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Introduction. Optimal power flow (OPF) is a fundamental task in modern power systems, aiming to ensure cost-effective generation 
dispatch and efficient energy distribution. The increasing integration of renewable energy sources such as photovoltaic (PV) and wind 
turbines (WT), alongside conventional thermal units, introduces significant variability and uncertainty into system operations. Problem. 
The OPF problem is nonlinear, constrained by complex technical limits, and further complicated by the stochastic nature of PV and WT 
power generation. Efficiently addressing these uncertainties while maintaining system optimality remains a major challenge. The goal of 
this study is to solve the OPF problem in power networks that integrate PV and WT systems, while accounting for the uncertainty in their 
power outputs. Methodology. The stochastic behavior of PV and WT units is modeled using probability distribution functions. A novel 
bio-inspired metaheuristic, the Blood-Sucking Leech Optimizer (BSLO), is proposed and benchmarked against two well-established 
algorithms: Particle Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO). Simulations are conducted on both the IEEE 30-bus 
test system and a real Algerian transmission network. Results. The BSLO algorithm consistently outperforms PSO and GWO in 
minimizing generation cost, power losses, and voltage deviation across all tested scenarios. Scientific novelty. This work considers both 
single and multi-objective OPF formulations, whereas most previous studies focus solely on single-objective approaches. It integrates 
renewable generation uncertainty through probabilistic modeling and introduces a novel metaheuristic (BSLO). Validation on a real 
Algerian power grid confirms the method’s robustness and practical relevance. Practical value. The results confirm the BSLO algorithm 
as a promising and effective tool for solving complex, renewable-integrated OPF problems in real-world power systems, contributing to 
more reliable, economical, and flexible grid operation. References 48, tables 13, figures 17. 
Key words: blood-sucking leech optimizer, optimal power flow, stochastic renewable energy sources, power systems.  
 

Вступ. Оптимальний розподіл потужності (OPF) є фундаментальним завданням у сучасних енергосистемах, спрямованим на 
забезпечення економічно ефективного розподілу та генерації енергії. Зростаюча інтеграція відновлюваних джерел енергії, таких 
як фотоелектричні (PV) та вітрові турбіни (WT), поряд з традиційними тепловими установками, вносить значну мінливість та 
невизначеність у роботу системи. Проблема. Завдання OPF є нелінійним зі складними технічними обмеженнями та додатково 
ускладненим стохастичною природою генерації електроенергії PV та WT установками. Ефективне вирішення цих невизначеностей 
за збереження оптимальності системи залишається серйозною проблемою. Метою роботи є вирішення завдання OPF в 
енергомережах з інтегрованими PV та WT системами з урахуванням невизначеності їхньої вихідної потужності. Методика. 
Стохастична поведінка PV та WT установок моделюється з використанням функцій розподілу ймовірностей. Запропоновано 
новий біоінспірований метаевристичний алгоритм на основі поведінки п’явки (BSLO), який порівнюється з двома алгоритмами, 
що добре зарекомендували себе: метод рою частинок (PSO) і метод сірого вовка (GWO). Моделювання проводилося як у тестовій 
системі IEEE з 30 шинами, так і у реальній алжирській мережі електропередачі. Результати. Алгоритм BSLO стабільно 
перевершує PSO та GWO щодо мінімізації вартості генерації, втрат потужності та відхилень напруги у всіх протестованих 
сценаріях. Наукова новизна. У цій роботі розглядаються як однокритеріальні, так і багатокритеріальні формулювання OPF, 
тоді як більшість попередніх досліджень фокусувалися виключно на однокритеріальних підходах. Це враховує невизначеність 
генерації відновлюваних джерел енергії за допомогою імовірнісного моделювання і представляє новий метаевристичний алгоритм 
(BSLO). Перевірка на реальній алжирській енергосистемі підтверджує надійність та практичну значущість методу. 
Практична значимість. Результати підтверджують, що алгоритм BSLO є перспективним та ефективним інструментом для 
вирішення складних завдань OPF, інтегрованих з відновлюваними джерелами енергії, у реальних енергосистемах, сприяючи більш 
надійній, економічній та гнучкішій роботі мережі. Бібл. 48, табл. 13, рис. 17. 
Ключові слова: оптимізатор на основі поведінки п’явки, оптимальний розподіл потужності, стохастичні відновлювані 
джерела енергії, енергетичні системи. 
 

Introduction. Power flow analysis is the essential 
tool used to assess the performance of electrical networks. 
It focuses on several key parameters, including voltage 
profiles, line power flows, the balance between generation 
and load powers, and losses. In contrast, optimal power 
flow (OPF) analysis plays a critical role in the design and 
operational planning of electrical grids. OPF helps 
identify potential design weaknesses, improves the 
reliability of energy supply, and ensures efficient system 
operation [1–3]. The main goal of OPF is to define the 
best set of decision variables that optimize a predefined 
objective function. One of its most common applications 
is the economic dispatch of power supply, aiming to 
minimize the overall generation cost and satisfy 
operational and safety constraints [4–10]. 

Conventionally, power generation has relied heavily 
on fossil fuel-based thermal units. However, the 
integration of photovoltaic (PV) and wind turbines (WT) 
generators offers considerable benefits, reduced 
greenhouse gas emissions and decreased dependence on 

fossil fuels [11, 12]. Despite these advantages, renewable 
energy sources introduce new challenges due to their 
power uncertainty. Indeed, the power generation of PV 
and WT systems is highly dependent on changing weather 
conditions, specifically wind speed and solar irradiance. 
Therefore, it is essential to address the OPF problem 
while considering the stochastic nature of renewable 
energy generation to maintain grid stability and achieve 
economic efficiency [13, 14]. 

Traditional methods for solving OPF problems, such 
as the Newton-based method, linear and nonlinear 
programming, and others [15–20], often struggle to 
converge to the global optimum. This limitation stems from 
the highly nonlinear, non-convex, and complex form of the 
power system equations, and the presence of multiple 
operational constraints. Consequently, conventional 
optimization techniques may fail to provide reliable or 
accurate solutions for large-scale or modernized power 
grids. To address these challenges, researchers have 
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increasingly turned to advanced optimization strategies, 
particularly metaheuristic algorithms, which have gained 
significant attention in recent decades for their robustness 
and flexibility in handling complex and multi-objective 
OPF problems [21–23]. 

Metaheuristic algorithms, including standard, 
improved, and hybrid variants, are widely employed to 
address complex, non-linear, and high-dimensional 
optimization challenges in power systems, such as OPF 
problem, unit commitment, and renewable energy 
integration. These methods overcome the limitations of 
traditional approaches by efficiently exploring large 
search spaces and avoiding local optima. Standard 
metaheuristic algorithms are population-based and rely on 
stochastic search processes. Papers [24, 25] demonstrate 
the superiority of the Grey Wolf Optimizer (GWO) and 
Hamiltonian methods, respectively, in reducing power 
losses in electrical networks, compared to Particle Swarm 
Optimization (PSO) and Genetic Algorithms (GA). In 
[26], the author applies GWO to solve the OPF problem 
for different test systems, achieving lower generation 
costs compared to those obtained with GA and PSO. The 
authors in [27] introduce Differential Evolution (DE) to 
minimize cost, emissions, and real power losses in IEEE 
30 and 118 bus systems, demonstrating improved 
performance over conventional methods. 

The improved and hybrid methods are enhanced 
versions of standard metaheuristic algorithms, often 
combining 2 or more techniques to leverage their 
respective strengths. The authors in [28] improve the 
cuckoo optimization algorithm by incorporating a 
Gaussian mixture model, which improves convergence, 
accuracy, and robustness in systems with solar and wind 
sources. A stochastic optimization framework is presented 
in [29], combining probabilistic modeling with 
mathematical programming to handle renewable energy 
uncertainties and maintain system stability. In [30], a DE 
variant enhanced with fitness-distance balance and 
adaptive guidance shows superior convergence and 
efficiency. The paper [31] proposes a hybrid of the GWO 
and the crisscross search algorithm, which outperforms 
PSO, GA and DE algorithms. 

The goal of the paper is to solve the OPF problem in 
power networks that integrate PV and WT systems; while 
accounting for the uncertainty in their power outputs. This 
uncertainty is modeled using probability distribution 
function (PDF) and the Monte Carlo simulation. 3 single-
objective functions are considered: generation cost, active 
power losses and voltage deviation, as well as a multi-
objective function combining these single objectives. The 
proposed approach, based on the Blood-Sucking Leech 
Optimizer (BSLO) algorithm, is evaluated on the standard 
IEEE 30-bus test system and in a real South-East Algerian 
Network (SEAN). The effectiveness of BSLO is assessed 
in terms of convergence characteristics, optimal solutions, 
and statistical indicators, and is compared to that of the 
PSO and GWO algorithms. 

Problem formulation. The OPF problem consists in 
determining the optimal control variables that optimize an 
objective function and satisfy the system’s constraints, 
and is formulated as follows:  

 ),(min uxF ; (1) 
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where F is the OPF objective function; g, h are the 
equality and inequality constrains of the system. 

The vector x contains all state variables, given by the 
following: 
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where 
1ThP  is the real power generation of the slack 

generator; VL is the voltage of the load bus; SL is the 
apparent power in the transmission lines; QTh, QWT, QPV 

correspond to the reactive power outputs of thermal units, 
WT and PV systems, respectively; NL, NPQ, NWT, NPV, 
NTh indicate the number of transmission lines, load 
buses, WT, PV units and thermal plants, respectively. 

The control variable vector u is defined as follows: 
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where PTh, PWT, PPV are the real powers generated by 
thermal generators, WT, and PV units, respectively; VG is 
the voltage of the generation bus; NG is the number of 
generators. 

Fuel cost model of thermal generators. The total 
fuel cost of thermal generators is modeled using the 
following quadratic function [12, 23]: 
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where ai, bi, ci are the cost coefficients of the ith generator. 
For thermal units equipped with multi-valve steam 

turbines, the fuel cost model accounts for fluctuations in 
the cost function caused by the valve-point effect (VPE). 
This effect is modeled as a sinusoidal function integrated 
into the basic cost function, as shown in (5), yielding the 
total fuel cost ($/h) [12, 32, 33]: 
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where di, ei are the VPE coefficients. 
Wind and solar’s direct cost. Solar PV systems and 

WTs operate without requiring fuel, incurring only basic 
maintenance and operational costs. The direct cost model 
for PV and WT units is represented as a linear function of 
the planned power energy [12, 34]: 
 

iii WTsDWTWT PCDC  ; (7) 
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where 
iPVsP , 

iWTsP  are the planned powers from the ith PV 

and WT units; 
iDPVC , 

iDWTC  are the direct cost 

coefficients for the ith PV and WT generators. 
Uncertainty of WTs and PVs cost functions. 

Depending on the power generated by the WTs, 2 scenarios 
can arise. If the generated power exceeds the planned 
power, an overestimation cost is applied. Conversely, if the 
generated power is lower than the planned power, an 
underestimation cost is applied. The expressions for these 
costs for the ith WT are formulated as follows [12, 34]: 
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where 
iWTUC , 

iWTOC  are the underestimation and 

overestimation costs; 
iUWTC , 

iOWTC  are the uncertainty 

cost coefficients; 
iWTsP , 

iWTaP , 
iWTrP  are the scheduled, 

available and rated powers of the ith wind unit. 
For PV units, the uncertainty cost models are 

formulated as follows [12, 34]: 
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where 
iPVUC , 

iPVOC  are the underestimation and 

overestimation cost values, 
iUPVC , 

iOPVC  are the 

uncertainty cost coefficients; 
iPVsP , 

iPVaP  are the planned 

and available powers of the ith PV unit.  
Total cost function. The first objective F1 aims to 

reduce the total cost, which includes the fuel cost of 
thermal units with VPE, as well as the costs associated with 
PV and WT units. The function F1 is expressed as [35]: 
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When the VPE is neglected, the objective function 
simplifies to: 
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Active power losses function. The second objective 
function F2 aims to reduce the total active power losses, 
as formulated below [23, 36, 37]: 
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where Gij(n) is the conductance of the nth branch; δij is the 
voltage angle difference between buses i and j. 

Voltage deviation function. The third objective 
function F3 aims to reduce the voltage deviation and is 
expressed as follows [29, 38, 39]: 
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Multi-objective function. The fourth objective 
function F4 originates from a multi-objective optimization 
problem that simultaneously considers total cost, active 
power losses and voltage deviation. These criteria are 
aggregated into a single scalar function using predefined 
weighting factors. It is described as follows: 

322114 FFFF   ,                     (17) 

where the total cost component is assigned a fixed weight 
of 1; ω1=100 and ω2=40 are the weighting factors for 
active power losses and voltage deviation. These values 
were chosen to ensure a balanced contribution of all 
objectives in the scalarized function. The weighting 
factors used in this study are the same as those adopted in 
previous works where a multi-objective function is 
constructed by combining single objectives such as cost, 
loss and voltage deviation [32]. 

Equality constraints. The solution to the OPF 
problem must satisfy the equality constraints defined as 
follows [40, 41]: 
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where 
iGP , 

iGQ  are the real and reactive powers of the ith 

generator, including thermal, WT and PV units; 
iDP , 

iDQ  

are the real and reactive loads.  
Inequality constraint. Operational limits on power 

output and voltage levels for all generators are defined as 
constraints: 
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The voltage at the PQ bus must remain within the 
specified limits: 

NPQiVVV
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The apparent power flow in each network branch 
must not exceed its allowable limits. 

LLL NSiSS
ii
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Mathematical modeling of WT power 
uncertainty. The power of a WT is affected by wind 
speed variability and is represented by the Weibull PDF, 
as expressed in the following equation [34, 42]:  
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where c is the scale parameter; k is the shape parameter. 



18 Electrical Engineering & Electromechanics, 2025, no. 6 

The power supplied by a WT system is modeled as 
follows [34, 39]: 
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where vr, vout, vin are the rated, cut-out and cut-in wind 
speeds, which are equal to 16, 25 and 3 m/s. 

Mathematical modeling of PV power uncertainty. 
The uncertainty in solar irradiance is modeled using a 
lognormal PDF, as defined in [34]: 
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where σ, μ are the standard deviations and mean values. 
The power supplied by the PV system can be 

determined using the following equation [34, 43]: 
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where PPVr is the rated power; Rc is the irradiance constant 
(set to 120 W/m²); Gstd is the standard solar irradiance. 

Blood-sucking leech optimizer is a recently 
introduced swarm intelligence algorithm proposed in [44]. 
This approach draws inspiration from the feeding 
mechanisms of blood-sucking leeches, particularly those 
observed in rice farming environments, where they attach 
to and feed on the blood of diverse hosts, including 
humans. The algorithm mimics the leeches’ ability to locate 
prey using sensory receptors that detect stimuli like water 
waves. The behavioral dynamics of leeches are 
mathematically modeled by classifying them into 2 distinct 
categories. The first category, referred to as directional 
leeches, accurately processes the stimuli emitted by their 
prey, allowing them to advance incrementally toward the 
target with each iteration. In contrast, the second category, 
termed directionless leeches, misinterprets these signals 
and consequently moves away from the prey. 

Initialization phase. The population of blood-
sucking leeches is initialized randomly, as described in 
the following equation: 

lblbubDX  ))(,1(rand ,                (33) 

where X is the position of all leeches; rand is the random 
number in the interval [0, 1]; D is the dimension of the 
optimization problem; ub, lb are the upper and lower bounds. 

Exploration approach of directional leeches. 
During the exploration phase, the N1 directional leeches 
move toward their prey at an angle α determined by their 
response to a circular wave stimulus. As these leeches 
approach the prey, the length L of the green arc, 
illustrated in Fig. 1 [44], gradually decreases. The number 
N1 is calculated using the following equation: 




































2

1 )1(
T

t
mmNfloorN ,              (34) 

where t, T are the current and maximum iterations; 

N is the population size. The MATLAB function floor is 
employed to round each element to the nearest integer 
that is less than or equal to the original value m, which is 
set to 0.8, serves as the ratio parameter. 

 

 
Fig. 1. Feeding mechanism of blood-sucking leeches [44] 

 
The equations governing the exploration phase are: 
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where a is the parameter of the BSLO method, assigned a 
value of 0.97. The term C represents the disturbance 
coefficient, which is defined as follows: 
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where levy is the Levy flight distribution function; 
b, which is set to 0.001, is the parameter of the BSLO 
algorithm; μ, ω are the random numbers uniformly 
distributed within the interval [0, 1]. 

The lengths L1 and L2 are expressed as follows: 
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where k1 is the random integer in the range [1, floor(N(1 + t/T))]; 
k is the random integer in [1, m], while PD is the perceived 
distance. This parameter reflects the distance estimated by 
directional leeches from their prey and is calculated as: 

 TtrsPD  12 .                          (42) 

The value of s is given by the following expression: 
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Exploitation method of directional leeches. 
Throughout this phase, the directional leeches progressively 
move closer to their prey, eventually reaching zones 
characterized by heightened stimulus intensity. The updated 
positions of these leeches are determined using the 
equations provided below: 
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The value of b is set to 0.001 when (t<0.1T), and to 
0.00001 in all other cases. This ensures that the 
distribution coefficient decreases progressively over 
successive iterations, allowing the BSLO algorithm to 
converge toward an optimal solution. The arc lengths L3 
and L4 are defined as follows: 
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where the variables r, r1, r2 and r3 are the random 
numbers within the range [–1, 1]. 

Strategies transitioning between exploration and 
exploitation phases. The perceived distance PD acts as a 
critical decision-making parameter for directional leeches, 
facilitating their transition between the exploration and 
exploitation phases. PD1, a significant portion of the 
leeches are located at a distance from the prey, indicating 
that the BSLO algorithm is operating in the exploration 
phase. On the other hand, PD<1, the leeches converge 
toward the prey, showing that the algorithm has entered 
the exploitation phase. 

Search way of directionless leeches. The N2 
directionless leeches, calculated as N2 = N – N1, incorrectly 
respond to stimuli and move away from the target. Over 
successive iterations, their population size steadily 
diminishes, and their updated positions are determined as: 
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Re-tracking approach. Following multiple 
iterations t1 and after undergoing various phases of 
exploitation and exploration, certain leeches successfully 
located their prey (humans) and fed on their blood. 
Subsequently, the humans removed these leeches by 
returning them to the rice field. The updated positions of 
these leeches are mathematically expressed as follows: 
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The parameters t1 and t2 are assigned a value of 20. 
This approach ensures that the BSLO algorithm avoids 
becoming stuck in local optima. Figure 2 shows the 
flowchart of BSLO. 

Simulations results. In this study, the performance 
and efficiency of the proposed BSLO algorithm were 
evaluated for solving the OPF problem in power systems 
integrating PV and WT systems. The tests were conducted 
on an IEEE 30-bus network, as described in [45], which 
includes 3 thermal generators at buses 1, 2, 8, one PV unit at 
bus 13, and 2 WT units at buses 5, 11. Additionally, the cost 

 

 
Fig. 2. BSLO flowchart 

 

coefficients of the thermal generators, PV and WT units are 
detailed in [12, 29]. The second power system analyzed was 
the SEAN [46], consisting of 12 buses, 2 thermal generators, 
and 13 branches (including 2 transformers), with a total 
power demand of 297.5 MW and 39 MVAr. To assess the 
impact of renewable energy integration in this real network, 
a PV unit was incorporated at bus 8. Table 1 summarizes the 
main characteristics of the studied networks. 

Table 1 
Characteristics of the studied power systems 

IEEE 30-bus network SEAN system 
Item 

Quantity Details Quantity Details 
Branches 41 [29] 13 [46] 
Buses 30 [29] 12 [46] 
Thermal units 3 buses: 1, 2, 8 2 buses: 1, 2 
PV units 1 bus: 13 1 bus: 8 
WT units 2 buses: 5, 11 – – 
Slack bus 1 bus: 1 1 bus: 1 

Control 
variables 

11 

Real power 
at the PV buses 
and the voltage 
at the generator 

buses 

5 

Real power 
at the PV buses
and the voltage
at the generator

buses 
Rated power 
loads 

– 
283.4 MW, 

126.2 MVAr 
– 

297.5 MW, 
39 MVAr 

PQ bus 24 [0.95–1.05] p.u. 8 [0.9–1.1] p.u. 
 

Power flow analysis was performed using the 
MATPOWER [45]. The proposed BSLO algorithm was 
compared with PSO [47] and GWO [48]. To ensure a 
robust and consistent evaluation, 20 independent trial runs 
were conducted for all test cases. The population size 
(N=50) and the maximum number of iterations (T=300) 
were kept constant across all 3 optimization methods: 
BSLO, GWO and PSO. 
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The uncertainties in the power generated by the PV 
and WT units were considered in our study. The Monte 
Carlo simulation method was employed to generate 8000 
values for both irradiation and wind speed. Tables 2, 3 
present the cost coefficients of the thermal generators and 
the PV unit for the SEAN system. 

Table 2 
Cost coefficients of thermal units for the SEAN system 
Gen Bus a b c 

1 1 0 2.5 0.017 
2 2 0 2.5 0.017 

Table 3 
Cost coefficients of PV units for the SEAN system 

Bus CDPV OCPV UCPV 
8 1.6 3 1.5 

 

Table 4 presents the Weibull PDF parameters of the 
WT units for the IEEE 30-bus network, while Table 5 
reports the lognormal PDF parameters of the PV units for 
the IEEE 30-bus and SEAN systems. 

Table 4 
Weibull PDF parameters of WT units 

IEEE 30-bus network 
Wind 
farm 

No. of 
turbines 

Rated power   
PWTr, MW 

Weibull PDF 
parameters 

WT1  25 75 c = 9, k = 2 
WT2  20 60 c = 10, k = 2 

Table 5 
Lognormal PDF parameters of the PV units 

Network 
Rated power 

PPVr, MW 
Lognormal PDF 

parameters 
IEEE30-bus 50 (bus 13) µ = 6, σ = 0.6  

SEAN system 100 (bus 8) µ = 6, σ = 0.6 
 

Figures 3, 4 show the Weibull fitting and the wind 
speed frequency distribution for the wind power plants 
that replaced thermal generators at buses 5 (WT1) and 11 
(WT2) in the IEEE 30-bus network. These results were 
obtained after performing 8000 Monte Carlo simulations.  

 

V, m/s
 

Fig. 3. Weibull PDF distribution for WT1 
 

 

V, m/s
 

Fig. 4. Weibull PDF distribution for WT2 
 

Figures 5, 6 show the lognormal PDF and the 
irradiance frequency distribution obtained from Monte Carlo 

simulations with 8000 iterations. These results correspond to 
the PV unit installed at bus 13, which replaces the thermal 
generator in the IEEE 30-bus system, and the additional PV 
unit integrated at bus 8 of the SEAN system.  

 

G, W/m2

 
Fig. 5. Lognormal PDF for the solar PV in the IEEE 30-bus system 

at bus 13 

 

G, W/m2

 
Fig. 6. Lognormal PDF for the solar PV in the SEAN system at bus 8 

 

Figures 7, 8 illustrate the stochastic output power of 
the PV units in each of the power systems under study. 
This distribution is used to calculate the overestimation 
and underestimation costs of the solar PV units based on 
their scheduled power output. 

 

P, MW
 

Fig. 7. Real power distribution of the PV unit in the IEEE 30-bus 
network at bus 13 

P, MW
 

Fig. 8. Real power distribution of the solar PV unit 
in the SEAN system at bus 8 

 

Test results of the IEEE30-bus system. Total cost 
minimizing. The first case study aims to reduce the total 
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cost function (F1) with VPE as signaled in (13), and 
includes wind, solar and conventional power generation. 
The direct costs of wind and solar energy are calculated 
using (7), (8). Additionally, the underestimation and 
overestimation costs for wind and solar energy are 
determined using (9), (11) and (10), (12), respectively. 

Table 6 presents the optimal results for the decision 
variables, reactive power of generators, total generation 
cost, power losses and total voltage deviation obtained 
using the BSLO, GWO and PSO algorithms. The table 
also includes the mean, standard deviation (Std) and worst 
value of the total generation cost. Additionally, the 
minimum and maximum values of the real and reactive 
power of the generators, as well as the voltage amplitude, 
are provided in Table 6 and are identical across all 
scenarios considered for the IEEE 30-bus system. 

Table 6 
Simulation results for total cost reduction 

Item min max PSO GWO BSLO 
PTh1, MW 50 140 76.7121 71.6108 64.2158
PTh2, MW 20 80 35.8849 37.87 38.7185
PTh3, MW 10 35 24.6507 33.1131 35 
PWTs1, MW 0 75 68.5834 66.3579 68.7485
PWTs2, MW 0 60 42.4412 41.7435 44.9998
PPVs1, MW 0 50 38.3328 35.6942 34.442 
V1, p.u. 0.95 1.1 1.0239 1.0277 1.0268 
V2, p.u. 0.95 1.1 1.0154 1.0199 1.0198 
V5, p.u. 0.95 1.1 0.9973 1.0037 1.0076 
V8, p.u. 0.95 1.1 0.9982 1.0062 1.0077 
V11, p.u. 0.95 1.1 1.0082 1.0358 1.0234 
V13, p.u. 0.95 1.1 1.0307 1.0167 1.0166 
QTh1, MVAr –20 150 1.2899 0.7484 0.8544 
QTh2, MVAr –20 60 20.6716 18.7892 16.13 
QTh3, MVAr –15 40 38.7294 39.4339 40 
QWTs1, MVAr –30 35 21.3278 22.7235 25.4271
QWTs2, MVAr –10 30 1.044 8.1244 7.0903 
QPVs1, MVAr –20 25 4.8243 –3.2843 –3.2947
Total cost, $/h, best – – 785.4689 785.8805 781.22 
PLoss, MW – – 5.9874 6.4032 5.798 
VD, p.u. – – 0.5054 0.4957 0.7169 
Mean – – 796.4208 806.673 781.5035
Worst – – 816.4433 837.7390 782.1341
Std – – 7.2581 16.9356 0.2328 

 
 

The results show that the BSLO algorithm achieves 
the lowest total generation cost among the compared 
methods, with a value of 781.22 $/h, compared to 
785.4689 $/h for PSO and 785.8805 $/h for GWO. 
Moreover, the standard deviation for BSLO is notably 
low (0.2328) compared to PSO (7.2581) and GWO 
(16.9356), indicating that the results obtained by BSLO 
exhibit minimal dispersion across the 20 simulations 
conducted. This demonstrates the algorithm’s stable 
convergence and enhanced reliability. Furthermore, as 
shown in Fig. 9, the BSLO algorithm converges to the 
optimal solution in less iteration, highlighting its efficiency 
and fast convergence behavior. 

Total active power losses minimizing. This case 
study focuses on minimizing total active transmission losses 
in the IEEE 30-bus system using the BSLO, GWO and PSO 
algorithms. As shown in Table 7, the BSLO algorithm 
achieves the lowest power losses with a value of 2.0369 MW, 
compared to 2.5869 MW for PSO and 2.7671 MW for 
GWO, and demonstrates strong performance in terms of 
both the mean and standard deviation. 

Iterations

104

 
Fig. 9. Convergence curves for total cost reduction 

 

Table 7 
Simulation results for total active power losses reduction 

Item PSO GWO BSLO 
PTh1, MW 56.7554 76.0841 50 
PTh2, MW 43.7425 33.4933 29.4619 
PTh3, MW 32.1789 28.1790 35 
PWTs1, MW 71.2795 74.9682 75 
PWTs2, MW 55.484 49.0042 59.9997 
PPVs1, MW 26.5466 24.4383 35.9753 
V1, p.u. 1.0359 1.0398 1.0399 
V2, p.u. 1.0264 1.0311 1.0339 
V5, p.u. 1.016 1.02 1.0232 
V8, p.u. 1.0102 1.0212 1.0287 
V11, p.u. 1.0604 1.0726 1.0684 
V13, p.u. 0.989 1.0485 1.048 
QTh1, MVAr 10.4175 –0.2533 –0.3096 
QTh2, MVAr 12.1398 9.9067 11.2841 
QTh3, MVAr 35.8329 37.2458 39.8119 
QWTs1, MVAr 27.4807 22.2697 21.3692 
QWTs2, MVAr 17.319 14.1711 12.7728 
QPVs1, MVAr –14.5685 0.7956 –0.6847 
Total cost, $/h 874.3381 864.1246 879.3848 
PLoss, MW, best 2.5869 2.7671 2.0369 
VD, p.u. 0.2398 0.6 0.6595 
Mean 3.1307 3.8534 2.0654 
Worst 4.4579 6.2984 2.1569 
Std 0.4426 0.8314 0.0294 

 

Figure 10 presents the convergence curves 
corresponding to the best results obtained with PSO, 
GWO and BSLO, highlighting the evolution of minimal 
active power line losses. It is evident that the objective 
function value decreases rapidly and stabilizes in fewer 
than 20 iterations when using the BSLO algorithm, 
confirming its fast convergence capability. 
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Fig. 10. Convergence curves for active power losses reduction 

 

Load voltage deviation minimizing. This case 
interests on controlling the voltage magnitudes of load 
buses by minimizing their deviations from the reference 
value (Vref = 1 p.u.), as defined in (16). Table 8 summarizes 
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the simulation results voltage deviation reduction, 
highlighting that the BSLO algorithm achieves the lowest 
value (0.1913 p.u.), compared to 0.208 p.u. for PSO and 
0.2014 p.u. for GWO. The convergence curves of the 
evaluated methods are illustrated in Fig. 11. Furthermore, 
the BSLO algorithm converges to the global solution with a 
smaller number of iterations. 

Table 8 
Simulation results for voltage deviation reduction 
Item PSO GWO BSLO 

PTh1, MW 88.2113 119.1021 55.2959 
PTh2, MW 45.6265 29.9804 80 
PTh3, MW 27.2619 28.7075 35 
PWTs1, MW 70.0671 69.8552 74.4709 
PWTs2, MW 36.6761 25.5604 41.9836 
PPVs1, MW 19.3226 15.0478 0 
V1, p.u. 1.0308 1.0325 1.0256 
V2, p.u. 1.0301 1.0303 1.0322 
V5, p.u. 1.0098 1.0163 1.0165 
V8, p.u. 1.0048 1.0052 1.0067 
V11, p.u. 1.0166 1.0123 1.0023 
V13, p.u. 1.0079 1.0157 1.0181 
QTh1, MVAr –14.4918 –19.4105 –19.9972 
QTh2, MVAr 44.6989 45.4807 45.9197 
QTh3, MVAr 39.2687 39.3375 40 
QWTs1, MVAr 22.4846 28.859 26.2698 
QWTs2, MVAr 2.058 –0.5398 –2.6237 
QPVs1, MVAr –5.1563 –2.5165 0.374 
Total cost, $/h 862.069 849.3795 958.0732 
PLoss, MW 3.7656 4.8534 3.3503 
VD, p.u., best 0.208 0.2014 0.1913 
Mean 0.2224 0.2113 0.1924 
Worst 0.2422 0.2245 0.1962 
Std 0.0083 0.0074 0.0011 
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Fig. 11. Convergence curves for voltage deviation reduction 

 

Multi-objective function minimizing. The objective 
is to minimize the multi-objective function defined in (17), 
which includes the total generation cost, active power 
losses and load voltage deviation. Table 9 presents the OPF 
solutions obtained using the BSLO, GWO and PSO 
algorithms. The BSLO algorithm demonstrates superior 
performance compared to the other methods. Moreover, the 
convergence curve of the objective function is illustrated in 
Fig. 12. The evolution of the multi-objective function using 
BSLO also shows the most favorable behavior among the 
evaluated algorithms. 

The superiority of the BSLO algorithm is 
particularly evident in the multi-objective optimization 
case. Unlike PSO and GWO, which show significant 
variability between runs, with standard deviations of 
19.5146 and 46.9889 and large gaps between worst and 

best objective values (1064.8796 versus 993.1464 for 
PSO, and 1180.1231 versus 996.7087 for GWO, BSLO 
exhibits remarkable consistency. It achieves a worst-case 
value of 985.8281, a best-case value of 985.3818, and a 
very low standard deviation of 0.1058, confirming its 
robustness and reliability. In this case, using BSLO, the 
total active losses are 2.2949 MW, the voltage drop (VD) 
is 0.2252 p.u., and the generation cost is $871.0642 $/h. 

Table 9 
Simulation results for multi-objective function minimization 

Item PSO GWO BSLO 
PTh1, MW 60.258 76.0573 50 
PTh2, MW 34.9418 34.4584 35.4247
PTh3, MW 24.6371 23.8389 35 
PWTs1, MW 74.0053 72.7683 73.722 
PWTs2, MW 51.2131 42.651 50.3174
PPVs1, MW 41.0924 36.6089 41.2308
V1, p.u. 1.037 1.0252 1.0208 
V2, p.u. 1.0252 1.0196 1.0151 
V5, p.u. 1.0226 1.007 1.005 
V8, p.u. 1.01 1.0052 1.0063 
V11, p.u. 1.0151 1.0522 1.0365 
V13, p.u. 1.025 1.0095 1.0184 
QTh1, MVAr 12.8347 –5.4173 0.34 
QTh2, MVAr 3.6808 21.8226 13.8981
QTh3, MVAr 36.645 39.1846 40 
QWTs1, MVAr 34.107 24.016 24.6231
QWTs2, MVAr 1.0662 13.8226 9.4904 
QPVs1, MVAr –1.1077 –6.3064 –2.0071
Total cost, $/h 862.5596 850.8861 871.0642
PLoss, MW 2.648 3.0731 2.2949 
VD, p.u. 0.2467 0.229 0.2252 
Multi-objective function F4, best 993.1464 996.7087 985.3818
Mean 1021.5482 1043.9233 985.4953
Worst 1064.8796 1180.1231 985.8281
Std 19.5146 46.9889 0.1058 
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Fig. 12. Convergence curves for multi-objective function 

minimization 
 

To assess the performance of the BSLO algorithm, 
the results of 20 independent runs conducted for each 
method are presented as boxplots in Fig. 13, offering a 
clear visual comparison of result dispersion, stability, and 
robustness. The analysis shows that BSLO achieves 
significantly lower dispersion than the other algorithms, 
indicating more stable convergence and greater reliability. 
BSLO consistently produces results that are less affected 
by variations in the initial decision variables. Note that 
each algorithm includes a population initialization phase, 
which is inherently random and can significantly 
influence the algorithm’s ability to find the global 
optimum of the problem. 
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Fig. 13. Objective function boxplot for 20 runs of PSO, GWO and BSLO 

 

Test results of the SEAN. Single objective function 
in SEAN system. In this section, the PSO, GWO and 
BSLO algorithms were applied to the real SEAN system to 
address 3 single objective functions: minimizing the total 
generation cost without VPE (case 1), minimizing total 
active power losses (case 2) and minimizing voltage 
deviation (case 3). The simulation results obtained using 
the different algorithms for the single objective 
optimization cases 1–3 are presented in Tables 10–12. 

These results show that the BSLO method provides 
the best OPF solutions compared to the other methods. In 
case 1, which focuses on minimizing the total generation 
cost, the values obtained are 1130.477 $/h, 1130.161 $/h 
and 1130.1552 $/h using the PSO, GWO and BSLO 
algorithms, respectively. In case 2, the BSLO algorithm 
achieves the lowest power losses at 1.6967 MW, and in 
case 3, it also provides the smallest voltage deviation at 
0.01386 p.u. In all single objective function, the statistical 
performance indicators: best, mean, worst and standard 
deviation demonstrate that BSLO consistently outperforms 
both PSO and GWO. Also, the BSLO algorithm exhibits a 
faster convergence rate, as illustrated in Fig. 14–16. 

Table 10 
Simulation results for total cost minimization in the SEAN system 

Item min max PSO GWO BSLO 
PTh1, MW 0 400 93.2812 92.5586 92.6285 
PTh2, MW 0 200 109.8894 110.4928 110.4294 
PPVs1, MW 0 100 100 100 100 
V1, p.u. 0.9 1.1 1.0326 1.0406 1.0414 
V2, p.u. 0.9 1.1 0.9243 0.9337 0.9319 
V8, p.u. 0.9 1.1 1.0325 1.0295 1.0292 
QTh1, MVAr –300 300 –39.2304 –38.5035 –38.1574 
QTh2, MVAr –300 300 –98.7247 –92.2014 –93.1311 
QPVs1, MVAr –20 50 11.1544 0.1855 0.1153 
Total cost, $/h, best – – 1130.477 1130.161 1130.1552
PLoss, MW – – 5.6707 5.5514 5.558 
VD, p.u. – – 0.3743 0.4014 0.3987 
Mean – – 1132 1130.17 1130.1594
Worst – – 1133.4533 1130.1847 1130.15947
Std – – 0.8222 0.0061 4.7810–8 

 

Table 11 
Simulation results for total active power losses minimization 

in the SEAN system 
Item PSO GWO BSLO 

PTh1, MW 17.3588 15.4845 15.5576 
PTh2, MW 200 200 200 
PPVs1, MW 81.8412 83.7122 83.6391 
V1, p.u. 0.9883 0.983 0.9822 
V2, p.u. 0.9495 0.9422 0.9418 
V8, p.u. 1.038 1.0321 1.0313 
QTh1, MVAr –49.5131 –48.3258 –48.2966 
QTh2, MVAr –75.7063 –75.2507 –74.4846 
QPVs1, MVAr –0.6789 0.985 –0.8503 
Total cost, $/h 1446.8353 1445.6603 1445.6729 
PLoss, MW, best 1.7 1.6967 1.6967 
VD, p.u. 0.3824 0.3284 0.3222 
Mean 1.7129 1.6969 1.6967 
Worst 1.7643 1.697 1.69677 
Std 0.0166 6.833610–5 5.211710–8 

 

Table 12 
OPF simulation results for voltage deviation minimization 

in the SEAN system 
Item PSO GWO BSLO 

PTh1, MW 198.3750 208.1016 212.7295 
PTh2, MW 74.3085 98.7613 43.0739 
PPVs1, MW 51.4712 20.4118 72.4242 
V1, p.u. 0.9838 0.9875 0.9898 
V2, p.u. 0.9744 0.9749 0.9883 
V8, p.u. 1.0015 1.0026 1.0011 
QTh1, MVAr –0.5315 6.333 9.6434 
QTh2, MVAr –26.5009 –23.7497 –13.5178 
QPVs1, MVAr 8.8667 19.0264 2.8416 
Total cost, $/h 1610.6879 1820.7532 1642.4949 
PLoss, MW 26.6548 29.7748 30.7277 
VD, p.u., best 0.01526 0.01469 0.01386 
Mean 0.0202 0.0239 0.0141 
Worst 0.03014 0.0398 0.01517 
Std 0.004 0.0074 2.982710–4 

 

Multi-objective function in SEAN system. The multi-
objective function of the OPF problem simultaneously 
considers the generation cost of both thermal generators and 
solar PV units, the voltage profile and power losses (Fig. 17). 
Table 13 summarizes the values of the decision parameters, 
the reactive power outputs of all generators, the objective 
function values, and the statistical performance indicators 
obtained using the PSO, GWO, and BSLO algorithms. 
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In this case, the BSLO algorithm once again outperforms 
the other methods, achieving the lowest objective function 
value of 1333.8135. 

 

 

Iterations
 

Fig. 14. Convergence curves for total cost minimization 
in the SEAN system 

 

Iterations
 

Fig. 15. Convergence curves for active power losses 
minimization in the SEAN system 

 

Iterations
 

Fig. 16. Convergence curves for voltage deviation minimization 
in the SEAN system 

Table 13 
Simulation results for multi-objective function minimization 

in the SEAN system 
Item PSO GWO BSLO 

PTh1, MW 0.5917 57.2208 57.4852 
PTh2, MW 141.4894 143.2943 143.0508 
PPVs1, MW 100 100 100 
V1, p.u. 0.9612 0.9668 0.9657 
V2, p.u. 0.92 0.919 0.9201 
V8, p.u. 1.001 1.0006 1.0001 
QTh1, MVAr –46.6739 –45.8008 –45.9652 
QTh2, MVAr –72.6615 –73.294 –72.2996 
QPVs1, MVAr –1.6825 –2.5963 –3.4911 
Total cost, $/h 1170.8346 1175.3552 1174.737 
PLoss, MW 3.1595 3.01522 3.0360 
VD, p.u. 0.09741 0.1074 0.1056 
Multi-objective function 
F4, best 1334.1308 1333.8270 1333.8135 

Mean 1341.4334 1333.8567 1333.8136 
Worst 1360.9850 1333.9529 1333.8137 
Std 7.3014 0.03114 6.0958×10–5

 

Iterations
 

Fig. 17. Convergence curves for multi-objective function 
minimization in the SEAN system 

 
In comparison to the IEEE-30 bus network, no 

significant difference in the best values is observed 
between the 3 algorithms for the various objective 
functions in the SEAN system. This is due to the fact that 
the number of decision variables is only 5 in the Algerian 
network, whereas it is 11 in the IEEE-30 bus network. 

Conclusions. This paper presents a solution 
methodology for addressing the OPF problem in electrical 
grids integrating PV and WT generators. The inherent 
uncertainties of intermittent renewable energy sources are 
modeled using PDF and Monte Carlo simulations. To 
solve the OPF problem, BSLO algorithm was effectively 
employed, and its computational efficiency was compared 
against the PSO and GWO algorithms. Four distinct 
objective functions were considered: 

 minimization of total generation costs from thermal 
and renewable sources; 

 reduction of active power losses; 
 voltage deviation minimization; 
 a multi-objective function combining all 3 through a 

weighted sum. 
The proposed approach was tested on the both the 

IEEE 30-bus test system, which includes stochastic wind 
and solar power units, and a real-world power system in 
the Southeast Algeria, incorporating the variability of PV 
generation. The results demonstrate that addressing the 
stochastic OPF problem significantly improves grid 
performances. Optimal integration of renewable energy 
sources leads to reduce the active power supplied by the 
thermal generators and minimizing overall generation 
costs. Moreover, the BSLO algorithm demonstrated 
superior convergence characteristics and solution quality 
compared to PSO and GWO algorithms across all case 
studies, achieving the most optimal solutions for the OPF 
problem. These findings highlight the effectiveness and 
robustness of the BSLO algorithm for solving complex 
stochastic OPF problems. 
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