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Introduction. Constant changes in electrical system loads lead to increased power losses and voltage drops, requiring effective strategies to 
improve grid performance amid changing power demands. Problem. Many studies assume constant loads when determining optimal locations 
for distributed generation (DG) units, when in reality, loads change throughout the day. These changes affect network performance and require 
efficient solutions that adapt to changes in loads demand to maintain system efficiency and stability. Goal. This research aims to optimize the 
locations and sizes of DG units to reduce power losses and optimize voltage profile, taking into account changes in loads hourly over a 24-hour 
period. Methodology. The study analyzes 24 hourly scenarios using 2 optimization techniques: the conventional particle swarm optimization 
(PSO) algorithm and the hybrid-dynamic PSO algorithm. A multi-objective function is adopted to reduce power losses and improve voltage 
profile at the same time. Results. The modified IEEE 33 bus system was used to verify the effectiveness of the proposed method. The hybrid-
dynamic PSO algorithm has shown superior performance in reducing active and reactive losses compared to the traditional algorithm. It also 
contributed to a significant improvement in the voltage profile, demonstrating its high efficiency in dealing with changes in loads demand during 
time. Scientific novelty of this work lies in the integration of hourly load changes into the process of allocating DG units and using a hybrid-
dynamic PSO algorithm that combines the benefits of PSO traditional and adaptation mechanisms, leading to realistic and more efficient 
improvement. Practical value. This methodology enhances the performance of the smart grid by reducing power losses and voltage deviation 
under daily load, ultimately reducing operational costs and improving grid reliability. References 28, tables 4, figures 10. 
Key words. distributed generation, renewable energy, optimization algorithms, voltage stability, power losses minimization, 
uncertain loads demand. 
 

Вступ. Постійні зміни навантаження електросистеми призводять до збільшення втрат потужності та падіння напруги, що 
вимагає розробки ефективних стратегій для підвищення продуктивності мережі в умовах змінного попиту на електроенергію. 
Проблема. У багатьох дослідженнях щодо оптимального розташування установок розподіленої генерації (DG) передбачається 
наявність статичних навантажень, хоча насправді навантаження змінюються впродовж дня. Ці зміни впливають на 
продуктивність мережі та потребують динамічних рішень, що адаптуються до змін навантаження у часі для підтримки 
ефективності та стабільності системи. Мета. Дане дослідження спрямоване на оптимізацію розташування та розмірів DG 
установок для зниження втрат потужності та оптимізації профілю напруги з урахуванням щогодинних змін навантаження 
протягом 24 годин. Методологія. У дослідженні аналізуються 24-годинні сценарії з використанням двох методів оптимізації: 
традиційного алгоритму оптимізації роєм часток (PSO) та гібридно-динамічного алгоритму PSO. Для зниження втрат 
потужності та одночасного покращення профілю напруги використовується багатоцільова функція. Результати. Для перевірки 
ефективності запропонованого методу використовувалася система шин IEEE 33. Гібридно-динамічний алгоритм PSO 
продемонстрував високу ефективність зниження активних і реактивних втрат порівняно з традиційним алгоритмом. Це 
також сприяло значному покращенню профілю напруги, продемонструвавши його високу ефективність за умов зміни 
навантаження у часі. Наукова новизна роботи полягає в інтеграції погодинних змін навантаження у процес розподілу DG 
установок та використання гібридно-динамічного алгоритму PSO, що поєднує переваги традиційних механізмів PSO та 
механізмів адаптації, що призводить до реалістичного та ефективнішого покращення. Практична цінність. Дана методологія 
підвищує продуктивність інтелектуальної мережі за рахунок зниження втрат електроенергії та відхилення напруги при 
добовому навантаженні, що знижує експлуатаційні витрати та підвищує надійність мережі. Бібл. 28, табл. 4, рис. 10. 
Ключові слова. розподілена генерація, відновлювальна енергетика, алгоритми оптимізації, стабільність напруги, 
мінімізація втрат потужності, невизначені навантаження. 
 

Introduction. Electrical energy is one of the pillars of 
modern civilization and one of the basic requirements in 
the life of modern man. Transmission and distribution 
networks are one of the most prominent components of the 
electrical system. One of the main challenges facing the 
performance of distribution networks is the change in load 
demand, which leads to differences in active and reactive 
losses, as well as voltage drops and decreases in network 
stability [1, 2]. Optimal planning of distributed generation 
(DG) is one of the most important methods for reducing 
electrical losses [3] and improving voltage limits in 
distribution network [4]. However, the installation and 
operation of these generators require significant investment 
and operational costs , which calls for the use of standard 
optimization algorithms in order to ensure that the 
integration of DG with distribution networks is optimal [5]. 

DG is called by various terms such as local 
generation, integrated generation, scattered generation, or 
decentralized generation, and it generally refers to electrical 
energy sources (whether renewable or non-renewable) that 
are connected to the distribution network or directly to the 
consumption site [6, 7]. The concept of DG includes a 
variety of technologies, as shown in Fig. 1 [8], that produce 
energy at sites close to consumers. These systems can serve 
individual buildings [9] or be used in Microgrids [10]. 
They can also be operated with on-grid mode [11]. 

 
Fig. 1. Shows most of the DG techniques [8] 

 

Methods for searching for the optimal solution to the 
problem of locating and scaling DG vary depending on the 
nature of the system studied, the complexity of the 
objectives and the constraints imposed, and these methods 
are generally divided into 3 main categories: analytical, 
numerical, and metaheuristic algorithms. Analytical 
methods [12] rely on explicit mathematical equations and 
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are often used in simplified systems with few buses and 
limited targets, but become impractical with the complexity 
of the network. Numerical methods [13], such as the 
Newton-Raphson method or linear programming, provide 
high accuracy but require accurate mathematical models 
and may suffer from falling into local solutions, and do not 
fit easily to multi-objectives or nonlinear variables. In 
contrast, intelligent optimization algorithms [14–20] have 
been more common in recent years, due to their ability to 
deal with complex models, multiple targets, and the nature 
of nonlinear or inaccurately defined constraints. Some 
studies have also tended to combine more than one 
algorithm for improved performance, or to use hybrid 
algorithms that combine artificial intelligence with 
traditional optimization. The literature shows that the 
choice of an optimization algorithm depends on several 
factors such as the number of DG units, load type, network 
model, and objective function, however, the general trend 
is leaning towards intelligent multi-objective optimization 
algorithms due to their flexibility and effectiveness in 
arriving at practical and workable solutions. 

A review of the literature referred to above shows that 
most researchers have addressed the allocation of DG units 
based on fixed loads. Some evaluated the allocation of these 
units under time-varying loads, but the locations and sizes 
of DG units were often calculated at the average load only. 
Moreover, some researchers looked at multiple load models, 
but each allocation was made separately for each given load, 
rather than a standardized allocation that took into account 
loads over the time period (24 h) in our current study. Some 
studies have also shown allocation of DG units under loads 
and probabilistic generation. However, the majority of these 
studies relied on constant generation based on (average 
generation) from renewable energy sources, without taking 
into account the temporal change in production. 

In order to simulate the full picture of the actual 
operating reality of the system, it is necessary to make an 
allocation of DG units for each time period separately, 
according to load variables. Hence, the optimal allocation 
is chosen from among all time assignments based on the 
desired objectives, such as maximizing system efficiency, 
reducing losses or optimizing voltage profile. 

The main contributions of this research are the 
application of a modified hybrid metaheuristic optimization 
algorithm to determine the optimal allocation of DG units 
across 24 different scenarios, and the problem model was 
built based on multiple scenarios, so that each scenario 
represents specific load and generation conditions during a 
specific hour of the day. The methodology was 
implemented within a 24-hour time horizon, taking into 
account the regenerative generation pattern of solar 
generating units with the use of storage batteries to make 
the generation constant from the system. The hybrid-
dynamic metaheuristic algorithm was also employed in the 
context of allocating the locations and sizes of DG, and 
their performance was evaluated in this context. Optimal 
allocation of DG units was achieved throughout the day, 
with the aim of reducing the multi-objective function 
(MOF). The study included the analysis and discussion of 
active power losses, reactive power losses, as well as 
voltage profiles at different buses. Total power losses were 
also calculated and discussed over the full day. Finally, the 
results of the study were compared with the results of 

another optimization algorithm, such as particle swarm 
optimization (PSO), in terms of optimal allocation of single 
and multiple DG units. 

The goal of the paper is to optimize the locations and 
sizes of DG units to reduce power losses and optimize 
voltage profile, taking into account changes in loads hourly 
over a 24-hour period. 

The formulation of the problem involves the use of 
backward forward sweep power flow analysis and the 
results associated with optimal location and size 
allocation of DG using an optimization algorithm 
approach, taking into account a set of constraints. 
Allocation means optimized for DG to introduce these 
generators into the system at an optimal point in terms of 
location and size. Figure 2 shows the diagram of the 
system. The first stage involves entering system data such 
as a 24-hour variable load. In the second phase, the 
optimal allocation of DG units is determined according to 
changes in load demand based on the minimum value of 
the objective function. 

 
Fig. 2. Factors influencing the optimal location and sizing of DG 

 

Load flow analysis. Power flow analysis technology 
is used for planning, operation, optimization, and 
monitoring of electrical power systems, as it contributes 
significantly to ensuring system stability, reliability and 
economic efficiency.  

 

Fig. 3. Flow chart of backward 
forward sweep algorithm 

However, traditional 
methods used in power flow 
analysis, such as the 
Newton-Raphson method 
and the Gauss-Seidel 
method, may not be suitable 
for distribution networks 
and may not guarantee 
access to the solution (no 
convergence) for the 
following reasons [21]: 
1. Radioactive nature or 
weak entanglement in the 
network structure. 
2. High resistance-to-
reactance ratio. 
3. Imbalance of the system.
4. The presence of DG 
sources. 

The backward 
forward sweep algorithm 
[22] (Fig. 3) is an effective 
method used in power flow 
analysis for radial 
distribution  networks, as it 
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is characterized by its ability to provide accurate results 
with speed of convergence and reduce the number of 
iterations required to reach the solution. For these reasons, 
this algorithm is the preferred choice in the analysis of 
distribution systems. 

Steps of implementation of backward forward 
sweep algorithm. 

1) Initializing. Set the current at each node to zero: 
ik = 0,                                    (1) 

where ik is the complex current at node k. 
Set the voltage of all nodes to 1 p.u.: 

vk = 1,                                    (2) 
where vk is the complex voltage at node k. 

2) Calculating the nodal current by using the 
complex power equation: 

**
kkk vsi  ,                                (3) 

where sk is the complex power at node k [p.u.]; vk is the 
voltage at node k [p.u.]; ik is the calculated current at node 
k [p.u.]; symbol «*» denotes complex conjugate. 

3) Backward sweep – branch current calculation. 
Calculate branch current flowing from node k to node k–1: 

 kmkkk iii ,1, ,                         (4) 

where ik, k–1 is the current in the branch from node k to k–1; 
im,k is the sum of branch currents from all downstream 
nodes connected to node k. 

4) Perform forward sweep to update the node voltage 
according to the voltage drop equation across the lines: 

1,1,1   kkkkkk izvv ,                   (5) 

where vk is the voltage at node k; vk+1 is the voltage at the 
downstream node k+1; zk,k+1 is the complex impedance of 
the line between nodes k and k+1; Ik,k+1 is the current in 
the branch between nodes k and k+1. 

5) Check the stopping criterion, where the iterative 
process continues until reaching the acceptable variance 
between the calculated values in successive iterations: 

 n
k

n
k vv 1max ,                              (6) 

where  is the specified tolerance for convergence 
(typically 10–4.) 

Objective function. The main objective of the goal 
function is to reduce the multi-objective index to the 
lowest possible value. 

MOF index is a combination of 3 main indicators – 
the Active Power loss Index (API), the Reactive Power 
loss Index (RPI) and the Voltage Deviation index (VD) 
[23]. Optimal allocation of DG units is achieved by 
minimizing the MOF value. This process is based on (7), 
where the coefficients w1 – w3 refer to the weights of API, 
RPI and VD: 

VDwRPIwAPIwMOF  321 ;            (7) 

 


3

1
1

i iw ;                                 (8) 

where w1 is the weight of API objective (w1=0.5); w2 is 
the weight of RPI objective (w2=0.25); w3 is the weight of 
VD objective (w3=0.25). 

The relative weights of the 3 objectives (reducing 
real losses, reducing reactive losses and reducing voltage 
deviation) were determined using the analytic hierarchy 
process developed by T.L. Saaty, which is one of the most 
common multi-standard decision-making methods [24] is 

common and accurate. This method is based on the 
principle of conducting even comparisons between goals 
using a numerical preferential scale that reflects the 
degree of relative importance between each pair, so that 
the judgments are translated into a comparison matrix 
used to extract the final weights through mathematical 
treatment based on normalization and analysis of 
eigenvalues. In this context, a logical assessment was 
adopted that the first goal (API) is twice as important as 
the other 2 goals (RPI and VD), while RPI and VD were 
considered equally important. According to this 
assessment, the comparison matrix is built to reflect these 
relationships (PLI > RPI = VD), with a preference ratio of 
(2:1). Based on these provisions, the final weights were 
derived to be approximately 0.5 for API and 0.25 for each 
of the RPI and VD. This distribution reflects the level of 
technical impact expected for each objective on grid 
performance and is consistent with the logic of improving 
the operational efficiency of electrical distribution 
systems, where priority is given to reducing real losses as 
directly related to economic losses in energy. 

Active power loss index (API) is related to the 
objective of reducing active power losses [25, 26], and is 
calculated as the ratio between Actual Power Loss in the 
presence of DG (APLDG) to Actual Power Loss (APL) in 
the absence of DG: 

API = APLDG / APL.                       (9) 
Reactive power loss index (RPI) is the ratio of the 

Reactive Power Loss [27] when DG is present (RPLDG) 
to the Reactive Power Loss (RPL) without DG: 

RPI = RPLDG / RPL.                       (10) 
Voltage deviation index (VD) is the 3rd target 

considered in this question [28], and is mainly used to 
monitor the power system. In real time, efforts across 
buses deviate from their stability limits, and can be 
adjusted within safe limits through optimal allocation of 
DG in the system, contributing to voltage profile 
optimization. The VD indicator in (11) should be 
minimal, because higher values indicate a greater 
deviation from the initial value: 

  inibini
n
b vvvVD  1max ,                 (11) 

where n is the total number of buses in the system; 
vini =1.05p.u. 

Constrains. The process of minimizing the 
objective function is constrained by equality constraints 
and inequality constraints. 

Equality constraints express the balance of real and 
reactive power of DG within the electrical system: 

   0lossDiGi PPP ;                 (12) 

   0lossDiGi QQQ ,                 (13) 

where PGi is the active power generated by traditional 
resources; PDi is the active power generated by DG units; 
Ploss is the active power losses in network; QGi is the 
reactive power injected by traditional resources; QDi is the 
reactive power injected by DG units; Qloss is the reactive 
power losses in network. 

Inequality constraints include setting the minimum 
and upper limits of DG capacity to ensure that permissible 
operational levels are not exceeded, in addition to 
restricting the locations of connecting generation units to 
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specific locations to the network to achieve the best 
technical and economic performance: 

maxmin
DGDGDG PPP  ;                      (14) 
maxmin
DGDGDG QQQ  ;                      (15) 

busposition nDG 2 ,                      (16) 

where PDG is the active power output of the DG unit; 
maxmin , DGDG PP  are the minimum and maximum limits of the 

DG’s active power; QDG is the reactive power of the DG unit; 
maxmin , DGDG QQ  are the minimum and maximum allowable 

reactive power; DGposition is the bus number where the DG is 
installed; nbus is the total number of buses in the network. 

Optimization algorithms. PSO is one of the 
popular algorithms used to solve multidimensional 
optimization problems. These algorithms mimic the 
behavior of flocks of birds and fish in search of food 
sources, where the positions of particles are updated 
based on their individual and collective experiences to 
arrive at optimal solutions. The presented models aim to 
compare the traditional algorithm with a dynamic hybrid 
version, which includes additional steps to improve the 
quality and speed of arriving at the optimal solution by 
introducing local search mechanisms and handling 
recessions. PSO algorithm and the improved or modified 
hybrid algorithm, called the hybrid-dynamic PSO 
algorithm, were used, where their parameters are 
dynamically adjusted as the algorithm progresses, in 
addition to introducing the concept of mutation to the 
results in case of stagnation to avoid the algorithm falling 
into the trap of local solutions. The choice of this 
particular algorithm among the rest of the optimization 
algorithms for the following reasons: 

1. The ability to process dynamic and non-convex 
equation. 

2. The ability to process large and complex data sets. 
3. The ability to explore initial search spaces 

effectively. 
4. The speed of convergence towards optimal solutions 

compared to other methods specially when deals with multi-
objectives that have overlap and conflict with each other. 

In PSO, the starting particles are distributed randomly 
across the available search space, and out of all these 
particles, the best solution is identified. The locations of the 
particles are updated in the next step based on the previous 
locations and velocity values, the entire swarm takes 
actions to improve the value of the objective function and 
achieve the optimization in the next steps. 

The best fitness (min, max) is determined to direct 
the rest of the particles towards this best solution. The 
velocity of the particle is updated according to the gap 
between his current position and the optimal position 
relative to all other particles (gbest), in the same manner, 
the position of the particle is constantly being updated by 
adding its current location to its movement. 

The position and velocity of the particle are 
determined according to the following equation: 

   k
ibest

k
ibesti

k
i

k
i sgrcsprcwvv 

2211
1 ;     (17) 

11   k
i

k
i

k
i vss ;                            (18) 

where vi
k is the velocity of particle i at iteration k; si

k is the 
position of particle i at iteration k; pbesti is the best position 

found by particle i (personal best); gbest is the best position 
found by the entire swarm (global best); w is the inertia 
weight – controls exploration vs. exploitation; c1, c2 are 
the acceleration coefficients (cognitive and social 
components); r1, r2 are the random numbers uniformly 
distributed in [0, 1]. 

The PSO algorithm depends on 3 basic steps that are 
performed during each iteration: 

1. Evaluating each solution using the objective 
function to calculate the fitness value. 

2. Updating the best position of the particle (pbest) and 
the best global position (gbest). 

3. Updating the particle’s velocity vi and its position si. 
These steps continue until stopping criteria are met, 

such as reaching a certain number of iterations or achieving 
a certain accuracy threshold. Despite its efficiency, 
traditional PSO suffers from some drawbacks when dealing 
with optimization problems, the most prominent of which 
is that it may stop at local maximum values (stuck in a local 
maximum), which reduces its ability to explore the entire 
search space. The parameters w, c1, c2 affect the 
performance of the algorithm, as tuning inappropriate values 
can lead to early convergence towards a non-optimal 
solution or divergence which prevents the algorithm from 
reaching an optimal solution. 

A number of attempts have been made to improve the 
PSO algorithm in order to find the most suitable control 
parameters. Numerous methods exist for the search of 
optimal parameters other than those with fixed values. The 
variable coefficient PSO or dynamic PSO with control 
parameters that decrease linearly is given in (19–21). The 
control parameters of PSO are: 

)( minmax
max

max ww
k

k
wwk  ;              (19) 

)( min1max1
max

max11 cc
k

k
cc k  ;            (20) 

)( min2max2
max

max22 cc
k

k
cc k  ,          (21) 

where wk is the inertia weight at iteration k; wmin is the 
final (minimum) inertia weight; wmax is the initial 
(maximum) inertia weight; k is the current iteration 
number; kmax is the total number of iterations; c1k is the 
cognitive component at iteration k; c2k is the social 
component at iteration k; c1max is the initial (maximum) 
cognitive value; c1min is the final (minimum) cognitive 
value; c2min is the initial (minimum) social value; c2max is 
the final (maximum) social value. 

Local search and mutation were used on the initial 
results of the PSO algorithm for the following reasons. 

1) Exploitation. PSO algorithm is good at 
exploration but may not be accurate in finding the local 
optimal solution. Local search comes to fine-tuning on the 
found solution. 

2) Accelerate-convergence. Instead of waiting for 
PSO to reach the optimal solution across many 
generations, local search can quickly improve good 
solutions in each or after a certain number of generations. 

3) Increase precision. Helps to exceed some PSO 
limits such as oscillating around gbest without further 
optimization, by optimizing locally around gbest or pbest. 
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4) Diversity. Mutation causes a random change in 
the location of some particles, preventing premature 
grouping of particles around imperfect solutions. 

5) Escape from local optima. If particles stop 
improving, the mutation gives a random push to each 
other to exit that area and explore new areas. 

6) Improved exploration. Especially in the later 
stages of PSO when particles begin to focus on a small 
area around the gbest. 

The method used to determine the best location and 
value for DG using the hybrid-dynamic PSO algorithm is 
as follows. 

Step 1 (Initialization). 
1. Number of iteration k. 
2. Number of particles n. 
3. Number of parameters per particle m. 
4. Limitation of space solution. 
5. Set the initial value of control set of PSO as shown 

in Table 1. 
6. Set the initial value of each particle randomly with 

in the limit of space solution. 
Step 2. Modify the load bus by the initial set of 

particles. 
Step 3. Run load flow and calculate APL, RPL, VD. 
Step 4. Searching for pbest and gbest. 
Step 5. Update the velocity, position and variable 

control set to generate new set of solution. 
Step 6. Evaluate the new solution. 
Step 7. Searching for pbest and gbest. 
Step 8. Apply local search. 
Step 9. Check if gbest is stagnant? If yes – apply 

mutation, if don’t – check no. of iteration if less or equal 
to no. of max. iteration. 

Step 10. Update the number of iterations. 
Step 11. If number of iterations less than or equal 

number of max iterations then go to step 5. 
Table 1 

PSO coefficients used in the simulation 
Parameter Value 

Number of particles n 50 
Number of iterations kmax 50–150
Number of parameters per particles m 2 
Cognitive component c1 0.5–2.5
Social component c2 0.5–2.5
Inertia weight w 0.4–0.9

 

The traditional PSO algorithm (Fig. 4,a) begins by 
initializing the basic parameters, including the inertia 
weight w, acceleration coefficients c1, c2, swarm size, 
number of iterations and number of variables. A set of 
solutions is then randomly generated within the search 
space. The validity of the solutions is then checked. If the 
condition is met, the network loads are adjusted, and the 
load flow is run to evaluate the validity of the solutions. 
This is followed by a search for the best local and global 
solutions (pbest and gbest) based on the calculated validity 
values. The positions and velocities of the particles are 
then updated to generate a new set of solutions. This cycle 
continues with the network loads being updated, solutions 
being evaluated, and the best solutions being updated, 
with the number of iterations gradually increasing until 
the maximum number of iterations is reached, at which 
point the algorithm terminates. 

 

Fig. 4. a – flow chart of 
traditional PSO algorithm; 
b – flow chart of hybrid-
dynamic PSO algorithm 

a

b
 

 

The hybrid-dynamic PSO algorithm (Fig. 4,b) follows 
similar steps to the traditional algorithm, starting with 
initializing the basic settings and generating a random set of 
solutions. After verifying that the solutions adhere to the 
permissible space limits, the network loads are adjusted, and 
the load flow is run to assess the validity. The best local and 
global solutions are searched according to the validity 
criteria. After updating the speed and location variables, an 
additional optimization step is applied, which involve 
applying a local search to improve the quality of the 
discovered solutions. If the global solution gbest stagnates 
and does not improve across iterations, a mutation is applied 
to break this stagnation and stimulate the search for better 
solutions. The system continues iterating, updating solutions 
and increasing the number of iterations until a specified 
maximum number is reached, at which point the algorithm 
terminates. This hybrid-dynamic approach contributes to 
accelerating convergence to the optimal solution and 
increasing the efficiency of the search process. 

Test system. Modified IEEE 33 bus distribution 
system was adopted to test the proposed method. Figure 5 
shows the single line diagram of the distribution system, 
at base load, the total active power is 3715 kW, the 
reactive power is 2300 kVAr. 

 
 

 
Fig. 5. Modified IEEE 33 bus test system 

 

Limitations. The study’s limitations refer to the 
specific aspects of its design or methodology that had an 
impact on or influenced the interpretation of the study’s 
conclusions. Below are limitations of this work: 
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1) Load flow method. By backward forward sweep 
because this method is suitable for distribution networks 
of radial nature. 

2) Operation mode. On grid operation mode. 
3) Network type. Modified IEEE 33 bus test system 

radial distribution network. 
4) Type of DG. Renewable energies that they have 

the ability to inject active power only. 
5) Number of DG. Single and multiple distribution 

generation units. 
6) Load type. Variable load and load model is 

constant power. 
7) System condition. Balanced 3 phase system. 
8) Optimization method. Metaheuristic method and 

the algorithm is hybrid dynamic PSO. 
9) Objective function: 

 minimize active power losses; 
 minimize voltage deviation at each bus; 
 maximize voltage stability. 

10) Decision variable. Optimal location and value of 
DG with unity power factor. 

Result and discussion. To validate the proposed 
approach and its effectiveness in the analysis and 
optimization methods presented, the study was applied to 
the modified IEEE 33 bus test system under different 
scenarios, including: 

 Base case. System operation without integration of 
any DG. 

 1st case. Integration of one DG unit at the optimal 
location within the network. 

 2nd case. Integration of 2 DG units at their optimal 
locations. 

 3rd case. Integration of 3 DG units at their optimal 
locations. 

IEEE 33 bus model with variable load demand was 
chosen as the base case for loss evaluation and power flow 
analysis without DG, and the analysis was done using 
backward/forward sweep. The total losses in active and 
reactive power among the studied cases are shown in Fig. 6, 
and Fig. 7 shows load demands during 24 hours. 

 

 P, kWh/day 
Q, kVArh/day 
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Fig. 6. Active and reactive power losses during 24 h 

in the 3 cases in addition to the basic case 
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Fig. 7. Active and reactive load demand during 24 h 

 

Initially with base case, energy losses for active and 
reactive power were measured at 7196.054 kWh/day and 
4887.774 kVArh/day, the minimum voltage value recorded 
for bus number 18 was 0.8459 p.u. In the 1st scenario, where 
a single DG unit was embedded, the optimal size of the unit 
was calculated to be 3079.71 kW at bus number 6, which 
caused total active and reactive energy losses to drop to 
3799.023 kWh/day and 2794.019 kVArh/day. In the next 
case, the system was embedded with 2 DG units, where 
2 units of 1056.946 kW and 1322.302 kW were placed at 
buses number 13 and 30, respectively. This led to active 
energy losses of 2980 kWh/day and reactive power losses of 
2050 kVArh/day. 

In case 3, where 3 DG units were considered, 957.925 kW, 
1262.393 kW and 1231.201 kW units were put in buses 14, 
24 and 30, respectively, which brought the total active 
losses down to 2506.591 kWh/day and the reactive losses 
down to 1750 kVArh/day. Figure 6 shows how the 
inclusion of several DG units into distribution systems 
provides greater improvements on the reduction of active 
and reactive losses than single generation unit systems. 

The changes within the average bus voltage for 
employing the optimal size and location of the DG in 
various scenarios with basic case is illustrated in Fig. 8. 
The application of the optimal distribution generator 
enhances the performance of all the bus voltages in terms 
of stability in comparison with the base case. 

Table 2 presents the statistical results of 100 running 
of proposed method for MOF along 24 h with 3 DG along 
with the corresponding minimum, maximum, mean and 
standard deviation values. Additionally, the success rate 
(SR) is reported, which indicates the percentage of runs 
that achieved a solution within 2 % of minimum objective 
function value among all running. 

The high effectiveness of the algorithm attributed to 
its inherent optimization capabilities and the adequacy of 
the selected number of particles and iterations in the PSO 
algorithm for consistently reaching the optimal solution. 

 

 

bus number 

V, p.u.

 

Table 2
The results of statistical 

analysis 
Statistical indices Result

Minimum 0.291
Maximum 0.310
Mean 0.291
Standard deviation 0.003
Success rate (SR) 0.96 

 

 

Fig. 8. Average voltage’s buses during 24h in the 3 cases in addition 
to the basic case 

 

The PSO algorithm was chosen and preferred over 
the rest of the algorithms based on previous studies that 
outweighed it over the rest of the algorithms for many 
reasons, including the ease of understanding its work and 
the simplicity of the way it is based on it, in addition to 
that it can be suitable for large and complex networks and 
speed of convergence to the optimal solution. 

Despite the many advantages of this algorithm, it 
can fall into the trap of local solutions. In this research, 
this study proposed to use a simple algebraic method to 
overcome this problem, which is the method of adjusting 
the algorithm parameters in a dynamic way so that it 
makes the algorithm strong in terms of exploration, 
exploitation and choosing the best global solution. 
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To ensure the effectiveness of the proposed method, 
a comparison was made between it and the regular PSO 
algorithm with fixed parameters in a statistical way. 

To increase competition between the 2 methods, a 
few particles were used repeats to combine 3 DG units to 
observe the difference between the 2 methods and which 
of them can get closer to the optimal solution in light of 
the small number of particles and iterations (Table 3). 

Table 3 
Statistical result comparison of PSO and hybrid-dynamic PSO 
Statistical indices PSO result Hybrid-dynamic PSO result 

Minimum 0.351 0.291 
Maximum 0.372 0.310 
Mean 0.362 0.291 
Standard deviation 0.012 0.003 
Success rate (SR) 0.18 0.96 

 

Figures 9, 10 show the convergence of the proposed 
hybrid-dynamic PSO algorithm, which is characterized by 
its ability to explore a good region of the search space in 
the early iterations, and quickly reach the optimal 
solution. Figures 9, 10 show a comparison between the 
performance of 2 algorithms for optimization of location 
and the optimal size of DG units in electrical distribution 
networks, based on the value of a MOF. 
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2 – Hybrid-dynamic PSO
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Fig. 9. The fluctuation of solutions across different executions 

 

Number of iterations 

Fitness value 1 – PSO 
2 – Hybrid-dynamic PSO
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Fig. 10. The convergence of the solution to the optimal value 

along to iterations 
 

By tracking objective function changes across a 
number of executions, the traditional PSO algorithm 
shows a continuous fluctuation in value, with results 
centered at relatively high levels (0.36), indicating poor 
stability and the likelihood of falling into local solutions 
without being able to improve them effectively. In 
contrast, the hybrid-dynamic PSO algorithm shows more 
stable performance, maintaining a relatively low value of 
the objective function (0.29) with a very limited number 
of sudden changes, indicating has a better ability to 
explore and converge towards the optimal solution. This 
superior performance demonstrates that the use of a 
hybrid-dynamic PSO algorithm contributes to improved 
search efficiency, reduced losses, and more reliable 
results in distribution network optimization applications. 

In Table 4 the proposed methodology is compared 
with other methodologies, that using PSO algorithm to 
find the optimal location and size for DG. Note that when 
using more than 1 DG in different locations, it leads to an 
improvement in the results, as the 2nd case required 
injecting less power than the 1st case, and this led to 
improvements over the 1st case in terms of reducing total 
losses and improving voltage deviation and stability. 

Table 4 
Summary of the results obtained by following the proposed methodology 

Number of DG No DG One DG 2 DG 3 DG 

Best location of DG – Bus 6 
Bus 13 
Bus 30 

Bus 14 
Bus 24 
Bus 30 

Best capacity of DG, kW – 3079.710@ Bus 6
1056.946@ Bus 13
1322.302@ Bus 30

957.925@ Bus 14 
1262.393@ Bus 24 
1231.201@ Bus 30 

Total capacity of DG, kW – 3079.710 2379.248 3451.519 
Active energy loss, kWh/day 7196.054 3799.023 2980 2506.591 
Active energy loss reduction, % – 0.472 0.586 0.652 
Reactive energy loss, kVArh/day 2792.894 2794.019 2050 1750 
Reactive energy loss reduction, % – 0.4.28 0.582 0.642 
Min voltage profile 0.8459 0.8959 0.9318 0.9337 
Min voltage profile at bus no. 18 18 18 18 
Min voltage profile at hour 9 9 9 9 
Max voltage profile 0.9970 0.9989 0.9985 0.9991 
Max voltage profile at bus no. 2 2 2 2 
Max voltage profile at hour 23 23 23 23 

*Note: the symbol «@» refers to the bus number that DG unit with right capacity should be connected to it 
 

The results show that the integration of DG units in 
the distribution network contributes significantly to 
improving the performance of the system in terms of 
reducing electrical losses and improving voltage profiles. 
When only 1 DG unit was added, the active losses (Ploss) 
during 24 h decreased from 7196.054 kWh/day to 
3799.023 kWh/day, achieving a reduction of 47.2 %. 

With the addition of 2 DG units, the Ploss during 24 h 
reduction rate improved to 58.6 %, while it reached 65.2 % 
when 3 DG units were used. As for reactive losses (Qloss) 
during 24 h also a clear improvement is recorded, 
decreasing by 42.8 % with 1 DG unit, rising to 58.2 % 
and 64.2 % with 2 and 3 DG units respectively. On the 
other hand, the addition of DG units led to a clear 
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improvement in the minimum voltage profile, with the 
lowest voltage rising from 0.8459 without DG units to 
0.8959 with 1 unit, and reaching 0.9318 and 0.9337 with 
2 and 3 units respectively, indicating enhanced voltage 
stability. Note that the lowest voltage value was fixed at 
bus 18 and 9AM, while the highest voltage value was 
achieved at bus 2 and 11PM across all scenarios. In 
addition, it is clear that increasing the number of DG units 
not only reduces overall losses, but also contributes to a 
more balanced load distribution across the network. With 
the use of a 1 DG unit, the entire power was concentrated 
in one location 3079.71 kW at bus 6, resulting in a 
significant improvement in performance, but the 
improvement was limited compared to multi-unit of DG. 
When 2 DG units were added, power injection capacities 
were distributed between bus 13 and bus 30, allowing for 
more effective reduction in losses, as losses were further 
reduced even though the total power injection capacity 
was less than the single capacity per unit. By integrating 
3 DG units distributed over buses 14, 24 and 30 achieve a 
more uniform distribution of generation power capacities, 
which is clearly reflected in the improvement of loss and 
voltage profile. This highlights the importance of the spatial 
distribution of DG units and the optimal capacity of each 
unit, as the multi-point injected reduces long electrical paths 
that cause greater losses, and enhances voltage stability 
across the grid. Therefore, the use of more than one DG unit 
with optimal locations and sizes provides a more 
improvement that exceeds the improvement of a single unit 
with a large capacity concentrated, which effectively 
contributes to raising the efficiency of the network. 

Future works. Dynamic planning requires 
consideration of a long time period to determine the 
optimal locations for DG. Other future work below: 

1. Island operation. It is recommended to develop 
models for intentional island operation with the 
integration of energy storage systems. 

2. Improving optimization algorithms. Improving the 
tuning of parameters of metaheuristic optimization algorithms 
such as PSO and GA to achieve greater efficiency. 

3. Achieving accuracy and computational efficiency. In 
order to improve the accuracy of convergence and 
computational efficiency, hybrid techniques should be 
further studied by combining analytical methods, 
optimization algorithms, and computational methods. 

Conclusions. This paper presents an effective 
method to optimize the allocation of DG units based on 
the variable daily load profile. The performance of this 
methodology was tested using the IEEE 33 Bus test 
system, where a set of scenarios covering different 
periods during the day were analyzed to study the effect 
of variable load on the selection of the best location and 
capacity for DG. 

The locations and sizes of DG units were determined 
based on the lowest values resulting from a MOF, which 
helped improve the overall performance of the network. 
The results showed the effectiveness of the proposed 
approach in reducing overall system losses along hourly 
loads demand, as well as improving voltage levels at buses. 

In this context, the hybrid-dynamic PSO algorithm 
was used to determine the optimal distribution of 
generating units. The results showed that this algorithm 
significantly reduced both active and reactive power 

losses compared to the traditional PSO algorithm. The 
hybrid algorithm also showed a higher ability to improve 
the lowest voltages in the grid. 

In addition, the analyses showed that a significant 
reduction in total active power losses across all scenarios 
studied when using the hybrid method, compared to the 
decrease achieved when using the traditional algorithm. 
The same applied to reactive power losses, where the 
hybrid method showed significantly better results. 

These results highlight the importance of the 
proposed approach based on the hybrid-dynamic PSO 
algorithm, especially in its ability to reduce losses and 
enhance voltage stability, making it a promising candidate 
for application in modern smart electricity grids that 
require flexibility and high dynamic response. 
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