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Optimal power flow analysis under photovoltaic and wind power uncertainties
using the blood-sucking leech optimizer

Introduction. Optimal power flow (OPF) is a fundamental task in modern power systems, aiming to ensure cost-effective generation
dispatch and efficient energy distribution. The increasing integration of renewable energy sources such as photovoltaic (PV) and wind
turbines (WT), alongside conventional thermal units, introduces significant variability and uncertainty into system operations. Problem.
The OPF problem is nonlinear, constrained by complex technical limits, and further complicated by the stochastic nature of PV and WT
power generation. Efficiently addressing these uncertainties while maintaining system optimality remains a major challenge. The goal of
this study is to solve the OPF problem in power networks that integrate PV and WT systems, while accounting for the uncertainty in their
power outputs. Methodology. The stochastic behavior of PV and WT units is modeled using probability distribution functions. A novel
bio-inspired metaheuristic, the Blood-Sucking Leech Optimizer (BSLO), is proposed and benchmarked against two well-established
algorithms: Particle Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO). Simulations are conducted on both the IEEE 30-bus
test system and a real Algerian transmission network. Results. The BSLO algorithm consistently outperforms PSO and GWO in
minimizing generation cost, power losses, and voltage deviation across all tested scenarios. Scientific novelty. This work considers both
single and multi-objective OPF formulations, whereas most previous studies focus solely on single-objective approaches. It integrates
renewable generation uncertainty through probabilistic modeling and introduces a novel metaheuristic (BSLO). Validation on a real
Algerian power grid confirms the method’s robustness and practical relevance. Practical value. The results confirm the BSLO algorithm
as a promising and effective tool for solving complex, renewable-integrated OPF problems in real-world power systems, contributing to
more reliable, economical, and flexible grid operation. References 48, tables 13, figures 17.
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Bemyn. Onmumansnuii po3nodin nomyacnocmi (OPF) € ghynoamenmansuum 3a80auuam y Cy4acHux eHepeocucmemax, CHpsmMo8aHum Ha
3a0e3neueHHs. eKOHOMIYHO eeKmUBHO20 Po3nooiTy ma cenepayii enepeii. 3pocmaroua iHmezpayis GIOHOGNIOBAHUX OXHCEPEl eHEP2Ll, MAKUX
sk pomoenexkmpuuni (PV) ma eimpoei myp6inu (WT), nopso 3 mpaouyiiiHumu meniosumu YCmaHo8KaMu, 6HOCUNb 3HAYHY MIHIUGICIb Ma
HesusHayericms y poobomy cucmemu. Ilpodnema. 3ae0anns OPF ¢ neninitinum 3i CKIQOHUMU MEXHIUHUMU OOMEXHCEHHAMU Md 000AMKO80
VCKAAOHEHUM CIMOXACMUYHOI0 npupoooio eenepayii enexkmpoenepeii PV ma WT ycmanoskamu. Egpexmusne supiwenus yux HesusnaveHocmetl
3a 30epedicents ONMUMATLHOCIE CUCIEMU 3ATUUIAEMbCS ceplio3noio npobnemoro. Memoio pobomu ¢ eupiwenns 3asdanns OPF ¢
eHnepeomepedicax 3 inmesposarnumu PV ma WT cucmemamu 3 ypaxysanHam HegusHayeHOCmi ixHboi 6uxioHoi nomyowcnocmi. Memoouxa.
Cmoxacmuuna nogedinka PV ma WT ycmanosok MoOenoemucst 3 6UKOPUCIIAHHAM QYHKYIL po3nodiny umosipnocmeri. 3anponoHo8aHo
HOBULL DIOTHCNIPOBAHULL MEMAESPUCTNUYHULL AN2OPUMM HA OCHOGI nogedinku n’aeku (BSLO), saxuil nopigHoemscs 3 06oma aneopummami,
wo dobpe 3apexomendysanu cebe. memoo poio yacmurok (PSO) i memoo cipoeo éoéxa (GWO). ModemosanHs npoeoounocs sk y mecmosii
cucmemi IEEE 3 30 wunamu, mak i y peanvHill anxicupcbKiu mepedici enekmponepeoadi. Pesynemamu. Aneopumm BSLO cmabinbho
nepesepuye PSO ma GWO wooo minimizayii eapmocmi eenepayii, émpam nomyx#cHocmi ma 6i0OXuieHb Hanpyeu y 6Cix npomecmosanux
cyenapiax. Haykoea nosusna. Y yiii pobomi posznaoaiomoca AK 00HOKpumepianvHi, max i bazamoxpumepianvhi gpopmyniosanna OPF,
mooi K Oinbuicmb nONepPeoHix 00CIiONHCeHb OKYCY8ANUCA BUKTIOUHO HA OOHOKpumepianbHux nioxoodax. Lle spaxogye nesusHauenicmo
2eHepayii BIOHOBTIOBAHUX Ddiceperl eHepeii 3a 00NOMO2010 IMOBIPHICHO20 MOOENIIOBAHHS | NPEOCAGIAE HOBULL MeMAe8PUCIUYHULL AI2OPUMM
(BSLO). Ilepesipxa na peanvhili amicupcbKiti enepeocucmemi niOmeepodicye HAOMIHICMb mMa NPAKMUyHy 3HAYYWICMb Memooy.
Ilpakmuuna 3nauumicme. Pesynomamu niomeepoxcyioms, wo ancopumm BSLO € nepcnexmuenum ma epexmueHum incmpymeHmom s
supiwienns ckiaonux 3a60amv OPF, inmezpoeanux 3 6I0HOGIIOBAHUMU OJicepeNamu eHepell, Y PealbHUX eHepeOCUCeMAax, CRpUsiiouy Ol
HAOIIHIT, eKOHOMIYHI ma eHyuKiwiti pobomi mepeoici. bion. 48, Tadm. 13, puc. 17.

Kniouosi cnosa: onTuMi3aTop Ha OCHOBI MOBeIIHKH I’SIBKM, ONTUMAJIBHHUI PO3MOALT NOTYKHOCTI, CTOXaCTHYHI BiAHOB/IIOBaHi
JlzKepesia eHeprii, eHepreTH4YHi CUCTEMH.

Introduction. Power flow analysis is the essential
tool used to assess the performance of electrical networks.
It focuses on several key parameters, including voltage
profiles, line power flows, the balance between generation
and load powers, and losses. In contrast, optimal power
flow (OPF) analysis plays a critical role in the design and
operational planning of electrical grids. OPF helps
identify potential design weaknesses, improves the
reliability of energy supply, and ensures efficient system
operation [1-3]. The main goal of OPF is to define the
best set of decision variables that optimize a predefined
objective function. One of its most common applications
is the economic dispatch of power supply, aiming to
minimize the overall generation cost and satisfy
operational and safety constraints [4—10].

Conventionally, power generation has relied heavily
on fossil fuel-based thermal units. However, the
integration of photovoltaic (PV) and wind turbines (WT)
generators  offers considerable benefits, reduced
greenhouse gas emissions and decreased dependence on

fossil fuels [11, 12]. Despite these advantages, renewable
energy sources introduce new challenges due to their
power uncertainty. Indeed, the power generation of PV
and WT systems is highly dependent on changing weather
conditions, specifically wind speed and solar irradiance.
Therefore, it is essential to address the OPF problem
while considering the stochastic nature of renewable
energy generation to maintain grid stability and achieve
economic efficiency [13, 14].

Traditional methods for solving OPF problems, such
as the Newton-based method, linear and nonlinear
programming, and others [15-20], often struggle to
converge to the global optimum. This limitation stems from
the highly nonlinear, non-convex, and complex form of the
power system equations, and the presence of multiple
operational  constraints. Consequently, conventional
optimization techniques may fail to provide reliable or
accurate solutions for large-scale or modernized power
grids. To address these challenges, researchers have
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increasingly turned to advanced optimization strategies,
particularly metaheuristic algorithms, which have gained
significant attention in recent decades for their robustness
and flexibility in handling complex and multi-objective
OPF problems [21-23].

Metaheuristic  algorithms, including standard,
improved, and hybrid variants, are widely employed to
address complex, non-linear, and high-dimensional
optimization challenges in power systems, such as OPF
problem, unit commitment, and renewable energy
integration. These methods overcome the limitations of
traditional approaches by efficiently exploring large
search spaces and avoiding local optima. Standard
metaheuristic algorithms are population-based and rely on
stochastic search processes. Papers [24, 25] demonstrate
the superiority of the Grey Wolf Optimizer (GWO) and
Hamiltonian methods, respectively, in reducing power
losses in electrical networks, compared to Particle Swarm
Optimization (PSO) and Genetic Algorithms (GA). In
[26], the author applies GWO to solve the OPF problem
for different test systems, achieving lower generation
costs compared to those obtained with GA and PSO. The
authors in [27] introduce Differential Evolution (DE) to
minimize cost, emissions, and real power losses in IEEE
30 and 118 bus systems, demonstrating improved
performance over conventional methods.

The improved and hybrid methods are enhanced
versions of standard metaheuristic algorithms, often
combining 2 or more techniques to leverage their
respective strengths. The authors in [28] improve the
cuckoo optimization algorithm by incorporating a
Gaussian mixture model, which improves convergence,
accuracy, and robustness in systems with solar and wind
sources. A stochastic optimization framework is presented
in [29], combining probabilistic modeling with
mathematical programming to handle renewable energy
uncertainties and maintain system stability. In [30], a DE
variant enhanced with fitness-distance balance and
adaptive guidance shows superior convergence and
efficiency. The paper [31] proposes a hybrid of the GWO
and the crisscross search algorithm, which outperforms
PSO, GA and DE algorithms.

The goal of the paper is to solve the OPF problem in
power networks that integrate PV and WT systems; while
accounting for the uncertainty in their power outputs. This
uncertainty is modeled using probability distribution
function (PDF) and the Monte Carlo simulation. 3 single-
objective functions are considered: generation cost, active
power losses and voltage deviation, as well as a multi-
objective function combining these single objectives. The
proposed approach, based on the Blood-Sucking Leech
Optimizer (BSLO) algorithm, is evaluated on the standard
IEEE 30-bus test system and in a real South-East Algerian
Network (SEAN). The effectiveness of BSLO is assessed
in terms of convergence characteristics, optimal solutions,
and statistical indicators, and is compared to that of the
PSO and GWO algorithms.

Problem formulation. The OPF problem consists in
determining the optimal control variables that optimize an
objective function and satisfy the system’s constraints,
and is formulated as follows:

min F(x,u); (D
{i(x,u) =0; 2
(x,u) <0,

where F is the OPF objective function; g, /# are the
equality and inequality constrains of the system.

The vector x contains all state variables, given by the
following:

X = [PThl N VLI geees VLNPQ ,QTh1 geees QThNTh gere (3)

...QWTi geeey QWTNWT ,QP[/I seeey QPVNPV ,SLl PYEETY SLNL ],
where Pp;, is the real power generation of the slack

generator; V; is the voltage of the load bus; S; is the
apparent power in the transmission lines; Oz, Owr, Opr
correspond to the reactive power outputs of thermal units,
WT and PV systems, respectively; NL, NPQ, NWT, NPV,
NTh indicate the number of transmission lines, load
buses, WT, PV units and thermal plants, respectively.

The control variable vector u is defined as follows:

u:[PThz,...,PThNTh,PWTI,...,PWTNWT,... (4)
PPVI ’""PPVNPV ,VG1 ""’VGNG ],
where Pp,, Pyr, Ppy are the real powers generated by
thermal generators, WT, and PV units, respectively; Vg is
the voltage of the generation bus; Ng is the number of
generators.

Fuel cost model of thermal generators. The total
fuel cost of thermal generators is modeled using the
following quadratic function [12, 23]:

NTh
Fey(Ppy) = Y. a; +b; Py, +¢; Py, )
i=l
where a;, b;, ¢; are the cost coefficients of the i generator.

For thermal units equipped with multi-valve steam
turbines, the fuel cost model accounts for fluctuations in
the cost function caused by the valve-point effect (VPE).
This effect is modeled as a sinusoidal function integrated
into the basic cost function, as shown in (5), yielding the
total fuel cost ($/h) [12, 32, 33]:

NTh .
Feo(Py) = D a; +b;Pry, + Py +|d; sin(e; (B Th — Pra,))| (6)
i=1
where d,, e; are the VPE coefficients.

Wind and solar’s direct cost. Solar PV systems and
WTs operate without requiring fuel, incurring only basic
maintenance and operational costs. The direct cost model
for PV and WT units is represented as a linear function of
the planned power energy [12, 34]:

DCyr, = Cpwr, Pyry, ; @)
DCpy. = Cppy, Ppys, » (3)
where Ppy; , Byry, are the planned powers from the " PV
and WT units; Cppy., Cppr, are the direct cost

coefficients for the /" PV and WT generators.

Uncertainty of WTs and PVs cost functions.
Depending on the power generated by the WTs, 2 scenarios
can arise. If the generated power exceeds the planned
power, an overestimation cost is applied. Conversely, if the
generated power is lower than the planned power, an
underestimation cost is applied. The expressions for these
costs for the i WT are formulated as follows [12, 34]:
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UCwr, = Cuwr, (Byra, — Bwry,) =
By
WTr; ' (9)
=Cunr, j(PWTl. = Py, ) fwr (Pwr, )Py ;
PWTS,'
OCyr, = Cowr, (Byrs, = Byra,) =

B WTs;

j(PWTs,. = Pyr) fwr (Byr )dByr, »
0
UCyr,, OCyr are the underestimation and

(10)

=Copr,

where
overestimation costs; Cyyr , Copr, are the uncertainty
cost coefficients; Fyry. , By, » Byr, are the scheduled,

available and rated powers of the i™ wind unit.
For PV units, the uncertainty cost models are
formulated as follows [12, 34]:

UCpy, =Cupy; (Ppyg, —Fpys) = a1
=Cupy Sy (Ppry > Pevs NE(Ppyg, > Ppyg ) —Fpys 1;
OCpy, =Copy;(Ppys, —Fpyg) =

=Copy.fpv(Fprg < Fpys IFpys, —E(Ppyg, > Fpys)1s

where UCpy, OCpp are the underestimation and

(12)

overestimation cost values, Cypy., Cppy, are the

uncertainty cost coefficients; Ppy, , Ppy, are the planned

and available powers of the i PV unit.

Total cost function. The first objective F| aims to
reduce the total cost, which includes the fuel cost of
thermal units with VPE, as well as the costs associated with
PV and WT units. The function F is expressed as [35]:

NTh ,
R=Ya+ 5Py, +c:Ph, +{d;sin(e; (P — Py, ))‘ +
i=l (13)
NWT NPV
+ ZDCWT; +UCW]; +OCW]; + ZDCPV: +UCPV,- +0CPV['
i=1 i=l

When the VPE is neglected, the objective function
simplifies to:

NTh NWT

F =Y a;+b;Py, +cPfj, + > DGyp +UGyr +OGyp +
i=1 i=1
NPV
+ ZDCPVI +UCPV;- +0CPVI-'
i=1

Active power losses function. The second objective
function F, aims to reduce the total active power losses,
as formulated below [23, 36, 37]:

NTh ) )
Fy= Y GV +V; =2V Vycosdy),  (15)
i=l

(14)

where G(n) is the conductance of the n™ branch; 0;; is the
voltage angle difference between buses i and ;.

Voltage deviation function. The third objective
function F5 aims to reduce the voltage deviation and is
expressed as follows [29, 38, 39]:

NPQ

Fy= -1 (16)
i=1

Multi-objective function. The fourth objective
function F originates from a multi-objective optimization
problem that simultaneously considers total cost, active
power losses and voltage deviation. These criteria are
aggregated into a single scalar function using predefined
weighting factors. It is described as follows:

F4 :Fi +a)1F2 +a)2F3, (17)
where the total cost component is assigned a fixed weight
of 1; ;=100 and @,=40 are the weighting factors for
active power losses and voltage deviation. These values
were chosen to ensure a balanced contribution of all
objectives in the scalarized function. The weighting
factors used in this study are the same as those adopted in
previous works where a multi-objective function is
constructed by combining single objectives such as cost,
loss and voltage deviation [32].

Equality constraints. The solution to the OPF
problem must satisfy the equality constraints defined as
follows [40, 417:

NB
P =Pp +V; Y V;(GjcosS; —Bysin5y;);  (18)
j=1
NB
Qg = Op, +V: D V;(Gysin S — B cos ), (19)
j=1
where Fg , Qg are the real and reactive powers of the "

generator, including thermal, WT and PV units; Pp, . Op,

are the real and reactive loads.

Inequality constraint. Operational limits on power
output and voltage levels for all generators are defined as
constraints:

P < Py, <PR™, i=1..,NTh;  (20)
P;Ti? <Pyp, <Py, i=L..NWT; (1)
PII’nVi,-n < Ppy, < PII)HV?X, i=1..,NPV; (22)
Qﬁin <Op, SOp.i=1...NTh; (23)
Opr <Owr, SO, i=L..NWT; (24)
er;a;? < Opy, < QgVaI_X, i=1...,NPV; (25)
Vglin <V < Ve, i=1,..,NG. (26)

The voltage at the PQ bus must remain within the
specified limits:

v <y <y, i=1.., NPQ.

The apparent power flow in each network branch
must not exceed its allowable limits.

SLi < Szlax, i= 1,....,NSL .

@7

(28)

Mathematical modeling of WT  power
uncertainty. The power of a WT is affected by wind
speed variability and is represented by the Weibull PDF,
as expressed in the following equation [34, 42]:

=B

where c is the scale parameter; & is the shape parameter.

(29)
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The power supplied by a WT system is modeled as
follows [34, 39]:

0; if v, <V v <V
V=V .
Byr (V) =< Pyry > if v, <v<vy,; (30)
Vr = Vin
Pyrys if v;, vy,

where v,, v, Vi, are the rated, cut-out and cut-in wind
speeds, which are equal to 16, 25 and 3 m/s.

Mathematical modeling of PV power uncertainty.
The uncertainty in solar irradiance is modeled using a
lognormal PDF, as defined in [34]:

k
1 (In(Gpy)—p)° [%)

Gpy)= - , (31

J6py (Gpr) Gpyov2rm exp{ 267 16 Gl

where o, u are the standard deviations and mean values.
The power supplied by the PV system can be

determined using the following equation [34, 43]:

2
;o if 0<Gpy <R
PVr[GsthC J Py <Rc
Ppy (Gpy) = G (32)
Ppy; [G—PV} if Gpy 2Rc,
std

where Ppy, is the rated power; R, is the irradiance constant
(set to 120 W/m?); G is the standard solar irradiance.

Blood-sucking leech optimizer is a recently
introduced swarm intelligence algorithm proposed in [44].
This approach draws inspiration from the feeding
mechanisms of blood-sucking leeches, particularly those
observed in rice farming environments, where they attach
to and feed on the blood of diverse hosts, including
humans. The algorithm mimics the leeches’ ability to locate
prey using sensory receptors that detect stimuli like water
waves. The behavioral dynamics of leeches are
mathematically modeled by classifying them into 2 distinct
categories. The first category, referred to as directional
leeches, accurately processes the stimuli emitted by their
prey, allowing them to advance incrementally toward the
target with each iteration. In contrast, the second category,
termed directionless leeches, misinterprets these signals
and consequently moves away from the prey.

Initialization phase. The population of blood-
sucking leeches is initialized randomly, as described in
the following equation:

X =rand(1,D)(ub—1b)+1b, (33)
where X is the position of all leeches; rand is the random
number in the interval [0, 1]; D is the dimension of the
optimization problem; ub, Ib are the upper and lower bounds.

Exploration approach of directional leeches.
During the exploration phase, the N, directional leeches
move toward their prey at an angle « determined by their
response to a circular wave stimulus. As these leeches
approach the prey, the length L of the green arc,
illustrated in Fig. 1 [44], gradually decreases. The number
N, is calculated using the following equation:

2
Ny = ﬂoor[N[m + (l—m)(%) ﬂ ) (34)

where ¢, T are the current and maximum iterations;

N is the population size. The MATLAB function floor is
employed to round each element to the nearest integer
that is less than or equal to the original value m, which is
set to 0.8, serves as the ratio parameter.

stimuli

Fig. 1. Feeding mechanism of blood-sucking leeches [44]

The equations governing the exploration phase are:

X,y +C (i, p ~Lif r<a and‘xpreﬂ_n‘ > X

t t : t
" x(i,j) +C.x(i,j) +L1,1f r<aand ‘xprey(j)‘ < x(i,j)

XG,j) = (33)

s

xfl-jj) +C-xfl-,j) —-Lifr>a and‘xprey(j)‘ > xfl-’j)

x(ti’j) +C-xfl-,j) +L,,if r >aand ‘xprey(j)‘ < x(li’j)
where a is the parameter of the BSLO method, assigned a
value of 0.97. The term C represents the disturbance

coefficient, which is defined as follows:

s

Czb(l—%)o.&levy; (36)

levy = 0.01- 22

- /ﬁ‘ (37)

Vg
_[__ra+p)-sin(zp/2) / L6
(i p)2)-p- 2T

B=-05-(t/T) +(/T) +1.5, (39)

where levy is the Levy flight distribution function;

b, which is set to 0.001, is the parameter of the BSLO

algorithm; u, o are the random numbers uniformly

distributed within the interval [0, 1].

The lengths L; and L, are expressed as follows:

L =r1-‘ —xf,-,j)‘-PD~(l—kl/N); (40)

X prey(j)

W
Ly =‘xprey<j>—XEi,k)"PD'[l—ﬁ le (41)

where £ is the random integer in the range [1, floor(N-(1 + #/7))];
k is the random integer in [1, m], while PD is the perceived
distance. This parameter reflects the distance estimated by
directional leeches from their prey and is calculated as:
PD=s-ry-(1-1/T). 42)
The value of s is given by the following expression:

e, .
o) 8 ( (¢/T) 2+1 if 7 <0.5; 43)
8—7-(—(t/T) +1 else.
Exploitation method of directional leeches.

Throughout this phase, the directional leeches progressively
move closer to their prey, eventually reaching zones
characterized by heightened stimulus intensity. The updated
positions of these leeches are determined using the
equations provided below:
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i

xf,-,j) +C'xfi,j) —-Lifr<a and‘xpreﬂj)‘ > ‘xéi’j)

t t : t .
- Moy + ooy + Lanif 7 < aand ey < [ (44)
l’.]

>

X(ti,j) +C-_X,'(tl~,j) —L4,if r>a and‘xprey(j)‘ > ‘xéi,j)

xf,-’j) +C~x€i’j) +Ly,if r>a and‘xprey(j)‘ < ‘xéijj)‘.

The value of b is set to 0.001 when (#<0.17), and to
0.00001 in all other cases. This ensures that the
distribution coefficient decreases progressively over
successive iterations, allowing the BSLO algorithm to
converge toward an optimal solution. The arc lengths 5
and L, are defined as follows:

5 k
L3 =‘xprey<j)‘xfi,ﬂ"PD'(l-rs Wl] (45)

) k
Ly :‘xprey(j)_xéi,k)"PD'(l_’@ le (46)

where the variables r», r,, r», and r; are the random
numbers within the range [-1, 1].

Strategies transitioning between exploration and
exploitation phases. The perceived distance PD acts as a
critical decision-making parameter for directional leeches,
facilitating their transition between the exploration and
exploitation phases. | PD|>1, a significant portion of the
leeches are located at a distance from the prey, indicating
that the BSLO algorithm is operating in the exploration
phase. On the other hand, | PD[<I, the leeches converge
toward the prey, showing that the algorithm has entered
the exploitation phase.

Search way of directionless leeches. The N,
directionless leeches, calculated as N, = N — N, incorrectly
respond to stimuli and move away from the target. Over
successive iterations, their population size steadily
diminishes, and their updated positions are determined as:

t

t ‘ t . .
—~‘x on( 1) — X |- 0.5 levy-x(; », if r<Q
. ,T prey(j) ~(.)) @) 47)
T sy =) 05+ lewy . else
Re-tracking approach. Following multiple

iterations #; and after undergoing various phases of
exploitation and exploration, certain leeches successfully
located their prey (humans) and fed on their blood.
Subsequently, the humans removed these leeches by
returning them to the rice field. The updated positions of
these leeches are mathematically expressed as follows:

X; =rand(1, D) - (ub—1b) + Ib;

if > and F(X[) = F(X },3,)-

The parameters ¢, and ¢, are assigned a value of 20.
This approach ensures that the BSLO algorithm avoids
becoming stuck in local optima. Figure 2 shows the
flowchart of BSLO.

Simulations results. In this study, the performance
and efficiency of the proposed BSLO algorithm were
evaluated for solving the OPF problem in power systems
integrating PV and WT systems. The tests were conducted
on an IEEE 30-bus network, as described in [45], which
includes 3 thermal generators at buses 1, 2, 8, one PV unit at
bus 13, and 2 WT units at buses 5, 11. Additionally, the cost

(48)

9

[ Set BSLO parameters ]

No

Read the input data for the
network Yes
¢ Update the directional leeches
position using Eq. (35)
Generate initial positions of the
leeches by using Eq. (33) v
‘ Update the directional leeches
position using Eq. (44)

Evaluate the objective function
and find the best position (X )

prey

Update the directionless
leeches position using Eq. (47)

Update the leeches position
using Eq. (48)

[ Calculate using Eq. (42) ]

[ Get the optimal solution ]

Fig. 2. BSLO flowchart

coefficients of the thermal generators, PV and WT units are
detailed in [12, 29]. The second power system analyzed was
the SEAN [46], consisting of 12 buses, 2 thermal generators,
and 13 branches (including 2 transformers), with a total
power demand of 297.5 MW and 39 MVAr. To assess the
impact of renewable energy integration in this real network,
a PV unit was incorporated at bus 8. Table 1 summarizes the
main characteristics of the studied networks.

Table 1
Characteristics of the studied power systems
Ttem IEEE 30-bus network SEAN system
Quantity Details Quantity Details
Branches 41 [29] 13 [46]
Buses 30 [29] 12 [46]
Thermal units 3 buses: 1,2, 8 2 buses: 1, 2
PV units 1 bus: 13 1 bus: 8
WT units 2 buses: 5, 11 — —
Slack bus 1 bus: | 1 bus: 1
Real power Real power
Control at the PV buses at the PV buses
. 11 and the voltage 5 and the voltage
variables at the generator at the generator
buses buses
Rated power 283.4 MW, 297.5 MW,
loads B 126.2 MVAr B 39 MVAr
PQ bus 24 |[0.95-1.05] p.u. 8 [0.9-1.1] p.u.

Power flow analysis was performed using the
MATPOWER [45]. The proposed BSLO algorithm was
compared with PSO [47] and GWO [48]. To ensure a
robust and consistent evaluation, 20 independent trial runs
were conducted for all test cases. The population size
(N=50) and the maximum number of iterations (7=300)
were kept constant across all 3 optimization methods:
BSLO, GWO and PSO.
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The uncertainties in the power generated by the PV
and WT units were considered in our study. The Monte
Carlo simulation method was employed to generate 8000
values for both irradiation and wind speed. Tables 2, 3
present the cost coefficients of the thermal generators and
the PV unit for the SEAN system.

Table 2
Cost coefficients of thermal units for the SEAN system
Gen Bus a b c
1 1 0 2.5 0.017
2 0 2.5 0.017
Table 3
Cost coefficients of PV units for the SEAN system
Bus Cppy OCpy UCpy
8 1.6 3 1.5

Table 4 presents the Weibull PDF parameters of the
WT units for the IEEE 30-bus network, while Table 5
reports the lognormal PDF parameters of the PV units for
the IEEE 30-bus and SEAN systems.

Table 4
Weibull PDF parameters of WT units
IEEE 30-bus network
Wind No. of Rated power Weibull PDF
farm turbines Py, MW parameters
WTI 25 75 c=9k=2
WT2 20 60 c=10,k=2
Table 5
Lognormal PDF parameters of the PV units
Rated power Lognormal PDF
Network Ppy,, I1)\/1W ﬁarameters
IEEE30-bus 50 (bus 13) #n=6,0=0.6
SEAN system 100 (bus 8) u=6,0=0.6

Figures 3, 4 show the Weibull fitting and the wind
speed frequency distribution for the wind power plants
that replaced thermal generators at buses 5 (WT1) and 11
(WT2) in the IEEE 30-bus network. These results were

obtained after performing 8000 Monte Carlo simulations.
700 , . . ,

15 20 25 30

0 s 10
Fig. 3. Weibull PDF distribution for WT1

15 20 25 30 35

5 10
Fig. 4. Weibull PDF distribution for WT2

Figures 5, 6 show the lognormal PDF and the
irradiance frequency distribution obtained from Monte Carlo

simulations with 8000 iterations. These results correspond to
the PV unit installed at bus 13, which replaces the thermal
generator in the IEEE 30-bus system, and the additional PV
unit integrated at bus 8 of the SEAN system.
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Fig. 5. Lognormal PDF for the solar PV in the IEEE 30-bus system
at bus 13
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Fig. 6. Lognormal PDF for the solar PV in the SEAN system at bus 8§

Figures 7, 8 illustrate the stochastic output power of
the PV units in each of the power systems under study.
This distribution is used to calculate the overestimation
and underestimation costs of the solar PV units based on

their scheduled power output.
0.35 T T T

0.15

=
-
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: : . P,MW
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Fig. 7. Real power distribution of the PV unit in the IEEE 30-bus

network at bus 13

0.35

P, MW
1000

0 200 460 660 800
Fig. 8. Real power distribution of the solar PV unit

in the SEAN system at bus 8

Test results of the IEEE30-bus system. Total cost
minimizing. The first case study aims to reduce the total
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cost function (F}) with VPE as signaled in (13), and
includes wind, solar and conventional power generation.
The direct costs of wind and solar energy are calculated
using (7), (8). Additionally, the underestimation and
overestimation costs for wind and solar energy are
determined using (9), (11) and (10), (12), respectively.
Table 6 presents the optimal results for the decision
variables, reactive power of generators, total generation
cost, power losses and total voltage deviation obtained
using the BSLO, GWO and PSO algorithms. The table
also includes the mean, standard deviation (Std) and worst
value of the total generation cost. Additionally, the
minimum and maximum values of the real and reactive
power of the generators, as well as the voltage amplitude,
are provided in Table 6 and are identical across all
scenarios considered for the IEEE 30-bus system.

Table 6
Simulation results for total cost reduction

Item min |max| PSO GWO BSLO
Py, MW 50 |140| 76.7121 | 71.6108 | 64.2158
Py, MW 20 | 80 | 35.8849 | 37.87 | 38.7185
Pz, MW 10 | 35 | 24.6507 | 33.1131 35
Py1s1, MW 0 | 75 | 68.5834 | 66.3579 | 68.7485
Py, MW 0 | 60 | 42.4412 | 41.7435 | 44.9998
Ppysi, MW 0 | 50 | 38.3328 | 35.6942 | 34.442
Vi, pu. 095(1.1] 1.0239 1.0277 1.0268
V,, p.u. 0.95|1.1| 1.0154 | 1.0199 | 1.0198
Vs, p.u. 0.95| 1.1 | 0.9973 | 1.0037 | 1.0076
Vs, p.u. 0.95(1.1] 0.9982 | 1.0062 | 1.0077
Vi1, p-u. 0.95(1.1| 1.0082 | 1.0358 | 1.0234
Vi3, p.u. 095(1.1] 1.0307 1.0167 1.0166
O, MVAr -20(150| 1.2899 | 0.7484 | 0.8544
O, MVAr -20| 60 | 20.6716 | 18.7892 | 16.13
O1nz, MVAr —15| 40 | 38.7294 | 39.4339 40
Owrsi, MVAr -30| 35 | 21.3278 | 22.7235 | 25.4271
Owre, MVAT —10] 30 | 1.044 | 8.1244 | 7.0903
Opvsi, MVAT -20| 25 | 4.8243 | -3.2843 | -3.2947
Total cost, $/h, best | — | — |785.4689|785.8805| 781.22
P oss, MW — | — | 59874 | 6.4032 5.798
VD, p.u. — | — | 05054 | 0.4957 | 0.7169
Mean — — 1796.4208 | 806.673 |781.5035
Worst — | — |816.4433(837.7390|782.1341
Std — | — | 7.2581 | 16.9356 | 0.2328

The results show that the BSLO algorithm achieves
the lowest total generation cost among the compared
methods, with a value of 781.22 $/h, compared to
785.4689 $/h for PSO and 785.8805 $/h for GWO.
Moreover, the standard deviation for BSLO is notably
low (0.2328) compared to PSO (7.2581) and GWO
(16.9356), indicating that the results obtained by BSLO
exhibit minimal dispersion across the 20 simulations
conducted. This demonstrates the algorithm’s stable
convergence and enhanced reliability. Furthermore, as
shown in Fig. 9, the BSLO algorithm converges to the
optimal solution in less iteration, highlighting its efficiency
and fast convergence behavior.

Total active power losses minimizing. This case
study focuses on minimizing total active transmission losses
in the IEEE 30-bus system using the BSLO, GWO and PSO
algorithms. As shown in Table 7, the BSLO algorithm
achieves the lowest power losses with a value of 2.0369 MW,
compared to 2.5869 MW for PSO and 2.7671 MW for
GWO, and demonstrates strong performance in terms of
both the mean and standard deviation.

4.5 - x10* :
=—BSLO
allo - —peo
35 —_—GWO
z 3 H i
1:? 2.5 : : .
1 : : R ]
0.5 f_l e
! Iterations
00 Sb 160 150 260 25‘0 300
Fig. 9. Convergence curves for total cost reduction
Table 7
Simulation results for total active power losses reduction
Item PSO GWO BSLO
Py, MW 56.7554 76.0841 50
Pryp, MW 43.7425 33.4933 29.4619
Pz, MW 32.1789 28.1790 35
Pyrs1, MW 71.2795 74.9682 75
Pyre, MW 55.484 49.0042 59.9997
Ppys1, MW 26.5466 24.4383 35.9753
Vi, p-u. 1.0359 1.0398 1.0399
V2, p-u. 1.0264 1.0311 1.0339
Vs, p.u. 1.016 1.02 1.0232
Vs, p-u. 1.0102 1.0212 1.0287
Vi1, pu. 1.0604 1.0726 1.0684
Vi3, p-u. 0.989 1.0485 1.048
Otni, MVAr 10.4175 —0.2533 —0.3096
Orm, MVAr 12.1398 9.9067 11.2841
Otn3, MVAr 35.8329 37.2458 39.8119
Owrsi, MVAr 27.4807 22.2697 21.3692
Owrs2, MVAT 17.319 14.1711 12.7728
Opvsi, MVAr —14.5685 0.7956 —0.6847
Total cost, $/h 874.3381 864.1246 | 879.3848
Pyosss MW, best 2.5869 2.7671 2.0369
VD, p.u. 0.2398 0.6 0.6595
Mean 3.1307 3.8534 2.0654
Worst 4.4579 6.2984 2.1569
Std 0.4426 0.8314 0.0294
Figure 10 presents the convergence curves

corresponding to the best results obtained with PSO,
GWO and BSLO, highlighting the evolution of minimal
active power line losses. It is evident that the objective
function value decreases rapidly and stabilizes in fewer
than 20 iterations when using the BSLO algorithm,
confirming its fast convergence capability.

30 x10* ) T I
: ——BSLO
a5 —PS50
- —_—GWO
g 2 1
215
=
=,
=
s 1
H
0.5
0 TIterations|
B ; N ' T
0 50 100 150 200 250 300

Fig. 10. Convergence curves for active power losses reduction

Load voltage deviation minimizing. This case
interests on controlling the voltage magnitudes of load
buses by minimizing their deviations from the reference
value (V,,r= 1 p.u.), as defined in (16). Table 8 summarizes
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the simulation results voltage deviation reduction,
highlighting that the BSLO algorithm achieves the lowest
value (0.1913 p.u.), compared to 0.208 p.u. for PSO and
0.2014 p.u. for GWO. The convergence curves of the
evaluated methods are illustrated in Fig. 11. Furthermore,
the BSLO algorithm converges to the global solution with a
smaller number of iterations.

best objective values (1064.8796 versus 993.1464 for
PSO, and 1180.1231 versus 996.7087 for GWO, BSLO
exhibits remarkable consistency. It achieves a worst-case
value of 985.8281, a best-case value of 985.3818, and a
very low standard deviation of 0.1058, confirming its
robustness and reliability. In this case, using BSLO, the
total active losses are 2.2949 MW, the voltage drop (VD)

Table 8 is 0.2252 p.u., and the generation cost is $871.0642 $/h.
Simulation results for voltage deviation reduction Table 9
Item PSO GWO BSLO Simulation results for multi-objective function minimization
Pry,;, MW 88.2113 119.1021 55.2959 Item PSO GWO BSLO
Py, MW 45.6265 29.9804 80 Py, MW 60.258 | 76.0573 50
Pry3, MW 27.2619 28.7075 35 Prpp, MW 34.9418 | 34.4584 | 35.4247
Pwrs1, MW 70.0671 69.8552 74.4709 Pryz, MW 24.6371 | 23.8389 35
Pwrsr, MW 36.6761 25.5604 41.9836 P11, MW 74.0053 | 72.7683 | 73.722
Ppys;, MW 19.3226 15.0478 0 Pyt MW 51.2131 | 42.651 |50.3174
Vi, p-u. 1.0308 1.0325 1.0256 Ppys1, MW 41.0924 | 36.6089 | 41.2308
V2, p-u. 1.0301 1.0303 1.0322 V1, p.u. 1.037 1.0252 | 1.0208
Vs, p.u. 1.0098 1.0163 1.0165 V5, p.u. 1.0252 1.0196 | 1.0151
Vs, p-u. 1.0048 1.0052 1.0067 Vs, p.u. 1.0226 1.007 1.005
Vi1, p-u. 1.0166 1.0123 1.0023 Vs, p-u. 1.01 1.0052 | 1.0063
Vi3, p.u. 1.0079 1.0157 1.0181 Vi1, p-u. 1.0151 1.0522 | 1.0365
Orni, MVAr -14.4918 —19.4105 -19.9972 V13, p-u. 1.025 1.0095 | 1.0184
Orio, MVAr 44.6989 45.4807 45.9197 Omhi, MVAr 12.8347 | —5.4173 0.34
Oz, MVAr 39.2687 39.3375 40 Otm, MVAT 3.6808 | 21.8226 | 13.8981
Owrs1, MVAT 22.4846 28.859 26.2698 Otns, MVAr 36.645 | 39.1846 40
Owrso, MVAT 2.058 —0.5398 —2.6237 Owrs1, MVAT 34.107 | 24.016 |24.6231
Opvsi, MVAr —5.1563 —2.5165 0.374 Owre, MVAT 1.0662 | 13.8226 | 9.4904
Total cost, $/h 862.069 849.3795 958.0732 Opvs1, MVAT —1.1077 | —6.3064 | —2.0071
P osy MW 3.7656 4.8534 3.3503 Total cost, $/h 862.5596 | 850.8861 |871.0642
VD, p.u., best 0.208 0.2014 0.1913 Ploses MW 2.648 3.0731 | 2.2949
Mean 0.2224 0.2113 0.1924 VD, p.u. 0.2467 0.229 | 0.2252
Worst 0.2422 0.2245 0.1962 Multi-objective function F, best| 993.1464 | 996.7087 [985.3818
Std 0.0083 0.0074 0.0011 Mean 1021.5482]1043.9233(985.4953
45x10° . ‘ . ‘ ‘ Worst 1064.8796|1180.1231[985.8281
' —BSLO | Std 19.5146 | 46.9889 | 0.1058
—_P50
B e e —GWOo || 4:x10*
] : ——BSLO
2 3l 1 FY] N SRR AR - —pS0
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Fig. 11. Convergence curves for voltage deviation reduction o8 — :Iterationsi
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Multi-objective function minimizing. The objective Fig. 12. Convergence curves for multi-objective function

is to minimize the multi-objective function defined in (17),
which includes the total generation cost, active power
losses and load voltage deviation. Table 9 presents the OPF
solutions obtained using the BSLO, GWO and PSO
algorithms. The BSLO algorithm demonstrates superior
performance compared to the other methods. Moreover, the
convergence curve of the objective function is illustrated in
Fig. 12. The evolution of the multi-objective function using
BSLO also shows the most favorable behavior among the
evaluated algorithms.

The superiority of the BSLO algorithm is
particularly evident in the multi-objective optimization
case. Unlike PSO and GWO, which show significant
variability between runs, with standard deviations of
19.5146 and 46.9889 and large gaps between worst and

minimization

To assess the performance of the BSLO algorithm,
the results of 20 independent runs conducted for each
method are presented as boxplots in Fig. 13, offering a
clear visual comparison of result dispersion, stability, and
robustness. The analysis shows that BSLO achieves
significantly lower dispersion than the other algorithms,
indicating more stable convergence and greater reliability.
BSLO consistently produces results that are less affected
by variations in the initial decision variables. Note that
each algorithm includes a population initialization phase,
which is inherently random and can significantly
influence the algorithm’s ability to find the global
optimum of the problem.
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Table 10

Simulation results for total cost minimization in the SEAN system

Item min l[max| PSO GWO BSLO
Z 8op Py, MW 0 [400] 93.2812 | 92.5586 | 92.6285
2 * Py, MW 0 |200]109.8894 | 110.4928 | 110.4294
5% - Ppvy, MW 0 [100] 100 100 100
E o0k i Vi, pu. 09 [1.1] 1.0326 1.0406 1.0414
E V,, pu. 0.9 | 1.1] 0.9243 | 0.9337 | 0.9319
790 ! i Vs, p.u. 0.9 | 1.1 ]| 1.0325 1.0295 1.0292
5ok ——— | Othi, MVAT —300]300| —39.2304 | —38.5035 | —38.1574
PO Gwo BSLO O, MVAr —300{300| —98.7247 | -92.2014 | -93.1311
- n Opvsi, MVAT —20[50 | 11.1544 [ 0.1855 [ 0.1153
o Total cost, $/h, best) — | — [1130.477 | 1130.161 | 1130.1552
B Prow MW —T— 156707 | 55514 5 558
E T _i_ VD, p.u. - | = | 03743 0.4014 0.3987
g +5r * ! Mean - | - 1132 1130.17 | 1130.1594
é ar Worst — | — |1133.4533]1130.1847]1130.15947
E 3sp T : Std - | = | 0.8222 0.0061 | 4.78-10°°
= E i Table 11
25 T Simulation results for total active power losses minimization
2t m—— in the SEAN system
— = Item PSO GWO BSLO
o2y | Py, MW 17.3588 15.4845 15.5576
3o | Prip, MW 200 200 200
e - Ppyg;, MW 81.8412 83.7122 83.6391
2 o ! Vi, p-u 0.9883 0.983 0.9822
E i V), p.u. 0.9495 0.9422 0.9418
oA i Vs, p-u. 1.038 1.0321 1.0313
§ wal T Omn, MVAr —49.5131 —48.3258 —48.2966
' + Or, MVAr —75.7063 —75.2507 —74.4846
D — Opvs1, MVAr ~0.6789 0.985 -0.8503
£s0 SWo 8510 Total cost, $/h 1446.8353 | 1445.6603 1445.6729
" Piosss MW, best 1.7 1.6967 1.6967
o 1150F VD, p.u. 0.3824 0.3284 0.3222
% Mean 1.7129 1.6969 1.6967
B 100k B Worst 1.7643 1.697 1.69677
E ! Std 0.0166 | 6.8336:10° | 5.2117-10°°
:? 1050} _E_ Table 12
E ! OPF simulation results for voltage deviation minimization
= E in the SEAN system
= = . Ttem PSO GWO BSLO
Fig. 13. Objective ﬁiiluction boxplot forGVZV(U) runs of PSO GE\S{;O and BSLO Py, MW 198 3750 208.1016 212.7295
T ’ Pryp, MW 74.3085 98.7613 43.0739
Test results of the SEAN. Single objective function  |Ppyvs;, MW 51.4712 20.4118 724242
in SEAN system. In this section, the PSO, GWO and |V}, p.u. 0.9838 0.9875 0.9898
BSLO algorithms were applied to the real SEAN system to  [V3, p.u. 0.9744 0.9749 0.9883
address 3 single objective functions: minimizing the total |V, p.u. 1.0015 1.0026 1.0011
generation cost without VPE (case 1), minimizing total  |OQmi, MVAr —0.5315 6.333 9.6434
active power losses (case 2) and minimizing voltage |Om, MVAr —26.5009 —-23.7497 -13.5178
deviation (case 3). The simulation results obtained using  |Opvsi, MVAr 8.8667 19.0264 2.8416
the different algorithms for the single objective |Total cost, $/h 1610.6879 | 1820.7532 | 1642.4949
optimization cases 1-3 are presented in Tables 10—-12. Pross MW 26.6548 29.7748 30.7277
These results show that the BSLO method provides [VD, p.u., best 0.01526 0.01469 0.01386
the best OPF solutions compared to the other methods. In ~ |[Mean 0.0202 0.0239 0.0141
case 1, which focuses on minimizing the total generation |[Worst 0.03014 0.0398 0.01517
cost, the values obtained are 1130.477 $/h, 1130.161 $/h  |Std 0.004 0.0074 2.9827-10°*

and 1130.1552 $/h using the PSO, GWO and BSLO
algorithms, respectively. In case 2, the BSLO algorithm
achieves the lowest power losses at 1.6967 MW, and in
case 3, it also provides the smallest voltage deviation at
0.01386 p.u. In all single objective function, the statistical
performance indicators: best, mean, worst and standard
deviation demonstrate that BSLO consistently outperforms
both PSO and GWO. Also, the BSLO algorithm exhibits a
faster convergence rate, as illustrated in Fig. 14-16.

Multi-objective function in SEAN system. The multi-
objective function of the OPF problem simultaneously
considers the generation cost of both thermal generators and
solar PV units, the voltage profile and power losses (Fig. 17).
Table 13 summarizes the values of the decision parameters,
the reactive power outputs of all generators, the objective
function values, and the statistical performance indicators
obtained using the PSO, GWO, and BSLO algorithms.
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In this case, the BSLO algorithm once again outperforms
the other methods, achieving the lowest objective function
value of 1333.8135.
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Fig. 14. Convergence curves for total cost minimization
in the SEAN system
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Fig. 15. Convergence curves for active power losses
minimization in the SEAN system
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Fig. 16. Convergence curves for voltage deviation minimization
in the SEAN system

Table 13

Simulation results for multi-objective function minimization
in the SEAN system
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Fig. 17. Convergence curves for multi-objective function
minimization in the SEAN system

In comparison to the IEEE-30 bus network, no
significant difference in the best values is observed
between the 3 algorithms for the various objective
functions in the SEAN system. This is due to the fact that
the number of decision variables is only 5 in the Algerian
network, whereas it is 11 in the IEEE-30 bus network.

Conclusions. This paper presents a solution
methodology for addressing the OPF problem in electrical
grids integrating PV and WT generators. The inherent
uncertainties of intermittent renewable energy sources are
modeled using PDF and Monte Carlo simulations. To
solve the OPF problem, BSLO algorithm was effectively
employed, and its computational efficiency was compared
against the PSO and GWO algorithms. Four distinct
objective functions were considered:

e minimization of total generation costs from thermal
and renewable sources;

o reduction of active power losses;

e voltage deviation minimization;

e a multi-objective function combining all 3 through a
weighted sum.

The proposed approach was tested on the both the
IEEE 30-bus test system, which includes stochastic wind
and solar power units, and a real-world power system in
the Southeast Algeria, incorporating the variability of PV
generation. The results demonstrate that addressing the
stochastic OPF problem significantly improves grid
performances. Optimal integration of renewable energy
sources leads to reduce the active power supplied by the
thermal generators and minimizing overall generation
costs. Moreover, the BSLO algorithm demonstrated
superior convergence characteristics and solution quality
compared to PSO and GWO algorithms across all case
studies, achieving the most optimal solutions for the OPF
problem. These findings highlight the effectiveness and
robustness of the BSLO algorithm for solving complex
stochastic OPF problems.
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