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Takagi-Sugeno fuzzy model identification using improved multiswarm particle swarm
optimization in solar photovoltaics

Introduction. The particle swarm optimization (PSO) algorithm has proven effective across various domains due to its efficient search
space exploration, ease of implementation, and capability to handle high-dimensional problems. However, it is often prone to
premature convergence, which limits its performance. Problem. This issue becomes critical in identifying Takagi-Sugeno (T-S) fuzzy
models, especially in complex systems like solar photovoltaic (PV) applications, where model accuracy is vital for tasks such as
maximum power point tracking (MPPT) and shading compensation. Goal. This manuscript introduces an improved multiswarm PSO
(I-MsPSO), designed to enhance search performance and robustness in identifying T-S fuzzy systems. The method is particularly suited
to nonlinear modeling challenges in renewable energy systems. Methodology. I-MsPSO divides the swarm into 4 independent
subswarms, each operating in a local region with specific inertia weights and acceleration coefficients. Periodic information sharing
between subswarms allows the algorithm to converge collectively toward optimal solutions. A new modeling approach, specific
Takagi-Sugeno modeling (STaSuM), is introduced, using I-MsPSO to determine both the structure and parameters of T-S fuzzy
systems. Results. The I-MsPSO’s performance was tested on benchmark optimization problems and real-world engineering cases.
Results show that STaSuM produces highly accurate and generalizable fuzzy models, outperforming existing techniques. Scientific
novelty lies in the development of I-MsPSO, which enhances the traditional PSO by using 4 interactive subswarms with customized
parameters, and the creation of STaSuM for advanced T-S fuzzy system identification. Practical value. I-MsPSO and STaSuM provide
a powerful optimization and modeling framework, offering robust and accurate solutions for nonlinear and dynamic environments.
Their structure makes them especially valuable for future applications in MPPT control, fault-tolerant modeling, and real-time
optimization in PV energy systems. References 39, table 5, figures 8.
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Bcmyn. Aneopumm onmumizayii poio uacmox (PSO) 006is c60io eghexmusnicmp y pizHux 2any3sx 3a605Ku e@heKmusHOMY 00CTIONCEHHIO
npoOCMopy NOULYKY, Npocmomi peanizayii ma 30amHoCmi supiuysamu 3a60ants 8Uucokoi posmiprocmi. OOHAK GiH YACMO CXUTbHULL 00
nepeoyacnoi 30ixcnocmi, uwjo 0omedcye 1020 npodykmugHicmo. L npobaema cmae KpumuuHo 8adicaugoio npu ioenmugpixayii Heuimxux
mooeneii Taxaei-Cyzeno (T-S), ocobnuso y cknaduux cucmemax, maxux sk comsuni gpomoenexmpuuni cucmemu (PV), de mounicmo
MOOeni € KpUMUYHO 8AXNCIUBOIO OJisl MAKUX 3A60aHb, SIK GIOCMedCeHHs MouKu Makcumanvhoi nomyxcnocmi (MPPT) ma xomnencayis
saminenns. Mema. Y pobomi npeocmasnenuii yoockoumanenuii 6azamopocesuii PSO (I-MsPSO), pospobienuii 01s niosuwjenns
npooyKmugHocmi nowyky ma Haoivinocmi npu ioenmucpixayii newimxux cucmem T-S. Leii memoo ocobaugo nioxooums 0ns 3a0a4
HeniHiliH020 MOOen08anHs y cucmemax ionosmosanoi enepeii. Memooonozia. I-MsPSO Oinume piti na 4 nesanesicni noopoi, Koxcen 3
SAKUX NPAYIOE 8 JIOKAbHIL 001Iacmi 3 ne6HUMU 8azamu iHepyii ma Koegiyienmamu npuckopents Ilepioouunuti oomin ingpopmayicro miswe
NOOpOAMU O0360JA€ ANOPUMMY KOAEKIMUBHO CXOOUMUCS 00 ONMUMATbHUX piwens. HasedeHo Hosull nioxio 00 MOOento8amis,
cneyughiune mooenrosanna Taxaci-Cyeeno (STaSuM), 3 euxopucmanuam I-MsPSO Ona eusHauenHs cmpykmypu ma napamempie
neuimxux cucmem T-S. Pesynemamu. [Ipooykmugnicmo I-MsPSO npomecmosana na emanoHHUx 3a0auax onmumizayii ma peanbHux
iHotceHepHux npuxaadis. Pesymvmamu noxasyiomv, wo STaSuM cmeopioe 6ucokomouni ma y3azanibHeHi Hewimki Mooeni, ujo
nepesepuyoms ichyioui memoou. Haykoea noseuszna nonseac 6 pospooyi I-MsPSO, saxuil poswupioe mpaouyitinui PSO 3a paxyHok
BUKOPUCTNAHHA 4 THMEPAKMUBHUX NOOPOI8 3 NApamempamu, wo HACMpPorIomvcs, a makodc y cmeopenri STaSuM ona poswuperoi
ioenmudpixayii neyimxux cucmem T-S. Ipakmuuna yinnicms. I-MsPSO ma STaSuM nadarome nomysicHy niamgopmy onmumizayii ma
MOOeNI06anHs, NPONOUYIOuU HAdilii ma mouni piwenns Ona HemiHitinux ma Ouxamivnux cepedosuwy. Ixns cmpyxmypa pobums ix
0co0nU60 YiHHUMU OiA MauOymuix dooamxkis y eanysi ynpasninua MPPT, 6iomoocmitikoeo MoOentoeants ma onmumisayii  peanbHomy
uaci y PV enepeemuunux cucmemax. bion. 39, ta6n. 5, puc. 8.

Kniouosi cnosa: mnoxkpameHa oONTHUMIi3allis POl YacTOK 3 KUIBKOMa pOSIMHM, ONTHMI3alisg PO YacTok, cneuudiune
moaemoBanHs Takari-Cyreno.

Introduction. The Takagi-Sugeno (T-S) type fuzzy
model, used to model complex systems particularly in the
area of fuzzy logic and control systems, was first
introduced by Mamdani and Assilian [1]. It was later
enhanced by Takagi and Sugeno who developed the T-S
type model. In the new approach, fuzzy linguistic rules
were replaced by more precise mathematical rules.
Historically, a fuzzy model is described by a formalism
based on fuzzy rules, providing a prolific framework to
study nonlinear dynamic systems and, particularly, to
analyze their stability and synthesize laws control
(stabilization). From a conceptual point of view, a fuzzy
system is identified by determining the structure of the
model (the premise parameters) and estimating the
consequent parameters [2]. The first step is performed
employing identification methods based on coalescence or
even fuzzy classification (fuzzy clustering algorithms).
Fuzzy coalescence algorithms are also applied to identify
nonlinear systems using to the T-S model. In the
literature, numerous algorithms derived from the fuzzy c-
mean algorithm, such as the Gustafson-Kessel algorithm
[3], the fuzzy C-means algorithm [4], the Gath-Geva

algorithm [5], were proposed. After determining the
premise parameters of the model, the consequent
parameters of the fuzzy rules are estimated. Among the
identification techniques proposed in the literature we
cite: the graph kernel recursive least-squares algorithms
[6], weighted least squares method [7], the orthogonal
least squares algorithm [8]. Several works showed that
fuzzy coalescence algorithms derived from fuzzy c-means
are sensitive to initialization. In fact, random initialization
can generally lead to convergence towards a local
minimum of the objective function. The problem of
synthesizing fuzzy systems was treated by many
researchers, as an optimization problem, whose resolution
is reduced to the search for the optimal solutions (fuzzy
models), in order to satisfy the performance criteria and
the predefined constraints. In recent years, researchers
have used several algorithms to optimize the structures
and parameters of the T-S model. For instance, particle
swarm optimization (PSO) has been utilized in many
applications [9, 10] given the small number of parameters
to adjust, its easy implementation, rapid convergence and
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its ability to produce high-quality solutions within a
shorter calculation time. The combination of T-S fuzzy
systems and PSO algorithms offers a powerful and
flexible approach to solve a wide range of optimization
problems. By exploiting the strengths of each technique,
this approach allows developing more accurate, robust
and interpretable models. However, the PSO is easily
trapped in a local minimum and it is difficult to guarantee
that the fuzzy models obtained will have good
performance and the optimized fuzzy model largely
depends on the performance of this algorithm.

To deal with these weaknesses, numerous improved
versions of PSO and several hybrid methods were
suggested [11-13]. In [14], the PSO algorithm was
implemented to optimize the 5 parameters of PID
controller applying El-Khazali’s approach in order to
minimize several error functions, satisfying some step
response specifications such as the set of time domain and
frequency domain constraints. In [15], the population was
divided into many small swarms, different grouping
strategies were used and the exchange between various
small swarms improved the population diversity. Work
[16] proposed a dynamic multiple swarms to solve
multiobjective problems applying 2 main strategies: the
swarm growth strategy and the swarm decay strategy.
Besides, in [17] a methodology to automatically extract
fuzzy T-S models from data using PSO was developed. In
their approach, the parameters and the structures of fuzzy
models were encoded in a particle and evolved together to
obtain simultaneously the optimal structure and
parameters. A new method, where the population was
divided into 4 subswarms and heterogeneous search
strategies were used to accomplish the optimization task,
was applied in [18]. In this method a new strategy was
applied under the so-called OptiFel to extract the structure
and parameters of the T-S model. In the multiswarm PSO
(MsPSO) algorithm used a homogeneous search strategy
for all particles and in each subswarm, which reduced the
convergence rate. In [19] authors suggested a novel
cooperation strategy C-MsPSO based on the distribution
of populations into 4 subswarms; each of which used
inertia weight parameters and specific acceleration
coefficients. This strategy allowed minimizing the risk of
trapping the algorithm by the local optima.

In this article, an optimization algorithm, called
improved multiswarm particle swarm optimization
(I-MsPSO), is introduced to identify fuzzy T-S type
models. In I-MsPSO, the population is divided into
4 subswarms; each of which ensures the internal search
strategy relying on inertia weight parameters and specific
acceleration coefficients. A new parameter search strategy
applied by the fuzzy system T-S, called specific Takagi-
Sugeno modeling (STaSuM), is also presented with the
I-MsPSO algorithm to improve the search performance
and ensure that the resulting fuzzy models will be highly
efficient. The main contributions of this paper are:

e dividing the population into 4 subcooperative
swarms in I-MsPSO algorithm.

e In this algorithm, each subswarm utilizes specific
parameters (the subswarm S1 employs sigmoid inertia
weights and constant acceleration coefficients, while
subswarm S2 uses linear varying inertia weights and
constant acceleration coefficients and subswarm S3
employs adaptive inertia weights and the coefficient of
the constant accelerations).

e Determining the structure and parameters of the
fuzzy models, coded in a particle, in STaSuM.

Preliminaries. = Optimization problem. An
optimization problem is defined by an objective function,
a set of variables, a set of equality (or inequality)
constraints and a search space formed by the set of the
possible problem solutions where each dimension
corresponds to a variable. Depending on the type of the
problem to be solved, the best solution consists in finding
an extreme value, also called extremum (i.e. the minimum
or maximum of this objective function). In fact, an
optimization problem corresponds to solving the
following problem: min/max (function) under the
constraint [20, 21]. It can be mono-objective or
multiobjective (several objective functions must be
optimized), static or dynamic (the objective function
changes over time) and with or without constraints. In the
literature many methods, such as Newton’s method [22],
linear programming methods [23], the simplex method
and the gradient method [24] were introduced to obtain
the optimal solution of the optimization problem in a
reasonable time. They require that the objective function
should have a minimum of characteristics such as
convexity, continuity or differentiability.

PSO algorithm. PSO is a non-specific heuristic
optimization algorithm like evolutionary algorithms, tabu
search or ant colonies [25-27]. Its convergence speed also
makes it efficiently used in dynamic optimization. Due to
its multiple advantages, such as a rapid convergence, ease
of implementation and wide search range, PSO has been
employed in a variety of research fields and applications.
The swarm’s particles are initially dispersed randomly
over the search space, where each particle has a random
displacement position and speed. Thereafter, the
algorithm can, at each instance, access its current
position; memorize the best solution; communicate with
neighboring particles; obtain, from each of them, its best
performance; and modify its speed according to better
solutions. The displacement of a particle between iteration
t and iteration #+1 is formulated analytically by the
following velocity (1) and position relations (2):

vi(t+1) = wvi®) + c1r1[Xppess — XD T Cora[Xgpes — X4D)]; (1)
x(t+1) =xi(1) + vit+1), @)
where X,p. is the best position determined by the it
particle; w is a constant called the inertia weight; ¢y, ¢, are
the acceleration coefficients while », and r, are randomly
generated by a uniform distribution in [0, 1]; Xgy is the
best overall position found by the population.

Thus, to make its next move, each particle applies

the following steps:
o follow its speed;
e return to its best performance;
e move towards the best performance of its neighbor.

T-S fuzzy model. Although several fuzzy models
were introduced in the literature and the most commonly
used ones are: Mamdani type model, Takagi-Sugeno-
Kong type model and T-S type model. The main
difference between these models lies in their consequent
part. In fact, a fuzzy model is based on the linguistic
partitioning of the values of its variables. The input
(premises variables) and output (consequent variables)
values are described by fuzzy sets having membership
functions. In the fuzzy model of the T-S, the premises of
the rules are formulated symbolically and the conclusions
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are expressed by linear functions [28, 29]. They are
generally written in the following form:

R’ :if x; is A}, x5 is A}, ..., x,, is A then 3

y; = WiTx+b,~, i=12,...m
where x = xj, X3, ... , X, is the input variable; n is the
dimension of the input variable x; i = 1, 2, ..., m is the
number of fuzzy rules; w = wy, w,, ... , w, are the
consequent parameters; A4, is the fuzzy set; y; is the output
of fuzzy rule.

The output of the fuzzy model can be calculated by a

weighted mean defuzzification, as shown below:

m m
=2 myi | D s “4)
i=1 i=1
where the weight strength z; of the /" rule is computed as:
n
() =[] ha(). (%)
j=1

where the g4(x) is the grade of membership function.
Subsequently, the c; and o parameters of the Gaussian
function specified by (6) and the parameters of the fuzzy rule
of T-S model are calculated applying the fuzzy rule (3):
((sz ~<; oy ) ©)
Improved multiswarm particle swarm
optimization (I-MsPSO). General concept of the
improved multiswarm particle swarm optimization.
I-MsPSO algorithm divides the population into 4
subswarms to address the issue of premature convergence
and to ensure proper exploration and exploitation of the
research processes, which improves its capacity for search,
communication and cooperation between subswarms.
Every subswarm executes a single PSO, including updating
speed and position of the particles, in accordance with the
exact equations. In this study, a unique algorithm that relies
on 4 subswarms and several techniques of inertia weights
and acceleration coefficients is implemented to enhance the
exploration and exploitation performance of the standard
MsPSO. I-MsPSO algorithm is based on constant
accelerations coefficients values, time-varying inertia
weight, sigmoid inertia weight and adaptwe inertia weight
value (Fig. 1). Additionally, the i™ particle in subswarm S3
is adjusted based on the fitness values and Velocmes of the
partlcles in the base subswarms. Meanwhile, the i™ particle
in subswarm S4 updates its velocity in accordance with the
velocities of the particles in subswarms S1, S2 and S3.
Figure 2 describes the mechanism of exploring the new
region. [-MsPSO algorithm enhances PSO by dividing the
population into 4 subswarms, each with specific inertia
weights and acceleration coefficients, and by implementing
periodic information exchange among the subswarms.

By (x) = exp

C2=Cl=cst

W : Linear Velocity

Fitness

G best 1

C2=Cl=cst
W : Adaptive

€2=Cl=cst
W : Sigmoid

Fig. 1. Communication model in I-MsPSO
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Fig. 2. The cooperative evolutionary process in I-MsPSO

I-MsPSO algorithm can be summarized as follows:

Algorithm 1. Pseudo-code for I-MsPSO algorithm

Begin.

Initialize the particle size of each subswarm.

Initialize the positions and velocities of all particles in the
search space.

Initialize the global best position of each swarm.

Find the best local position (Py) in each subswarm and the
best global position (Gupes)-

Do in parallel until the maximum number iteration reached.
Calculate the velocity of each particle in subswarm S1, S2,
S3 and S4.

Update the position of each particle in subswarm S1, S2, S3
and S4.

Evaluate the fitness of the i particle.

Update the global best of the swarms.

If the guide condition is satisfied.

Apply diversity guided convergence strategy to the current
particle in each subswarm.

End Do.

Return the best solution of the algorithm.

End.

Convergence of the I-MsPSO. The particle paths, the
convergence of [-MsPSO algorithm and the particle velocity
of each subswarm are theoretically investigated. According
to the following limit, convergence is defined as:

lim x;(¢)=p;, (7
t—+0

where p; is the local or global optimum; x; is the location
of the /" particle at time . If I-MsPSO is applied with the
adaptive inertia weight, the sigmoid inertia weight and the
linear varying inertia weight, the velocity and the position
update their equations using (1) and (2). Therefore, the
following I-MsPSO system is obtained:

x(t+1) = F-x(f) + R-E, ®)
where R is the constant matrix; F is the system matrix:
3 .4 1 2 3
x(1) = [xt»xt SX7 5 X s X X5 X7 ] ©)

and

E=[pW,p@,p® p® g7 (10)

designates the vector containing 4 local solutions and a
single global solution. The used symbols are listed below:

Qr=viitvip =0t

Py =Vy TV =+, (11
@3 =V31tV3p =731+ 6ol
where r; is the random number in [0; 1]; j = 1; 2 and

i = 1; 2; 3. The equation applied to obtain the position of
a particle in S1 is:
O — @M

t+1 =% TV

Dy — ) - w, X,( )1 +v i) +vpg, s (12)

where wy is the sigmoid inertia weight:
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W, = O.9~numlt.er —0.5: , (13)
numiter
where numiter is the maximum number of the iterations;
i is the current iteration.
The equation used to calculate the position of a

particle in S2 is:

) _ (2,2 _. 2 2
A3 =P v =52 1w, =) = wxZ) vy o) +vpg, (14)

where w, is the adaptive inertia weight:

|
Wa(i):Wmax +(Wmax _Wmin)' T , (15)
e +1
where x; = (Zpess — 1) / (Qpesr T 1); Winin» Winax are the initial and
the final values of inertia weight; i is the current iteration.
In the subswarm S3, the equation applied to obtain
the position of the particles is:

3 _ 3 {Lm Y @3

X=X +w v =y Y [+
t+1 t L t+1 t+1 t
72 } (16)

3 3
+V31[Pz( ) —x?]+v32[gz _xz( )l

where w; is the linear varying inertia weight represented
by the following equation; y = y+»; 5, J» are the fitness
values of the particles in the subswarm S1 and S2. As r,
and r,, r; and 7, are vectors of the random numbers.

wr (i) = ( ](Wmin ~ Wmax )+ Wmax - (17)

The equation employed to compute the location of a
particle in S4 is:

4 4
x((pzn = x| )

numiter —1

numiter

+ayp? vasg vy (18)

In this study, 3 impact factors (a;—a;) are used to
determine the influence of the past information on the
current position of the particles within subswarm S4. They
are constrained by this expression a; + a, + a3 = 1. In the
performed analysis, the following values were assigned to
the impact factors: a; = 1/6, a, = 1/3, a3 = 1/2. The bigger
o; (i =1, 2, 3) was the larger the effect of the previous
information on the current search would be, and vice versa.
The larger effect of the previous information on the current
search will be, and vice versa. As shown in (18), the
different impact factors regulate the effect of the historical
data on the particle’s location within S4.

In a convergence analysis, researchers observed that
particles within each subswarm converge towards stable
positions defined by the limits presented in (19) — (22):

. c c
lim x® = —lp(l) +—2gbm s (19)
t—>+0 2
. 2 C 2 C
lim x® =—1p( ) +—2gbest s (20)
t—>+00 2 2

tim x® =we,(p0 + p®)+ L p® 4 gy Quwey +2), 21)
t—+o0 2 2

lim @ = dZWea 0, @y a0,

{—>+00 2

(22)
C
+ar P+ gpes (1-2w)ey =L+ 3).

Methodology of STaSuM based on I-MsPSO.
A new parameter search strategy applied by the fuzzy
system T-S, called STaSuM, is also presented with the
I-MsPSO algorithm to improve the search performance.

STaSuM framework for T-S fuzzy model identification is
presented in this section. The structure and parameters of
T-S fuzzy model are all encoded in a particle. The
following sections provide the details.

Particle mapping and objective function. In the
identification process, the structure and parameters of the
fuzzy model were all coded in a particle of the I-MsPSO
algorithm, and the mean square error (MSE) value was used
to choose the best local position in a swarm and the global
optimum in a population. A single nest in the I-MsPSO
algorithm is shown in Fig. 3. Each particle is specified as a
vector corresponding to a particular fuzzy model and each
vector corresponds to a fuzzy rule made up of the premise
parameters (structure) and the consequent parameters.

Rule i
|

Structure parameters

& >
&
<€ > €

ctl ¢c?| .- |cN|gin| .. | Oin
Fig. 3. i" rule encoded in a particle. The code consists
of 2 necessary items: structure and consequent parameters

To create an accurate mathematical model, an
objective function was applied to measure the difference
between the output of the model and that of the actual
process. MSE was utilized to measure the difference
between the output of the model and the real value.
MSE was mathematically formulated as:

1 .
MSE=—3 0 (e =3e)*

where N is the number of observations; y; is the actual
output; y; is the output estimated by the model.

Implementation of STaSuM. Algorithm 2
describes the implementation of STaSuM. The rules of
the T-S fuzzy model were encoded in the particle x* and
the MSE value was utilized to select the best solution in
the subswarm. The best overall structure was obtained
from the 4 optimal g, in the subswarms s = 1, 2, 3, 4.
Algorithm 2. The STaSuM algorithm
1. Initialization.

(a) Set the number of iterations and rules s.
(b) Specify the size of each subswarm.

(c) Initialize the position of particle.

(d) Initialize the position of particle.

(e) Determine the global best nest g.

2. Set the number of rules as constant.

3. Termination check.

(a) If the termination criterion holds stop.

(b) Else go to Step 4.

4. For do.

(a) Update the position x;’ according to
Equations 12, 14, 16, 18, respectively.

(b) Update the velocity v;* according to Equation 1.
(c) Evaluate the fitness of the i particle f{x;)
(d) If the f(x;’) is better than f{p;’), then p;’= s,
End For

Update gbest = arg{minf{p;,} }.

End For

Update gbest = arg{minf{g.} }-.

Sett=1¢+1

5. Go to step 3.

(23)
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Simulation result and discussion. This section is
composed of 2 parts. In the initial part, the performance of
the I-MsPSO algorithm is evaluated through numerical
experiments using benchmark functions and engineering
problems. On the other hand, the subsequent part shows
the effectiveness of the STaSuM method applied in
nonlinear systems.

Convergence analysis of I-MsPSQO. To validate the
performance and efficiency of the proposed algorithm,
12 benchmark functions from the CEC-2017 test set were
selected to test the I-MsPSO algorithm [30]. The upper
limit for optimization processes was set at 1000, and each
test run a maximum of 30 times. The experimental
machine in use is equipped with a 3rd generation i3
processor running at 2.5 GHz with a storage capacity of
128 GB. The utilized programming language is
MATLAB. The maximum number of iterations in the
numerical experiences was set at 1000 on each of the 12
reference functions for each algorithm. Each experiment
was carried out independently of the reference functions.
The mean values and standard deviations are presented in
Table 1. Figures 4-6 show the average convergence
characteristics of each approach on the reference
functions. A comparison of the proposed algorithm to
common strategies is presented in this section. The
performances of different strategies, including adaptive
MsPSO (AMsPSO), linear time-varying (L-MsPSO) and
standard MsPSO, were analyzed in the experiments
carried out on 12 static problems.

Table 1
The results on the 12 benchmark functions of each algorithm
Function F1 F2
L-MsPSO | 4.97-10'%+9.90- 102! | 4.26:10%+1.24-10°°
A-MsPSO | 5.23-10"3+523.10° | 2.94.107°+2.40-107*
MsPSO | 4.01-10'%+7.80-10"% | 3.82-10°*+6.18-10™*
I-MsPSO | 2.83-10'%+2.52.10"% | 7.14-10°%+6.12-10""
Function F3 F4
L-MsPSO | 2.97-10'°+922.10"® | 3.02.10%°+8.21.10°%°
A-MsPSO | 1.60-107"°%1.60-107% | 1.121-107°+1.21-107
MsPSO | 9.30-10'%+2.92.10"'™ | 7.37.10°°+2.24.10
I-MsPSO | 1.03-10"7%+1.051-10"7® | 1.33-10**+1.01-10*
Function F5 F6
L-MsPSO | 2.89-10°+2.71-10 0
A-MsPSO | 2.89-10°+2.00-10 0
MsPSO | 2.89-10°+3.60-10% 0
I-MsPSO 2.89-10"+ 0 0
Function F7 F8
L-MsPSO | 1.001-10%'+3.966-10%" | 3.995.10%+7.59-10"*
A-MsPSO | 1.401-10%'+3.966-10%" | 5.601-10°+8.00-10*
MsPSO | 1.451-10%'+3.966-10%" | 3.005-10%°+8.78-10*
I-MsPSO | 1.321-10%+3.966-10%" | 4.99.10*+8.111-10*
Function F9 F10
L-MsPSO 0 4.665-10+8.52-10%
A-MsPSO 0 4.665-10+8.52-10%
MsPSO 0 4.665-10+8.52-10%
I-MsPSO 0 4.665-10*+£8.52-10%
Function F11 F12
L-MsPSO 0 3.65-10%+8.3.10*
A-MsPSO 0 4.65-10%+7.52.10°*
MsPSO 0 4.115-10%£7.51-10%
I-MsPSO 0 3.52.10°+8.114-104

Function: F1 Function: F2
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The mean values and the standard deviation
throughout the optimization runs are shown in Table 1.
On the other hand, Fig. 4-6 outline the average
convergence characteristics to each approach on the
reference functions. Figures 4-6 demonstrate that
[-MsPSO performs better than the other PSO variants on
the benchmark functions. As exposed in Fig. 4-6
[-MsPSO reaches the target optima in the majority of
benchmark functions (Table 1). The results obtained by
I-MsPSO are superior to those of the other PSO versions
on each benchmark function, with the exception of the
Function F8 and F11.

Application of I-MsPSO to engineering problems.
This part examines the I-MsPSO’s effectiveness by
extending its application to solve real-world engineering
optimization problems. Specifically, the next section delves
into the optimization of the tension/compression spring,
while the after section summarizes the findings provided by
pressure vessel design. The performance of I-MsPSO is,
then, benchmarked against those of the existing algorithms
such as PSO [31], genetic algorithm (GA) [32], velocity
pausing particle swarm optimization (VPPSO) [33] and
grey wolf optimizer (GWO) [34].

Tension/compression spring design (TCSD). TCSD
problem is a classic engineering problem whose primary
objective consists in minimizing the spring’s weight. This
optimization task requires finding the lightest possible
spring while meeting specific design constraints, including
limitations on shear stress, surge frequency and deflection.
It ultimately translates into a minimization problem where
the weight of the spring is minimized while adhering to all
boundary and constraints conditions. The design variables
include the wire diameter d(X;), the mean coil diameter
h(X3), and the number of turns of the spring P(X;). The
following subsection outlines the objective functions and
the constraints associated with these three optimization
variables. Consider:

X= [dn h9 P] = [X13X29 X3] (24)
Minimize:
F(x)=X{ Xy (X5+2). (25)
Subject to:
X3X
g(X)=1-——22-<0; (26)
71785X
2
4X3 - X\ X 1
2 (X)= A S-1<0; (27)
12566 (X7 X, - X{') 5108X]
140.45X
g(x)=1-—5—1<0; (28)
2X3
X +X
24(x) =11—52s 0. (29)

Variable range: 0.05<X1<2, 0.25<X,<1.3, 2<X5<15.

Table 2 illustrates the statistical results of the TCSD
problem. Each algorithm was independently run 50 times,
the maximum number of iterations and the population size
were set to 1000 and 30, respectively. Overall, the -MsPSO
algorithm ranks first since it explores a solution to make the
spring weight smaller for the TCSD problem. VPPSO offer
similar solution, ranking second.

Table 2
Optimal solutions of tension/ compression spring design
problem optimized by different algorithms

Algorithm d H p Value
GA 0.0598 | 0,3521 11,5980 0,032
GWO 0.0513 | 0.3474 11.8763 0.0127
PSO 0,0500 | 0,3104 14,998 0,0131
VPPSO 0.0525 | 0.3756 10.2659 0.0127
I-MsPSO 0.0516 0.356 11.3186 0.01266

Pressure vessel design (PVD). Pressure vessels
typically comprise a cylindrical shell and 2 hemispherical
heads, fabricated through the welding processes. The
design objective is to minimize the overall cost, encompass
material acquisition, form operations, and weld expenses.
This optimization problem involves 4 design variables:
cylinder wall thickness FE (X;), the thickness of the
spherical cover E,(X3), cylinder inner diameter D(X3), and
cylinder length L(X;). A description of the objective
functions and constraints relevant to these 3 optimization
variables is presented. Consider:

X=[Es Ep, D, L] = [X1, X, X5, Xg]. (30)
Minimize:
F(x)=0.6224X, XX, +1.7781X, X3 + a1
+3.1661.X2 X, +19.84 X7 X5,
Subject to:
21(X)=—-X,+0.0193X; <0 ; (32)
2>(X)=-X, +0.00954X; <0; (33)

4
g3(X)=—IIX3X, —511)(33 +1296000<0; (34)

g4(X)=X,-240<0. (35)

Variable range:
X1,X, €{1:0.0625,2-0.0625,...,99-0.0625} ,
10< X5 and X4 <200 .

Table 3 presents the best solutions of all algorithms.
It is evident that I-MsPSO achieved the best result.

Table 3

Optimal solutions of PVD problem optimized by different
algorithms

Algorithm | X X, X3 X, Optimal cost
GA 0.810 | 0.436 | 42.096 | 176.655| 6059.945
GWO 0.812 [0.4375| 42.098 | 176.636| 6059.719
PSO 0.875 [0.4375| 45.288 | 140.743 | 6096.830
VPPSO |0.8125|0.4375]|42.0979 | 176.646 | 6059.850
I-MsPSO | 0.8125 | 0.4375 | 42.0973 | 176.654 | 6059.714

Application of STaSuM to Box-Jenkins gas

furnace data. Due to its non-linear nature, the Box-
Jenkins system [29] has become widely adopted to
validate the performance of the recently developed
modeling methods. The used dataset contained 296 paired
input-output observations (y(¢), u(f)) for a gas furnace
process, where ¢ ranged from 1 to 296. At each sampling
time ¢, u(f) is the input gas flow rate and y(¢) is the output
CO, concentration. The simulation was conducted to
predict y(f) based on (), ¥(t,), u(t,), u(ty). The first 148
input-output data were employed as training data and the
final 148 were utilized as testing data in order to validate
the efficiency of the suggested method. The population
size in the 4 subswarms was set to 6, the number of rules
was 3, the number of iterations was 50, the acceleration
coefficients were set according to the equations and the
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inertia weight was chosen as shown in (13), (15), (17). In
prediction case, compared to the A-MsPSO algorithm and
other algorithms mentioned in Table 4 the I-MsPSO
algorithm had the best performance index of 0.104.
Table 4
Identification results obtained by the different methods
on the Box-Jenkins system

rules, which guarantees better quality of approximation. The
results show that the proposed model has more powerful
generalization ability with a good accuracy in modeling the
system of the Box-Jenkins gas furnace dataset.
Table 5
Prediction results provided the different methods
on the Box-Jenkins system

Figure 7 shows the STaSuM model’s prediction, the
actual outputs and the errors between them for the training
set of data. The other 148 data points were used to validate
the generalization performance of the obtained fuzzy mode
— Fig. 8 reveals the test results. Their respective related
MSEs are 0.057 and 0.145.

60 -CO, concentration, %
g
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Fig. 7. Modeling with 296 pairs of observations: a — the real
output and the output of the fuzzy model; b — the estimation error
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Table 5 presents a comparison with various models and
demonstrates that our method’s generalization ability
outperforms that reported in the literature. Therefore, it can be
noticed that the real output and the estimated output were
within a negligible error. These results were justified by
observing the values of the MSE performance index given in
Table 5. The latter reveals that the performance indices
obtained by the developed model during the identification and
validation phase are the best, compared to those provided by
other models mentioned in this table, even in the case of
reduced number of input variables and minimized number of

Reference | Number of inputs Number of rules | MSE Reference | Number of rules | MSE identification | MSE validation
[35] 6 - 0.202 [36] 3 0.059 0.152
[36] 2 3 0.110 [37] 6 0.022 0.236
[37] 2 4 0.148 [39] 3 0.0159 0.126
[38] 2 2 0.161 [18] 3 0.058 0.146
[18] 2 3 0.106 I-MsPSO 3 0.057 0.145
I-MsPSO 2 3 0.104 Conclusions. In this paper, improved multiswarm

particle swarm optimization (I-MsPSO) algorithm was used
to optimize and estimate the parameters of Takagi-Sugeno
(T-S) fuzzy systems. In the proposed specific Takagi-Sugeno
modeling (STaSuM), the structure and the parameters of T-S
fuzzy model were encoded into a nest vector to find the
optimal solution simultaneously. The main advantage of
STaSuM is that it can keep the inner-correlation between the
system structure and the parameters, and more highly-
accurate model than the traditional 2-stage identification
process method. I-MsPSO divided the population into
4 subswarms; each of which utilized a search strategy
independent of the other. The exchange of information
between the 4 subswarms allowed -collecting useful
messages from the subswarms, maintaining particle diversity
and improving the search capability. The best personal
interactive learning strategy increased the convergence
speed. The experimental results on 12 benchmark functions
proved that the proposed algorithm had good comprehensive
performance in the optimization of unimodal and multimodal
functions and kept a good balance between exploration and
exploitation. Additionally, the developed method was
applied to estimate blur T-S system models using a fuzzy
model STaSuM. The obtained finding showed experimental
results proved that the suggested method can produce robust,
reliable and effective fuzzy T-S models. The obtained
finding showed experimental results proved that the
suggested method can produce robust, reliable and effective
fuzzy T-S models. In our upcoming work, we will: apply
I-MsPSO to solve real industry problems; use I-MsPSO in
solar PV; analyze the influence of different levels of noise on
the accuracy of this algorithm.
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