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Enhanced siting and sizing of distributed generation in radial distribution networks
under load demand uncertainty using a hybrid metaheuristic framework

Introduction. Constant changes in electrical system loads lead to increased power losses and voltage drops, requiring effective strategies to
improve grid performance amid changing power demands. Problem. Many studies assume constant loads when determining optimal locations
for distributed generation (DG) units, when in reality, loads change throughout the day. These changes affect network performance and require
efficient solutions that adapt to changes in loads demand to maintain system efficiency and stability. Goal. This research aims to optimize the
locations and sizes of DG units to reduce power losses and optimize voltage profile, taking into account changes in loads hourly over a 24-hour
period. Methodology. The study analyzes 24 hourly scenarios using 2 optimization techniques: the conventional particle swarm optimization
(PSO) algorithm and the hybrid-dynamic PSO algorithm. A multi-objective function is adopted to reduce power losses and improve voltage
profile at the same time. Results. The modified IEEE 33 bus system was used to verify the effectiveness of the proposed method. The hybrid-
dynamic PSO algorithm has shown superior performance in reducing active and reactive losses compared to the traditional algorithm. It also
contributed to a significant improvement in the voltage profile, demonstrating its high efficiency in dealing with changes in loads demand during
time. Scientific novelty of this work lies in the integration of hourly load changes into the process of allocating DG units and using a hybrid-
dynamic PSO algorithm that combines the benefits of PSO traditional and adaptation mechanisms, leading to realistic and more efficient
improvement. Practical value. This methodology enhances the performance of the smart grid by reducing power losses and voltage deviation
under daily load, ultimately reducing operational costs and improving grid reliability. References 28, tables 4, figures 10.

Key words. distributed generation, renewable energy, optimization algorithms, voltage stability, power losses minimization,
uncertain loads demand.

Bemyn. Tocmiiini 3Minu HABAHMAXCEHHS eNEKMPOCUCEMU NPU3B00SMb 00 30LNbUIEHHS 6MPAm NOMYHCHOCH Ma NAOIHHA HaNpyeu, Wo
suMazae po3podKu eekmusHux cmpameziti Ons NIOBUEHHS NPOOYKMUBHOCE MEPENCT 8 YMOBAX 3MIHHO20 NONUNTY HA eNEeKMPOEHEPIIO.
Ilpoonema. YV 6a2amvox 00CONCEHHSX WOOO ONMUMATILHOLO POSMAULY8AHHSL YCMAHOBOK po3nodinenol eenepayii (DG) nepedbauacmuvcs
HAAGHICIb  CIMAMUYHUX HABAHMAJICEH, XOUA HACHPABOl HABAHMANCEHHS 3MIHIOIOMbCA 6npo0osdc OHA. Lli 3wminu enausaiomv Ha
NPOOYKMUBHICIb Mepedici ma nompedyloms OUHAMIYHUX DILUEHb, o A0anmyomscs 00 3MIH HABAHMANICEHHs y Yaci Ok NIOMPUMKU
epexmusrocmi ma cmabinenocmi cucmemu. Mema. [Jane 0ocniodcenmss cnpamogare Ha onmumizayilo posmautysanns ma posmipie DG
VCMAHOBOK OJIsl 3HUIICEHHS. 6MPAM NOMYICHOCMI ma onmumizayii npoQino Hanpyeu 3 ypaxyBaHHaM Wo200UHHUX 3MiH HABAHMAICEHHS!
npomsizom 24 cooun. Memooonozia. Y docriodcenni ananizyiomscs 24-e00unni cyenapii 3 6UKOPUCMAHHAM 080X MemOo0ie ONMUMI3ayii:
mpaouyitinoeo aneopummy onmumizayii poem uyacmox (PSO) ma ciopuono-ounamiunoeo aneopummy PSO. [na suuowcenns empam
NOMYJNCHOCMI MA 0OHOYACHO20 NOKPAWEHHs NPOQII0 Hanpy2u sUKopucmosyemucs bazamoyinbosa @yuxyis. Pezynemamu. [{nn nepesipku
ehexmusHocmi  3anpononosanoeo memoody suxopucmosyeanacs cucmema wun IEEE 33. Tibpuono-ounamiunuii ancopumm PSO
NnpOOeMOHCIPY8AB BUCOKY eheKMUBHICIb 3HUIICCHHS! AKMUGHUX | PeaKmuGHUx 8mpam NOpIeHAHO 3 mpaouyiinum areopummonm. Lle
MAKoJIC CHPUANO 3HAYHOMY NOKPAWEHHIO HpoQinio Hanpyeu, npooemMoHCHpPY8aguiu 1020 BUCOKY eqeKmUBHicms 3a yMO8 3MiHU
nasanmaoicenns y yaci. Haykoea noeusna pobomu nonseac 6 inmeepayii no2oOuHHUX 3MiH Hasanmagicenus y npoyec posnodiny DG
YCMAHOBOK Md BUKOPUCTNAHHA 2I0pUOHO-OuHamiunozo aneopummy PSO, wo noeonye nepesacu mpaduyiiinux mexawnizmie PSO ma
MexaHizmie adanmayii, wo npu3eoo0uUms 00 peanicmuyHo2o ma eexmusHiuoeo nokpawents. Ilpakmuyuna yinnicms. /lana memooonozis
niosuwye npoOyKMUGHIiCmy  IHMENeKMyanbHOi Mepedici 3a PaxyHOK 3HUdICEHHs 8mpam enNekmpoeHepzii ma GioXuneHHs Hanpyeu npu
000060MY HABAHMANCEHHI, WO SHUICYE eKCHIYAMAYILHI sumpamu ma niosuugye Haoitinicms mepedici. biomn. 28, tadmn. 4, puc. 10.

Knrouogi cnosa. po3nofiieHa reHepauisi, BiTHOBJIIOBAJIbHA €HePreTHKa, aJrOpuTMHM ONTHMI3amii, cTradinbHicTs Hampyru,
MiHiMi3alisi BTPaT NOTY’KHOCTi, HeBU3HAYCHi HABAHTAMKEHHS.

Introduction. Electrical energy is one of the pillars of DG Technology

modern civilization and one of the basic requirements in

"

the life of modern man. Transmission and distribution [ 1
networks are one of the most prominent components of the Goor) (& ) Goesem)
electrical system. One of the main challenges facing the
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performance of distribution networks is the change in load = S
demand, which leads to differences in active and reactive

losses, as well as voltage drops and decreases in network

stability [1, 2]. Optimal planning of distributed generation B
(DG) is one of the most important methods for reducing
electrical losses [3] and improving voltage limits in
distribution network [4]. However, the installation and
operation of these generators require significant investment
and operational costs , which calls for the use of standard
optimization algorithms in order to ensure that the
integration of DG with distribution networks is optimal [5].
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DG is called by wvarious terms such as local
generation, integrated generation, scattered generation, or
decentralized generation, and it generally refers to electrical
energy sources (Whether renewable or non-renewable) that
are connected to the distribution network or directly to the
consumption site [6, 7]. The concept of DG includes a
variety of technologies, as shown in Fig. 1 [8], that produce
energy at sites close to consumers. These systems can serve
individual buildings [9] or be used in Microgrids [10].
They can also be operated with on-grid mode [11].

Fig. 1. Shows most of the DG techniques [8]

Methods for searching for the optimal solution to the
problem of locating and scaling DG vary depending on the
nature of the system studied, the complexity of the
objectives and the constraints imposed, and these methods
are generally divided into 3 main categories: analytical,
numerical, and metaheuristic algorithms. Analytical
methods [12] rely on explicit mathematical equations and

© S.S. Sabry, O.Sh. Al-Yozbaky

84

Electrical Engineering & Electromechanics, 2025, no. 6



are often used in simplified systems with few buses and
limited targets, but become impractical with the complexity
of the network. Numerical methods [13], such as the
Newton-Raphson method or linear programming, provide
high accuracy but require accurate mathematical models
and may suffer from falling into local solutions, and do not
fit easily to multi-objectives or nonlinear variables. In
contrast, intelligent optimization algorithms [14-20] have
been more common in recent years, due to their ability to
deal with complex models, multiple targets, and the nature
of nonlinear or inaccurately defined constraints. Some
studies have also tended to combine more than one
algorithm for improved performance, or to use hybrid
algorithms that combine artificial intelligence with
traditional optimization. The literature shows that the
choice of an optimization algorithm depends on several
factors such as the number of DG units, load type, network
model, and objective function, however, the general trend
is leaning towards intelligent multi-objective optimization
algorithms due to their flexibility and effectiveness in
arriving at practical and workable solutions.

A review of the literature referred to above shows that
most researchers have addressed the allocation of DG units
based on fixed loads. Some evaluated the allocation of these
units under time-varying loads, but the locations and sizes
of DG units were often calculated at the average load only.
Moreover, some researchers looked at multiple load models,
but each allocation was made separately for each given load,
rather than a standardized allocation that took into account
loads over the time period (24 h) in our current study. Some
studies have also shown allocation of DG units under loads
and probabilistic generation. However, the majority of these
studies relied on constant generation based on (average
generation) from renewable energy sources, without taking
into account the temporal change in production.

In order to simulate the full picture of the actual
operating reality of the system, it is necessary to make an
allocation of DG units for each time period separately,
according to load variables. Hence, the optimal allocation
is chosen from among all time assignments based on the
desired objectives, such as maximizing system efficiency,
reducing losses or optimizing voltage profile.

The main contributions of this research are the
application of a modified hybrid metaheuristic optimization
algorithm to determine the optimal allocation of DG units
across 24 different scenarios, and the problem model was
built based on multiple scenarios, so that each scenario
represents specific load and generation conditions during a
specific hour of the day. The methodology was
implemented within a 24-hour time horizon, taking into
account the regenerative generation pattern of solar
generating units with the use of storage batteries to make
the generation constant from the system. The hybrid-
dynamic metaheuristic algorithm was also employed in the
context of allocating the locations and sizes of DG, and
their performance was evaluated in this context. Optimal
allocation of DG units was achieved throughout the day,
with the aim of reducing the multi-objective function
(MOF). The study included the analysis and discussion of
active power losses, reactive power losses, as well as
voltage profiles at different buses. Total power losses were
also calculated and discussed over the full day. Finally, the
results of the study were compared with the results of

another optimization algorithm, such as particle swarm
optimization (PSO), in terms of optimal allocation of single
and multiple DG units.

The goal of the paper is to optimize the locations and
sizes of DG units to reduce power losses and optimize
voltage profile, taking into account changes in loads hourly
over a 24-hour period.

The formulation of the problem involves the use of
backward forward sweep power flow analysis and the
results associated with optimal location and size
allocation of DG using an optimization algorithm
approach, taking into account a set of constraints.
Allocation means optimized for DG to introduce these
generators into the system at an optimal point in terms of
location and size. Figure 2 shows the diagram of the
system. The first stage involves entering system data such
as a 24-hour variable load. In the second phase, the
optimal allocation of DG units is determined according to
changes in load demand based on the minimum value of
the objective function.
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Fig. 2. Factors influencing the optimal location and sizing of DG
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Load flow analysis. Power flow analysis technology
is used for planning, operation, optimization, and
monitoring of electrical power systems, as it contributes
significantly to ensuring system stability, reliability and
economic efficiency.

start However, traditional

| methods used in power flow

Read line data and bus data analysis, such as the
l Newton-Raphson  method

Set max teration and and the  Gauss-Seidel

initial voltage V=1+j0.

method, may not be suitable
for distribution networks
and may not guarantee
access to the solution (no
convergence)  for  the
following reasons [21]:
v 1. Radioactive nature or
weak entanglement in the
no S netwgrk structure.
convergence 2. High resistance-to-
reactance ratio.

yes 3. Imbalance of the system.
4. The presence of DG
sources.

The backward
forward sweep algorithm
end [22] (Fig. 3) is an effective
method used in power flow
analysis for radial
distribution networks, as it

—

Calculate the branch current using
backward sweep

Using branch current and given impedances
update the voltages at each node

Calculate the total real and reactive
power losses

Fig. 3. Flow chart of backward
forward sweep algorithm
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is characterized by its ability to provide accurate results
with speed of convergence and reduce the number of
iterations required to reach the solution. For these reasons,
this algorithm is the preferred choice in the analysis of
distribution systems.
Steps of implementation of backward forward
sweep algorithm.
1) Initializing. Set the current at each node to zero:
ik = 0, (1)
where i, is the complex current at node .
Set the voltage of all nodes to 1 p.u.:
=1, 2)
where vy is the complex voltage at node £.
2) Calculating the nodal current by using the
complex power equation:

i =51/ 3)
where s; is the complex power at node & [p.u.]; vy is the
voltage at node k [p.u.]; i is the calculated current at node
k [p.u.]; symbol «» denotes complex conjugate.

3) Backward sweep — branch current calculation.
Calculate branch current flowing from node k to node 4—1:

oot = 1k + D i “)
where i, ;. is the current in the branch from node & to 41;
iy 1s the sum of branch currents from all downstream
nodes connected to node £.

4) Perform forward sweep to update the node voltage
according to the voltage drop equation across the lines:

Vil = Vi = Zk kel bk s (5)
where vy is the voltage at node k; vy is the voltage at the
downstream node k+1; z; 4+ is the complex impedance of
the line between nodes & and k+1; [ is the current in
the branch between nodes & and k+1.

5) Check the stopping criterion, where the iterative
process continues until reaching the acceptable variance
between the calculated values in successive iterations:
<g, (6)

n+l

max|vy — v}

where ¢ is the specified tolerance for convergence
(typically 107*)

Objective function. The main objective of the goal
function is to reduce the multi-objective index to the
lowest possible value.

MOF index is a combination of 3 main indicators —
the Active Power loss Index (API), the Reactive Power
loss Index (RPI) and the Voltage Deviation index (VD)
[23]. Optimal allocation of DG units is achieved by
minimizing the MOF value. This process is based on (7),
where the coefficients w; — ws refer to the weights of API,
RPI and VD:

MOF =wy - APl +w, - RPI + w5 - VD ; (7

> W=l ®)

where wy is the weight of API objective (w;=0.5); w, is
the weight of RPI objective (w,=0.25); wj is the weight of
VD objective (w;=0.25).

The relative weights of the 3 objectives (reducing
real losses, reducing reactive losses and reducing voltage
deviation) were determined using the analytic hierarchy
process developed by T.L. Saaty, which is one of the most
common multi-standard decision-making methods [24] is

common and accurate. This method is based on the
principle of conducting even comparisons between goals
using a numerical preferential scale that reflects the
degree of relative importance between each pair, so that
the judgments are translated into a comparison matrix
used to extract the final weights through mathematical
treatment based on normalization and analysis of
eigenvalues. In this context, a logical assessment was
adopted that the first goal (4PI) is twice as important as
the other 2 goals (RPI and VD), while RPI and VD were
considered equally important. According to this
assessment, the comparison matrix is built to reflect these
relationships (PLI > RPI = VD), with a preference ratio of
(2:1). Based on these provisions, the final weights were
derived to be approximately 0.5 for API and 0.25 for each
of the RPI and VD. This distribution reflects the level of
technical impact expected for each objective on grid
performance and is consistent with the logic of improving
the operational efficiency of electrical distribution
systems, where priority is given to reducing real losses as
directly related to economic losses in energy.

Active power loss index (API) is related to the
objective of reducing active power losses [25, 26], and is
calculated as the ratio between Actual Power Loss in the
presence of DG (4PLDG) to Actual Power Loss (4PL) in
the absence of DG:

API=APLDG |/ APL. )

Reactive power loss index (RPI) is the ratio of the
Reactive Power Loss [27] when DG is present (RPLDG)
to the Reactive Power Loss (RPL) without DG:

RPI=RPLDG / RPL. (10)

Voltage deviation index (VD) is the 3rd target
considered in this question [28], and is mainly used to
monitor the power system. In real time, efforts across
buses deviate from their stability limits, and can be
adjusted within safe limits through optimal allocation of
DG in the system, contributing to voltage profile
optimization. The VD indicator in (11) should be
minimal, because higher values indicate a greater
deviation from the initial value:

VD = maxjy_y (vin =5 )/ Vini) 11
where n is the total number of buses in the system;
Vini =1 05pu

Constrains. The process of minimizing the
objective function is constrained by equality constraints
and inequality constraints.

Equality constraints express the balance of real and
reactive power of DG within the electrical system:

ZPGi_ZPDi_PI()ss:O; (12)
> 06i =Y. 0pi = Otoss =0, (13)

where Pg; is the active power generated by traditional
resources; Pp; is the active power generated by DG units;
P is the active power losses in network; Qg; is the
reactive power injected by traditional resources; Qp; is the
reactive power injected by DG units; Oy, is the reactive
power losses in network.

Inequality constraints include setting the minimum
and upper limits of DG capacity to ensure that permissible
operational levels are not exceeded, in addition to
restricting the locations of connecting generation units to
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specific locations to the network to achieve the best
technical and economic performance:

PB& < PpG < PBE": (14)
OpG <0p6 <0p6 (15)
2< DGposition < Mpys (16)

where Pp; is the active power output of the DG unit;

Ppe', PpE* are the minimum and maximum limits of the

DG’s active power; Op is the reactive power of the DG unit;
Op6-0pe:  are the minimum and maximum allowable

reactive power; DGgiion 15 the bus number where the DG is
installed; 7, is the total number of buses in the network.
Optimization algorithms. PSO is one of the
popular algorithms used to solve multidimensional
optimization problems. These algorithms mimic the
behavior of flocks of birds and fish in search of food
sources, where the positions of particles are updated
based on their individual and collective experiences to
arrive at optimal solutions. The presented models aim to
compare the traditional algorithm with a dynamic hybrid
version, which includes additional steps to improve the
quality and speed of arriving at the optimal solution by
introducing local search mechanisms and handling
recessions. PSO algorithm and the improved or modified
hybrid algorithm, called the hybrid-dynamic PSO
algorithm, were used, where their parameters are
dynamically adjusted as the algorithm progresses, in
addition to introducing the concept of mutation to the
results in case of stagnation to avoid the algorithm falling
into the trap of local solutions. The choice of this
particular algorithm among the rest of the optimization
algorithms for the following reasons:
1. The ability to process dynamic and non-convex

equation.
2. The ability to process large and complex data sets.
3.The ability to explore initial search spaces
effectively.

4. The speed of convergence towards optimal solutions
compared to other methods specially when deals with multi-
objectives that have overlap and conflict with each other.

In PSO, the starting particles are distributed randomly
across the available search space, and out of all these
particles, the best solution is identified. The locations of the
particles are updated in the next step based on the previous
locations and velocity values, the entire swarm takes
actions to improve the value of the objective function and
achieve the optimization in the next steps.

The best fitness (min, max) is determined to direct
the rest of the particles towards this best solution. The
velocity of the particle is updated according to the gap
between his current position and the optimal position
relative to all other particles (gpes), in the same manner,
the position of the particle is constantly being updated by
adding its current location to its movement.

The position and velocity of the particle are
determined according to the following equation:

k+1 k k k.
Vi =wy +an (Pbesn‘ -5 )+ en (gbest =5 ), (17)

Sl'k+1 k k+1 . (18)

=5 + v; 5
where v/ is the velocity of particle i at iteration k; s;" is the
position of particle i at iteration k; py.; is the best position

found by particle i (personal best); g,., is the best position
found by the entire swarm (global best); w is the inertia
weight — controls exploration vs. exploitation; ¢, ¢, are
the acceleration coefficients (cognitive and social
components); ry, r, are the random numbers uniformly
distributed in [0, 1].
The PSO algorithm depends on 3 basic steps that are
performed during each iteration:
1. Evaluating each solution using the objective
function to calculate the fitness value.
2. Updating the best position of the particle (ps.;) and
the best global position (gp.s)-
3. Updating the particle’s velocity v; and its position s;.
These steps continue until stopping criteria are met,
such as reaching a certain number of iterations or achieving
a certain accuracy threshold. Despite its efficiency,
traditional PSO suffers from some drawbacks when dealing
with optimization problems, the most prominent of which
is that it may stop at local maximum values (stuck in a local
maximum), which reduces its ability to explore the entire
search space. The parameters w, c;, ¢, affect the
performance of the algorithm, as tuning inappropriate values
can lead to early convergence towards a non-optimal
solution or divergence which prevents the algorithm from
reaching an optimal solution.
A number of attempts have been made to improve the
PSO algorithm in order to find the most suitable control
parameters. Numerous methods exist for the search of
optimal parameters other than those with fixed values. The
variable coefficient PSO or dynamic PSO with control
parameters that decrease linearly is given in (19-21). The
control parameters of PSO are:

Wk = Whnax = (Wmax = Wmin) > (19)
max
Clk = Clmax — “(C1max —C1min) > (20)
max
Cok ZCZmax_k_'(CZmax_CZmin)’ (21)
max

where wy is the inertia weight at iteration k; wy,, is the
final (minimum) inertia weight; wy, 1is the initial
(maximum) inertia weight; k& is the current iteration
number; k.. 1S the total number of iterations; cy; is the
cognitive component at iteration k; ¢, is the social
component at iteration k; cim.x is the initial (maximum)
cognitive value; ¢, is the final (minimum) cognitive
value; Comi, 1s the initial (minimum) social value; ¢y 18
the final (maximum) social value.

Local search and mutation were used on the initial
results of the PSO algorithm for the following reasons.

1) Exploitation. PSO algorithm 1is good at
exploration but may not be accurate in finding the local
optimal solution. Local search comes to fine-tuning on the
found solution.

2) Accelerate-convergence. Instead of waiting for
PSO to reach the optimal solution across many
generations, local search can quickly improve good
solutions in each or after a certain number of generations.

3) Increase precision. Helps to exceed some PSO
limits such as oscillating around gj.; without further
optimization, by optimizing locally around gj,,; O ppesr.
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4) Diversity. Mutation causes a random change in
the location of some particles, preventing premature
grouping of particles around imperfect solutions.

5) Escape from local optima. If particles stop
improving, the mutation gives a random push to each
other to exit that area and explore new areas.

6) Improved exploration. Especially in the later
stages of PSO when particles begin to focus on a small
area around the gy,

The method used to determine the best location and
value for DG using the hybrid-dynamic PSO algorithm is
as follows.

Step 1 (Initialization).

1. Number of iteration k.

2. Number of particles 7.

3. Number of parameters per particle m.

4. Limitation of space solution.

5. Set the initial value of control set of PSO as shown
in Table 1.

6. Set the initial value of each particle randomly with
in the limit of space solution.

Step 2. Modify the load bus by the initial set of
particles.

Step 3. Run load flow and calculate APL, RPL, VD.

Step 4. Searching for pp,,, and g,y

Step 5. Update the velocity, position and variable
control set to generate new set of solution.

Step 6. Evaluate the new solution.

Step 7. Searching for py.,; and gy

Step 8. Apply local search.

Step 9. Check if g, is stagnant? If yes — apply
mutation, if don’t — check no. of iteration if less or equal
to no. of max. iteration.

Step 10. Update the number of iterations.

Step 11. If number of iterations less than or equal
number of max iterations then go to step 5.

Table 1
PSO coefficients used in the simulation

Parameter Value
Number of particles n 50
Number of iterations kpqx 50-150
Number of parameters per particles m 2
Cognitive component ¢, 0.5-2.5
Social component ¢, 0.5-2.5
Inertia weight w 0.4-0.9

The traditional PSO algorithm (Fig. 4,a) begins by
initializing the basic parameters, including the inertia
weight w, acceleration coefficients c¢;, ¢,, swarm size,
number of iterations and number of variables. A set of
solutions is then randomly generated within the search
space. The validity of the solutions is then checked. If the
condition is met, the network loads are adjusted, and the
load flow is run to evaluate the validity of the solutions.
This is followed by a search for the best local and global
solutions (py.s; and gp.s,) based on the calculated validity
values. The positions and velocities of the particles are
then updated to generate a new set of solutions. This cycle
continues with the network loads being updated, solutions
being evaluated, and the best solutions being updated,
with the number of iterations gradually increasing until
the maximum number of iterations is reached, at which
point the algorithm terminates.

start

Initial set of variable control settings

Initial set randomly of solution

modify the load bus of network
run load flow and evalute solution fitness

Searching for local and global best solution
based on the fitness

e O DD T DI

solution

modify the load bus of network
run load flow and evalute solution fitness

Searching for best solution by update

t sol
Phest & Gbest

Fig. 4. a — flow chart of
traditional PSO algorithm;
b — flow chart of hybrid-
dynamic PSO algorithm

2]

The hybrid-dynamic PSO algorithm (Fig. 4,b) follows
similar steps to the traditional algorithm, starting with
initializing the basic settings and generating a random set of
solutions. After verifying that the solutions adhere to the
permissible space limits, the network loads are adjusted, and
the load flow is run to assess the validity. The best local and
global solutions are searched according to the validity
criteria. After updating the speed and location variables, an
additional optimization step is applied, which involve
applying a local search to improve the quality of the
discovered solutions. If the global solution g stagnates
and does not improve across iterations, a mutation is applied
to break this stagnation and stimulate the search for better
solutions. The system continues iterating, updating solutions
and increasing the number of iterations until a specified
maximum number is reached, at which point the algorithm
terminates. This hybrid-dynamic approach contributes to
accelerating convergence to the optimal solution and
increasing the efficiency of the search process.

Test system. Modified IEEE 33 bus distribution
system was adopted to test the proposed method. Figure 5
shows the single line diagram of the distribution system,
at base load, the total active power is 3715 kW, the
reactive power is 2300 kVAr.

@ Slack Bus
©-0-DD ®

(] industrial load

residential load

@ commercial loads

Fig. 5. Modified IEEE 33 bus test system

Limitations. The study’s limitations refer to the
specific aspects of its design or methodology that had an
impact on or influenced the interpretation of the study’s
conclusions. Below are limitations of this work:
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1) Load flow method. By backward forward sweep
because this method is suitable for distribution networks
of radial nature.

2) Operation mode. On grid operation mode.

3) Network type. Modified IEEE 33 bus test system
radial distribution network.

4) Type of DG. Renewable energies that they have
the ability to inject active power only.

5) Number of DG. Single and multiple distribution
generation units.

6) Load type. Variable load and load model is
constant power.

7) System condition. Balanced 3 phase system.

8) Optimization method. Metaheuristic method and
the algorithm is hybrid dynamic PSO.

9) Objective function:

e minimize active power losses;
e minimize voltage deviation at each bus;
e maximize voltage stability.

10) Decision variable. Optimal location and value of
DG with unity power factor.

Result and discussion. To validate the proposed
approach and its effectiveness in the analysis and
optimization methods presented, the study was applied to
the modified IEEE 33 bus test system under different
scenarios, including:

e Base case. System operation without integration of
any DG.

e /st case. Integration of one DG unit at the optimal
location within the network.

e 2nd case. Integration of 2 DG units at their optimal
locations.

e 3rd case. Integration of 3 DG units at their optimal
locations.

IEEE 33 bus model with variable load demand was
chosen as the base case for loss evaluation and power flow
analysis without DG, and the analysis was done using
backward/forward sweep. The total losses in active and
reactive power among the studied cases are shown in Fig. 6,
and Fig. 7 shows load demands during 24 hours.
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Fig. 6. Active and reactive power losses during 24 h
in the 3 cases in addition to the basic case
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Fig. 7. Active and reactive load demand during 24 h

Initially with base case, energy losses for active and
reactive power were measured at 7196.054 kW-h/day and
4887.774 kVArh/day, the minimum voltage value recorded
for bus number 18 was 0.8459 p.u. In the 1st scenario, where
a single DG unit was embedded, the optimal size of the unit
was calculated to be 3079.71 kW at bus number 6, which
caused total active and reactive energy losses to drop to
3799.023 kW-h/day and 2794.019 kVAr-h/day. In the next
case, the system was embedded with 2 DG units, where
2 units of 1056.946 kW and 1322.302 kW were placed at
buses number 13 and 30, respectively. This led to active
energy losses of 2980 kW-h/day and reactive power losses of
2050 kVAr-h/day.

In case 3, where 3 DG units were considered, 957.925 kW,
1262.393 kW and 1231.201 kW units were put in buses 14,
24 and 30, respectively, which brought the total active
losses down to 2506.591 kW-h/day and the reactive losses
down to 1750 kVArh/day. Figure 6 shows how the
inclusion of several DG units into distribution systems
provides greater improvements on the reduction of active
and reactive losses than single generation unit systems.

The changes within the average bus voltage for
employing the optimal size and location of the DG in
various scenarios with basic case is illustrated in Fig. 8.
The application of the optimal distribution generator
enhances the performance of all the bus voltages in terms
of stability in comparison with the base case.

Table 2 presents the statistical results of 100 running
of proposed method for MOF along 24 h with 3 DG along
with the corresponding minimum, maximum, mean and
standard deviation values. Additionally, the success rate
(SR) is reported, which indicates the percentage of runs
that achieved a solution within 2 % of minimum objective
function value among all running.

The high effectiveness of the algorithm attributed to
its inherent optimization capabilities and the adequacy of
the selected number of particles and iterations in the PSO
algorithm for consistently reaching the optimal solution.

1.06 T TS Table 2
——0

The results of statistical
analysis

Statistical indices |Result
Minimum 0.291
Maximum 0.310
Mean 0.291
Standard deviation| 0.003
Success rate (SR) | 0.96
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Fig. 8. Average voltage’s buses during 24h in the 3 cases in addition
to the basic case

The PSO algorithm was chosen and preferred over
the rest of the algorithms based on previous studies that
outweighed it over the rest of the algorithms for many
reasons, including the ease of understanding its work and
the simplicity of the way it is based on it, in addition to
that it can be suitable for large and complex networks and
speed of convergence to the optimal solution.

Despite the many advantages of this algorithm, it
can fall into the trap of local solutions. In this research,
this study proposed to use a simple algebraic method to
overcome this problem, which is the method of adjusting
the algorithm parameters in a dynamic way so that it
makes the algorithm strong in terms of exploration,
exploitation and choosing the best global solution.
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To ensure the effectiveness of the proposed method,
a comparison was made between it and the regular PSO
algorithm with fixed parameters in a statistical way.

To increase competition between the 2 methods, a
few particles were used repeats to combine 3 DG units to
observe the difference between the 2 methods and which
of them can get closer to the optimal solution in light of
the small number of particles and iterations (Table 3).

Table 3
Statistical result comparison of PSO and hybrid-dynamic PSO

Statistical indices | PSO result | Hybrid-dynamic PSO result
Minimum 0.351 0.291
Maximum 0.372 0.310
Mean 0.362 0.291
Standard deviation 0.012 0.003
Success rate (SR) 0.18 0.96

Figures 9, 10 show the convergence of the proposed
hybrid-dynamic PSO algorithm, which is characterized by
its ability to explore a good region of the search space in
the early iterations, and quickly reach the optimal
solution. Figures 9, 10 show a comparison between the
performance of 2 algorithms for optimization of location
and the optimal size of DG units in electrical distribution
networks, based on the value of a MOF.
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Fig. 9. The fluctuation of solutions across different executions

0.8 [Fitness value 1-PSO
2 - Hybrid-dynamic PSO
0.6F
0.4 l L
N~ 2
0.2 Numbel; of 1terat101}s

0 10 20 30 40 50
Fig. 10. The convergence of the solution to the optimal value
along to iterations

By tracking objective function changes across a
number of executions, the traditional PSO algorithm
shows a continuous fluctuation in value, with results
centered at relatively high levels (=0.36), indicating poor
stability and the likelihood of falling into local solutions
without being able to improve them effectively. In
contrast, the hybrid-dynamic PSO algorithm shows more
stable performance, maintaining a relatively low value of
the objective function (=0.29) with a very limited number
of sudden changes, indicating has a better ability to
explore and converge towards the optimal solution. This
superior performance demonstrates that the use of a
hybrid-dynamic PSO algorithm contributes to improved
search efficiency, reduced losses, and more reliable
results in distribution network optimization applications.

In Table 4 the proposed methodology is compared
with other methodologies, that using PSO algorithm to
find the optimal location and size for DG. Note that when
using more than 1 DG in different locations, it leads to an
improvement in the results, as the 2nd case required
injecting less power than the 1st case, and this led to
improvements over the 1st case in terms of reducing total
losses and improving voltage deviation and stability.

Table 4
Summary of the results obtained by following the proposed methodology
Number of DG No DG One DG 2 DG 3 DG
A Bus 13 Bus 14
Best location of DG - Bus 6 Bus 24
Bus 30
Bus 30
957.925@ Bus 14
Best capacity of DG, kW — 13079.710@ Bus 6 ig;gggg% gﬁ: ;(3) 1262.393@ Bus 24
) 1231.201@ Bus 30
Total capacity of DG, kW - 3079.710 2379.248 3451.519
Active energy loss, kW-h/day 7196.054 3799.023 2980 2506.591
Active energy loss reduction, % — 0.472 0.586 0.652
Reactive energy loss, kVAr-h/day |2792.894 2794.019 2050 1750
Reactive energy loss reduction, % - 0.4.28 0.582 0.642
Min voltage profile 0.8459 0.8959 0.9318 0.9337
Min voltage profile at bus no. 18 18 18 18
Min voltage profile at hour 9 9 9 9
Max voltage profile 0.9970 0.9989 0.9985 0.9991
Max voltage profile at bus no. 2 2 2 2
Max voltage profile at hour 23 23 23 23

*Note: the symbol «@» refers to the bus number that DG unit with right capacity should be connected to it

The results show that the integration of DG units in
the distribution network contributes significantly to
improving the performance of the system in terms of
reducing electrical losses and improving voltage profiles.
When only 1 DG unit was added, the active losses (Pjyss)
during 24 h decreased from 7196.054 kW-h/day to
3799.023 kW-h/day, achieving a reduction of 47.2 %.

With the addition of 2 DG units, the P, during 24 h
reduction rate improved to 58.6 %, while it reached 65.2 %
when 3 DG units were used. As for reactive losses (Qjpss)
during 24 h also a clear improvement is recorded,
decreasing by 42.8 % with 1 DG unit, rising to 58.2 %
and 64.2 % with 2 and 3 DG units respectively. On the
other hand, the addition of DG units led to a clear
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improvement in the minimum voltage profile, with the
lowest voltage rising from 0.8459 without DG units to
0.8959 with 1 unit, and reaching 0.9318 and 0.9337 with
2 and 3 units respectively, indicating enhanced voltage
stability. Note that the lowest voltage value was fixed at
bus 18 and 9AM, while the highest voltage value was
achieved at bus 2 and 11PM across all scenarios. In
addition, it is clear that increasing the number of DG units
not only reduces overall losses, but also contributes to a
more balanced load distribution across the network. With
the use of a 1 DG unit, the entire power was concentrated
in one location 3079.71 kW at bus 6, resulting in a
significant improvement in performance, but the
improvement was limited compared to multi-unit of DG.
When 2 DG units were added, power injection capacities
were distributed between bus 13 and bus 30, allowing for
more effective reduction in losses, as losses were further
reduced even though the total power injection capacity
was less than the single capacity per unit. By integrating
3 DG units distributed over buses 14, 24 and 30 achieve a
more uniform distribution of generation power capacities,
which is clearly reflected in the improvement of loss and
voltage profile. This highlights the importance of the spatial
distribution of DG units and the optimal capacity of each
unit, as the multi-point injected reduces long electrical paths
that cause greater losses, and enhances voltage stability
across the grid. Therefore, the use of more than one DG unit
with optimal locations and sizes provides a more
improvement that exceeds the improvement of a single unit
with a large capacity concentrated, which effectively
contributes to raising the efficiency of the network.

Future works. Dynamic planning requires
consideration of a long time period to determine the
optimal locations for DG. Other future work below:

1. Island operation. 1t is recommended to develop
models for intentional island operation with the
integration of energy storage systems.

2. Improving optimization algorithms. Improving the
tuning of parameters of metaheuristic optimization algorithms
such as PSO and GA to achieve greater efficiency.

3. Achieving accuracy and computational efficiency. In
order to improve the accuracy of convergence and
computational efficiency, hybrid techniques should be
further studied by combining analytical methods,
optimization algorithms, and computational methods.

Conclusions. This paper presents an effective
method to optimize the allocation of DG units based on
the variable daily load profile. The performance of this
methodology was tested using the IEEE 33 Bus test
system, where a set of scenarios covering different
periods during the day were analyzed to study the effect
of variable load on the selection of the best location and
capacity for DG.

The locations and sizes of DG units were determined
based on the lowest values resulting from a MOF, which
helped improve the overall performance of the network.
The results showed the effectiveness of the proposed
approach in reducing overall system losses along hourly
loads demand, as well as improving voltage levels at buses.

In this context, the hybrid-dynamic PSO algorithm
was used to determine the optimal distribution of
generating units. The results showed that this algorithm
significantly reduced both active and reactive power

losses compared to the traditional PSO algorithm. The
hybrid algorithm also showed a higher ability to improve
the lowest voltages in the grid.

In addition, the analyses showed that a significant
reduction in total active power losses across all scenarios
studied when using the hybrid method, compared to the
decrease achieved when using the traditional algorithm.
The same applied to reactive power losses, where the
hybrid method showed significantly better results.

These results highlight the importance of the
proposed approach based on the hybrid-dynamic PSO
algorithm, especially in its ability to reduce losses and
enhance voltage stability, making it a promising candidate
for application in modern smart electricity grids that
require flexibility and high dynamic response.
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