, reveals transient 
fluctuations up to 810–3 at the beginning of the 
sequences, reflecting the short-term instability induced by 
particle motion initiation and air flow turbulence in the 
fluidized bed. These fluctuations quickly decay, and the 
prediction errors converge back to zero in the steady-state 
regime. 

The comparison between training and validation 
datasets highlights a remarkable consistency, as the errors 
remain of the same order of magnitude in both cases. This 
robustness confirms that the NARX model not only captures 
the overall stability of the process but also its transient 
regimes, while reinforcing the finding that disk rotational 
speed does not significantly influence the recovery outcome. 

 

a) b) 

d) c) 

 
 

 e) f ) 

h) g) 

 
Fig. 6. Comparison of real data and simulation results as a 

function of high voltage variation: recovered ABS (a) and PS 
(b) mass; average error at each measured point for ABS (c) and 
PS (d) mass; recovered ABS (e) and PS (f) charge; average error 

at each measured point for ABS (g) and PS (h) charge 
 

 b)

d) c) 

a) 

 
 e) f ) 

h) g)

 
Fig. 7. Comparison of real data and simulation results as a 

function of variation of disk rotational speed: recovered ABS (a) 
and PS (b) mass; average error at each measured point for ABS 

(c) and PS (d) mass; recovered ABS (e) and PS (f) charge; average 
error at each measured point for ABS (g) and PS (h) charge 

 

The investigation of air flow rate influence (Fig. 8) 
shows that this parameter has a noticeable effect on the 
recovery of both ABS and PS particles. As the air flow 
increases from 7 to 9 m3/h, the collected masses exhibit 
measurable variations, reflecting the direct role of 
fluidization intensity on particle suspension and residence 
time. The NARX model accurately captures these 
dynamics. In the test dataset, ME remains within 4.2 mg 
for ABS and 6.8 mg for PS, while charge prediction errors 
are confined to ±910–3 µC. A temporal analysis 
highlights transient fluctuations of about 7.810–3 at the 
beginning of the sequences, attributed to turbulence 
effects and rapid redistribution of particles when air flow 
is modified. These deviations quickly stabilize, and the 
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errors converge toward values close to zero once steady-
state conditions are reached. 

 

a) 
b)

d) c) 

 
 

e) f ) 

h)g) 

 
Fig. 8. Comparison of real data and simulation results as a 

function of air flow rate: recovered ABS (a) and PS (b) mass; 
average error at each measured point for ABS (c) and PS (d) 

mass; recovered ABS (e) and PS (f) charge; average error at each 
measured point for ABS (g) and PS (h) charge 

 

Figure 9 shows MAE for the prediction of recovered 
mass and acquired charge of ABS and PS materials, as a 
function of voltage, disk rotational speed, and air flow 
rate, with a distinction between training and testing data. 

The results show that the NARX model provides 
good accuracy during the training phase, with low MAE 
values for all variables. In the tests, slight increases in error 
appear at the extreme values of the parameters, reflecting 
sensitivity to extrapolation. For ABS, the errors are more 
pronounced for electrical charge prediction, especially at 
high air flow rates, where they reach values of 7.75 mC and 

8.88 mC for air flow values of 8.5 m3/h and 8.9 m3/h, 
respectively. This is probably due to unmodeled complex 
electrostatic phenomena. PS shows better stability, 
especially for mass prediction (it does not exceed 9.6 mg, 
see Fig. 9,b), although errors also slightly increase under 
reaches 9.5 mg for test data (see Fig. 9,c). 

 

a) MAEmABS, mg

 
 

b) MAEmPS, mg 

 
 

 c) MAEqABS, mC

 
 

 d) MAEqPS, mC 

 
Fig. 9. MAE of predicted mass and charge for ABS and PS as 
functions of voltage, disk speed, and air flow rate (training vs. 
testing data): MAE of the predicted ABS (a) and PS (b) mass; 

MAE of the predicted ABS (c) and PS (d) charge 
 

The main contribution of Fig. 9 lies in its ability to 
precisely identify the model’s weak spots, without 
undermining its overall robustness. Indeed, MAE values 
remain largely within acceptable limits, even during 
testing, confirming that the NARX model provides a 
reliable approximation of the system’s behavior over a 
wide range of operating conditions. 
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Conclusions. In this work, a NARX neural network 
has been developed and applied to model the dynamic 
behavior of a two-rotating-disk tribo-aero-electrostatic 
separator operating under high-voltage electric fields. The 
proposed model considers key process variables, 
including applied voltage, disk rotational speed, and air 
flow rate, as inputs, while the predicted outputs are the 
recovered mass and the acquired electrical charge of the 
separated particles. 

The main objective of the study was to develop a 
dynamic model capable of accurately reproducing the 
nonlinear and time-dependent behavior of the separation 
process, thereby overcoming the limitations of traditional 
static or empirical approaches. The dynamic and recurrent 
structure of the NARX network enables it to capture 
complex temporal interactions between electrical, 
aerodynamic, and tribo-electric phenomena. The model 
was trained and tested using time-series data collected 
under multiple experimental conditions, allowing a 
thorough evaluation of its generalization capability. 

Quantitative validation results confirm the high 
predictive accuracy and robustness of the proposed 
approach. Across the full operating range (4–20 kV, 
15–60 rpm, 7–9 m3/h), the ME for mass prediction remains 
below 5.5 mg for ABS and 7 mg for PS, while the MAE for 
charge prediction is limited to ±910–3 µC. Even at extreme 
conditions (e.g., ±4 kV or high air flow rates), the model 
maintains acceptable accuracy, with maximum deviations 
not exceeding 9.6 mg for mass and 8.9 µC for charge, 
confirming its robustness to parameter variations. 

From a scientific standpoint, this work represents the 
first application of a NARX neural network to the 
dynamic modeling of a tribo-aero-electrostatic separator 
equipped with two rotating disk electrodes. The model 
successfully bridges the gap between analytical modeling 
and real-time predictive intelligence, providing a reliable 
foundation for further system optimization.  

From a practical perspective, the robustness of the 
model across a wide range of operating conditions (4–20 kV, 
15–60 rpm, 7–9 m3/h) confirms its suitability for integration 
into intelligent control architectures for industrial 
electrostatic separation processes. 

Future research will focus on developing a closed-
loop control strategy that leverages the NARX model to 
optimize separation efficiency in real time. Such an 
intelligent control system will enable adaptive process 
regulation and enhanced operational stability in industrial 
plastic recycling applications. 
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