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Introduction. The particle swarm optimization (PSO) algorithm has proven effective across various domains due to its efficient search 
space exploration, ease of implementation, and capability to handle high-dimensional problems. However, it is often prone to 
premature convergence, which limits its performance. Problem. This issue becomes critical in identifying Takagi-Sugeno (T-S) fuzzy 
models, especially in complex systems like solar photovoltaic (PV) applications, where model accuracy is vital for tasks such as 
maximum power point tracking (MPPT) and shading compensation. Goal. This manuscript introduces an improved multiswarm PSO 
(I-MsPSO), designed to enhance search performance and robustness in identifying T-S fuzzy systems. The method is particularly suited 
to nonlinear modeling challenges in renewable energy systems. Methodology. I-MsPSO divides the swarm into 4 independent 
subswarms, each operating in a local region with specific inertia weights and acceleration coefficients. Periodic information sharing 
between subswarms allows the algorithm to converge collectively toward optimal solutions. A new modeling approach, specific 
Takagi-Sugeno modeling (STaSuM), is introduced, using I-MsPSO to determine both the structure and parameters of T-S fuzzy 
systems. Results. The I-MsPSO’s performance was tested on benchmark optimization problems and real-world engineering cases. 
Results show that STaSuM produces highly accurate and generalizable fuzzy models, outperforming existing techniques. Scientific 
novelty lies in the development of I-MsPSO, which enhances the traditional PSO by using 4 interactive subswarms with customized 
parameters, and the creation of STaSuM for advanced T-S fuzzy system identification. Practical value. I-MsPSO and STaSuM provide 
a powerful optimization and modeling framework, offering robust and accurate solutions for nonlinear and dynamic environments. 
Their structure makes them especially valuable for future applications in MPPT control, fault-tolerant modeling, and real-time 
optimization in PV energy systems. References 39, table 5, figures 8. 
Key words: improved multiswarm particle swarm optimization, particle swarm optimization, specific Takagi-Sugeno modeling. 
 
Вступ. Алгоритм оптимізації рою часток (PSO) довів свою ефективність у різних галузях завдяки ефективному дослідженню 
простору пошуку, простоті реалізації та здатності вирішувати завдання високої розмірності. Однак він часто схильний до 
передчасної збіжності, що обмежує його продуктивність. Ця проблема стає критично важливою при ідентифікації нечітких 
моделей Такагі-Сугено (T-S), особливо у складних системах, таких як сонячні фотоелектричні системи (PV), де точність 
моделі є критично важливою для таких завдань, як відстеження точки максимальної потужності (MPPT) та компенсація 
затінення. Мета. У роботі представлений удосконалений багатороєвий PSO (I-MsPSO), розроблений для підвищення 
продуктивності пошуку та надійності при ідентифікації нечітких систем T-S. Цей метод особливо підходить для задач 
нелінійного моделювання у системах відновлюваної енергії. Методологія. I-MsPSO ділить рій на 4 незалежні подрої, кожен з 
яких працює в локальній області з певними вагами інерції та коефіцієнтами прискорення Періодичний обмін інформацією між 
подроями дозволяє алгоритму колективно сходитися до оптимальних рішень. Наведено новий підхід до моделювання, 
специфічне моделювання Такагі-Сугено (STaSuM), з використанням I-MsPSO для визначення структури та параметрів 
нечітких систем T-S. Результати. Продуктивність I-MsPSO протестована на еталонних задачах оптимізації та реальних 
інженерних прикладів. Результати показують, що STaSuM створює високоточні та узагальнені нечіткі моделі, що 
перевершують існуючі методи. Наукова новизна полягає в розробці I-MsPSO, який розширює традиційний PSO за рахунок 
використання 4 інтерактивних подроїв з параметрами, що настроюються, а також у створенні STaSuM для розширеної 
ідентифікації нечітких систем T-S. Практична цінність. I-MsPSO та STaSuM надають потужну платформу оптимізації та 
моделювання, пропонуючи надійні та точні рішення для нелінійних та динамічних середовищ. Їхня структура робить їх 
особливо цінними для майбутніх додатків у галузі управління MPPT, відмовостійкого моделювання та оптимізації в реальному 
часі у PV енергетичних системах. Бібл. 39, табл. 5, рис. 8. 
Ключові слова: покращена оптимізація рою часток з кількома роями, оптимізація рою часток, специфічне 
моделювання Такагі-Сугено. 
 

Introduction. The Takagi-Sugeno (T-S) type fuzzy 
model, used to model complex systems particularly in the 
area of fuzzy logic and control systems, was first 
introduced by Mamdani and Assilian [1]. It was later 
enhanced by Takagi and Sugeno who developed the T-S 
type model. In the new approach, fuzzy linguistic rules 
were replaced by more precise mathematical rules. 
Historically, a fuzzy model is described by a formalism 
based on fuzzy rules, providing a prolific framework to 
study nonlinear dynamic systems and, particularly, to 
analyze their stability and synthesize laws control 
(stabilization). From a conceptual point of view, a fuzzy 
system is identified by determining the structure of the 
model (the premise parameters) and estimating the 
consequent parameters [2]. The first step is performed 
employing identification methods based on coalescence or 
even fuzzy classification (fuzzy clustering algorithms). 
Fuzzy coalescence algorithms are also applied to identify 
nonlinear systems using to the T-S model. In the 
literature, numerous algorithms derived from the fuzzy c-
mean algorithm, such as the Gustafson-Kessel algorithm 
[3], the fuzzy C-means algorithm [4], the Gath-Geva 

algorithm [5], were proposed. After determining the 
premise parameters of the model, the consequent 
parameters of the fuzzy rules are estimated. Among the 
identification techniques proposed in the literature we 
cite: the graph kernel recursive least-squares algorithms 
[6], weighted least squares method [7], the orthogonal 
least squares algorithm [8]. Several works showed that 
fuzzy coalescence algorithms derived from fuzzy c-means 
are sensitive to initialization. In fact, random initialization 
can generally lead to convergence towards a local 
minimum of the objective function. The problem of 
synthesizing fuzzy systems was treated by many 
researchers, as an optimization problem, whose resolution 
is reduced to the search for the optimal solutions (fuzzy 
models), in order to satisfy the performance criteria and 
the predefined constraints. In recent years, researchers 
have used several algorithms to optimize the structures 
and parameters of the T-S model. For instance, particle 
swarm optimization (PSO) has been utilized in many 
applications [9, 10] given the small number of parameters 
to adjust, its easy implementation, rapid convergence and 
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its ability to produce high-quality solutions within a 
shorter calculation time. The combination of T-S fuzzy 
systems and PSO algorithms offers a powerful and 
flexible approach to solve a wide range of optimization 
problems. By exploiting the strengths of each technique, 
this approach allows developing more accurate, robust 
and interpretable models. However, the PSO is easily 
trapped in a local minimum and it is difficult to guarantee 
that the fuzzy models obtained will have good 
performance and the optimized fuzzy model largely 
depends on the performance of this algorithm.  

To deal with these weaknesses, numerous improved 
versions of PSO and several hybrid methods were 
suggested [11–13]. In [14], the PSO algorithm was 
implemented to optimize the 5 parameters of PID 
controller applying El-Khazali’s approach in order to 
minimize several error functions, satisfying some step 
response specifications such as the set of time domain and 
frequency domain constraints. In [15], the population was 
divided into many small swarms, different grouping 
strategies were used and the exchange between various 
small swarms improved the population diversity. Work 
[16] proposed a dynamic multiple swarms to solve 
multiobjective problems applying 2 main strategies: the 
swarm growth strategy and the swarm decay strategy. 
Besides, in [17] a methodology to automatically extract 
fuzzy T-S models from data using PSO was developed. In 
their approach, the parameters and the structures of fuzzy 
models were encoded in a particle and evolved together to 
obtain simultaneously the optimal structure and 
parameters. A new method, where the population was 
divided into 4 subswarms and heterogeneous search 
strategies were used to accomplish the optimization task, 
was applied in [18]. In this method a new strategy was 
applied under the so-called OptiFel to extract the structure 
and parameters of the T-S model. In the multiswarm PSO 
(MsPSO) algorithm used a homogeneous search strategy 
for all particles and in each subswarm, which reduced the 
convergence rate. In [19] authors suggested a novel 
cooperation strategy C-MsPSO based on the distribution 
of populations into 4 subswarms; each of which used 
inertia weight parameters and specific acceleration 
coefficients. This strategy allowed minimizing the risk of 
trapping the algorithm by the local optima.  

In this article, an optimization algorithm, called 
improved multiswarm particle swarm optimization  
(I-MsPSO), is introduced to identify fuzzy T-S type 
models. In I-MsPSO, the population is divided into 
4 subswarms; each of which ensures the internal search 
strategy relying on inertia weight parameters and specific 
acceleration coefficients. A new parameter search strategy 
applied by the fuzzy system T-S, called specific Takagi-
Sugeno modeling (STaSuM), is also presented with the 
I-MsPSO algorithm to improve the search performance 
and ensure that the resulting fuzzy models will be highly 
efficient. The main contributions of this paper are: 

 dividing the population into 4 subcooperative 
swarms in I-MsPSO algorithm. 

 In this algorithm, each subswarm utilizes specific 
parameters (the subswarm S1 employs sigmoid inertia 
weights and constant acceleration coefficients, while 
subswarm S2 uses linear varying inertia weights and 
constant acceleration coefficients and subswarm S3 
employs adaptive inertia weights and the coefficient of 
the constant accelerations). 

 Determining the structure and parameters of the 
fuzzy models, coded in a particle, in STaSuM. 

Preliminaries. Optimization problem. An 
optimization problem is defined by an objective function, 
a set of variables, a set of equality (or inequality) 
constraints and a search space formed by the set of the 
possible problem solutions where each dimension 
corresponds to a variable. Depending on the type of the 
problem to be solved, the best solution consists in finding 
an extreme value, also called extremum (i.e. the minimum 
or maximum of this objective function). In fact, an 
optimization problem corresponds to solving the 
following problem: min/max (function) under the 
constraint [20, 21]. It can be mono-objective or 
multiobjective (several objective functions must be 
optimized), static or dynamic (the objective function 
changes over time) and with or without constraints. In the 
literature many methods, such as Newton’s method [22], 
linear programming methods [23], the simplex method 
and the gradient method [24] were introduced to obtain 
the optimal solution of the optimization problem in a 
reasonable time. They require that the objective function 
should have a minimum of characteristics such as 
convexity, continuity or differentiability. 

PSO algorithm. PSO is a non-specific heuristic 
optimization algorithm like evolutionary algorithms, tabu 
search or ant colonies [25–27]. Its convergence speed also 
makes it efficiently used in dynamic optimization. Due to 
its multiple advantages, such as a rapid convergence, ease 
of implementation and wide search range, PSO has been 
employed in a variety of research fields and applications. 
The swarm’s particles are initially dispersed randomly 
over the search space, where each particle has a random 
displacement position and speed. Thereafter, the 
algorithm can, at each instance, access its current 
position; memorize the best solution; communicate with 
neighboring particles; obtain, from each of them, its best 
performance; and modify its speed according to better 
solutions. The displacement of a particle between iteration 
t and iteration t+1 is formulated analytically by the 
following velocity (1) and position relations (2): 

vi(t+1) = wvi(t) + c1r1[xpbest – xi(t)]+ c2r2[xgbest – xi(t)];  (1) 
xi(t+1) = xi(t) + vi(t+1),                        (2) 

where xpbest is the best position determined by the ith 
particle; w is a constant called the inertia weight; c1, c2 are 
the acceleration coefficients while r1 and r2 are randomly 
generated by a uniform distribution in [0, 1]; xgbest is the 
best overall position found by the population. 

Thus, to make its next move, each particle applies 
the following steps: 

 follow its speed; 
 return to its best performance; 
 move towards the best performance of its neighbor. 

T-S fuzzy model. Although several fuzzy models 
were introduced in the literature and the most commonly 
used ones are: Mamdani type model, Takagi-Sugeno-
Kong type model and T-S type model. The main 
difference between these models lies in their consequent 
part. In fact, a fuzzy model is based on the linguistic 
partitioning of the values of its variables. The input 
(premises variables) and output (consequent variables) 
values are described by fuzzy sets having membership 
functions. In the fuzzy model of the T-S, the premises of 
the rules are formulated symbolically and the conclusions 
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are expressed by linear functions [28, 29]. They are 
generally written in the following form: 
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where x = x1, x2, ... , xn is the input variable; n is the 
dimension of the input variable x; i = 1, 2, …, m is the 
number of fuzzy rules; w = w1, w2, ... , wn are the 
consequent parameters; Ai is the fuzzy set; yi is the output 
of fuzzy rule. 

The output of the fuzzy model can be calculated by a 
weighted mean defuzzification, as shown below: 
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where the weight strength i of the ith rule is computed as: 
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where the i(x) is the grade of membership function. 
Subsequently, the cij and ij parameters of the Gaussian 
function specified by (6) and the parameters of the fuzzy rule 
of T-S model are calculated applying the fuzzy rule (3): 

  ijijii cxxh 2exp)(  .                   (6) 

Improved multiswarm particle swarm 
optimization (I-MsPSO). General concept of the 
improved multiswarm particle swarm optimization. 
I-MsPSO algorithm divides the population into 4 
subswarms to address the issue of premature convergence 
and to ensure proper exploration and exploitation of the 
research processes, which improves its capacity for search, 
communication and cooperation between subswarms. 
Every subswarm executes a single PSO, including updating 
speed and position of the particles, in accordance with the 
exact equations. In this study, a unique algorithm that relies 
on 4 subswarms and several techniques of inertia weights 
and acceleration coefficients is implemented to enhance the 
exploration and exploitation performance of the standard 
MsPSO. I-MsPSO algorithm is based on constant 
accelerations coefficients values, time-varying inertia 
weight, sigmoid inertia weight and adaptive inertia weight 
value (Fig. 1). Additionally, the ith particle in subswarm S3 
is adjusted based on the fitness values and velocities of the 
particles in the base subswarms. Meanwhile, the ith particle 
in subswarm S4 updates its velocity in accordance with the 
velocities of the particles in subswarms S1, S2 and S3. 
Figure 2 describes the mechanism of exploring the new 
region. I-MsPSO algorithm enhances PSO by dividing the 
population into 4 subswarms, each with specific inertia 
weights and acceleration coefficients, and by implementing 
periodic information exchange among the subswarms. 

 

 
Fig. 1. Communication model in I-MsPSO 

 
Fig. 2. The cooperative evolutionary process in I-MsPSO 

 

I-MsPSO algorithm can be summarized as follows: 
Algorithm 1. Pseudo-code for I-MsPSO algorithm 
Begin. 
Initialize the particle size of each subswarm. 
Initialize the positions and velocities of all particles in the 
search space. 
Initialize the global best position of each swarm. 
Find the best local position (Pbest) in each subswarm and the 
best global position (Gbest). 
Do in parallel until the maximum number iteration reached. 
Calculate the velocity of each particle in subswarm S1, S2, 
S3 and S4. 
Update the position of each particle in subswarm S1, S2, S3 
and S4.  
Evaluate the fitness of the ith particle. 
Update the global best of the swarms. 
If the guide condition is satisfied. 
Apply diversity guided convergence strategy to the current 
particle in each subswarm. 
End Do. 
Return the best solution of the algorithm. 
End. 

 

Convergence of the I-MsPSO. The particle paths, the 
convergence of I-MsPSO algorithm and the particle velocity 
of each subswarm are theoretically investigated. According 
to the following limit, convergence is defined as: 
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t
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where pi is the local or global optimum; xi is the location 
of the ith particle at time t. If I-MsPSO is applied with the 
adaptive inertia weight, the sigmoid inertia weight and the 
linear varying inertia weight, the velocity and the position 
update their equations using (1) and (2). Therefore, the 
following I-MsPSO system is obtained: 

x(t+1) = Fx(t) + RE,                   (8) 
where R is the constant matrix; F is the system matrix: 
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designates the vector containing 4 local solutions and a 
single global solution. The used symbols are listed below: 













32231132313

22221122212

12211112111

rcrcvv

rcrcvv

rcrcvv





,              (11) 

where rij is the random number in [0; 1]; j = 1; 2 and 
i = 1; 2; 3. The equation applied to obtain the position of 
a particle in S1 is: 

tttsstttt gvpvxwwxvxx 22
)1(

11
)1(
11

)1()1(
1

)1()1(
1 )1(    , (12) 

where ws is the sigmoid inertia weight: 
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where numiter is the maximum number of the iterations; 
i is the current iteration. 

The equation used to calculate the position of a 
particle in S2 is: 
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where wa is the adaptive inertia weight: 
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where xi = (gbest – i) / (gbest + i); wmin, wmax are the initial and 
the final values of inertia weight; i is the current iteration. 

In the subswarm S3, the equation applied to obtain 
the position of the particles is: 
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where wL is the linear varying inertia weight represented 
by the following equation;  = 1+2; 1, 2 are the fitness 
values of the particles in the subswarm S1 and S2. As r1 
and r2, r3 and r4 are vectors of the random numbers. 
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The equation employed to compute the location of a 
particle in S4 is: 
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In this study, 3 impact factors (α1–α3) are used to 
determine the influence of the past information on the 
current position of the particles within subswarm S4. They 
are constrained by this expression α1 + α2 + α3 = 1. In the 
performed analysis, the following values were assigned to 
the impact factors: α1 = 1/6, α2 = 1/3, α3 = 1/2. The bigger 
αi (i = 1, 2, 3) was the larger the effect of the previous 
information on the current search would be, and vice versa. 
The larger effect of the previous information on the current 
search will be, and vice versa. As shown in (18), the 
different impact factors regulate the effect of the historical 
data on the particle’s location within S4. 

In a convergence analysis, researchers observed that 
particles within each subswarm converge towards stable 
positions defined by the limits presented in (19) – (22): 
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Methodology of STaSuM based on I-MsPSO. 
A new parameter search strategy applied by the fuzzy 
system T-S, called STaSuM, is also presented with the 
I-MsPSO algorithm to improve the search performance. 

STaSuM framework for T-S fuzzy model identification is 
presented in this section. The structure and parameters of 
T-S fuzzy model are all encoded in a particle. The 
following sections provide the details. 

Particle mapping and objective function. In the 
identification process, the structure and parameters of the 
fuzzy model were all coded in a particle of the I-MsPSO 
algorithm, and the mean square error (MSE) value was used 
to choose the best local position in a swarm and the global 
optimum in a population. A single nest in the I-MsPSO 
algorithm is shown in Fig. 3. Each particle is specified as a 
vector corresponding to a particular fuzzy model and each 
vector corresponds to a fuzzy rule made up of the premise 
parameters (structure) and the consequent parameters. 

 

 
Fig. 3. ith rule encoded in a particle. The code consists 

of 2 necessary items: structure and consequent parameters 
 

To create an accurate mathematical model, an 
objective function was applied to measure the difference 
between the output of the model and that of the actual 
process. MSE was utilized to measure the difference 
between the output of the model and the real value. 
MSE was mathematically formulated as: 
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where N is the number of observations; yk is the actual 
output; kŷ  is the output estimated by the model. 

Implementation of STaSuM. Algorithm 2 
describes the implementation of STaSuM. The rules of 
the T-S fuzzy model were encoded in the particle xs and 
the MSE value was utilized to select the best solution in 
the subswarm. The best overall structure was obtained 
from the 4 optimal gbest in the subswarms s = 1, 2, 3, 4. 

Algorithm 2. The STaSuM algorithm 
1. Initialization. 
(a) Set the number of iterations and rules s. 
(b) Specify the size of each subswarm. 
(c) Initialize the position of particle. 
(d) Initialize the position of particle. 
(e) Determine the global best nest g. 
2. Set the number of rules as constant. 
3. Termination check. 
(a) If the termination criterion holds stop. 
(b) Else go to Step 4. 
4. For do. 
(a) Update the position xk

s according to 
Equations 12, 14, 16, 18, respectively. 
(b) Update the velocity vk

s

 
according to Equation 1.

(c) Evaluate the fitness of the ith
 particle f(xk

s) 
(d) If the f(xk

s) is better than
 
f(pk

s), then pk
s= sk

s 
End For 
Update gbest = arg{minf{pbest}}. 
End For 
Update gbest = arg{minf{gbest}}. 
Set t = t + 1 
5. Go to step 3. 
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Simulation result and discussion. This section is 
composed of 2 parts. In the initial part, the performance of 
the I-MsPSO algorithm is evaluated through numerical 
experiments using benchmark functions and engineering 
problems. On the other hand, the subsequent part shows 
the effectiveness of the STaSuM method applied in 
nonlinear systems. 

Convergence analysis of I-MsPSO. To validate the 
performance and efficiency of the proposed algorithm, 
12 benchmark functions from the CEC-2017 test set were 
selected to test the I-MsPSO algorithm [30]. The upper 
limit for optimization processes was set at 1000, and each 
test run a maximum of 30 times. The experimental 
machine in use is equipped with a 3rd generation i3 
processor running at 2.5 GHz with a storage capacity of 
128 GB. The utilized programming language is 
MATLAB. The maximum number of iterations in the 
numerical experiences was set at 1000 on each of the 12 
reference functions for each algorithm. Each experiment 
was carried out independently of the reference functions. 
The mean values and standard deviations are presented in 
Table 1. Figures 4–6 show the average convergence 
characteristics of each approach on the reference 
functions. A comparison of the proposed algorithm to 
common strategies is presented in this section. The 
performances of different strategies, including adaptive 
MsPSO (AMsPSO), linear time-varying (L-MsPSO) and 
standard MsPSO, were analyzed in the experiments 
carried out on 12 static problems. 

 

Table 1 
The results on the 12 benchmark functions of each algorithm 

Function F1 F2 
L-MsPSO 4.9710-121 ±9.90 10-121 4.2610-60±1.2410-59 
A-MsPSO 5.2310-153 ± 5.2310-150 2.9410-79±2.4010-74 

MsPSO 4.0110-108± 7.8010-108 3.8210-54±6.1810-54 

I-MsPSO 2.8310-186± 2.5210-183 7.1410-92±6.1210-91 
Function F3 F4 
L-MsPSO 2.9710-119± 9.2210-118 3.02.10-60±8.2110-60 

A-MsPSO 1.6010–150±1.6010–149 1.12110-76±1.2110-73 

MsPSO 9.3010-105±2.9210-104 7.3710-53±2.2410-52 

I-MsPSO 1.0310-178±1.05110-178 1.3310-94±1.0110-93 

Function F5 F6 
L-MsPSO 2.8910-01±2.7110-01 0 
A-MsPSO 2.8910-01± 2.0010-01 0 

MsPSO 2.8910-01± 3.6010-02 0 
I-MsPSO 2.8910-01± 0 0 
Function F7 F8 
L-MsPSO 1.00110-81±3.96610-81 3.99510-43±7.5910-43 

A-MsPSO 1.40110-81±3.96610-81 5.60110-43±8.0010-43 

MsPSO 1.45110-81±3.96610-81 3.00510-43±8.7810-43 

I-MsPSO 1.32110-81±3.96610-81 4.9910-43±8.11110-44 

Function F9 F10 
L-MsPSO 0 4.66510-43±8.5210-43 

A-MsPSO 0 4.66510-43±8.5210-43 

MsPSO 0 4.66510-43±8.5210-43 

I-MsPSO 0 4.66510-43±8.5210-43 

Function F11 F12 
L-MsPSO 0 3.6510-43±8.310-44 

A-MsPSO 0 4.6510-40±7.5210-44 

MsPSO 0 4.11510-43±7.5110-44 

I-MsPSO 0 3.5210-43±8.11410-42 

 

 
Fig. 4. Convergence characteristics on 4 reference functions 

(F1–F4) with 30 dimensions 
 

 
Fig. 5. Convergence characteristics on 4 reference functions 

(F5–F8) with 30 dimensions 
 

 
Fig. 6. Convergence characteristics on 4 reference functions (F9–F12) 
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The mean values and the standard deviation 
throughout the optimization runs are shown in Table 1. 
On the other hand, Fig. 4–6 outline the average 
convergence characteristics to each approach on the 
reference functions. Figures 4–6 demonstrate that 
I-MsPSO performs better than the other PSO variants on 
the benchmark functions. As exposed in Fig. 4–6 
I-MsPSO reaches the target optima in the majority of 
benchmark functions (Table 1). The results obtained by 
I-MsPSO are superior to those of the other PSO versions 
on each benchmark function, with the exception of the 
Function F8 and F11. 

Application of I-MsPSO to engineering problems. 
This part examines the I-MsPSO’s effectiveness by 
extending its application to solve real-world engineering 
optimization problems. Specifically, the next section delves 
into the optimization of the tension/compression spring, 
while the after section summarizes the findings provided by 
pressure vessel design. The performance of I-MsPSO is, 
then, benchmarked against those of the existing algorithms 
such as PSO [31], genetic algorithm (GA) [32], velocity 
pausing particle swarm optimization (VPPSO) [33] and 
grey wolf optimizer (GWO) [34]. 

Tension/compression spring design (TCSD). TCSD 
problem is a classic engineering problem whose primary 
objective consists in minimizing the spring’s weight. This 
optimization task requires finding the lightest possible 
spring while meeting specific design constraints, including 
limitations on shear stress, surge frequency and deflection. 
It ultimately translates into a minimization problem where 
the weight of the spring is minimized while adhering to all 
boundary and constraints conditions. The design variables 
include the wire diameter d(X1), the mean coil diameter 
h(X2), and the number of turns of the spring P(X3). The 
following subsection outlines the objective functions and 
the constraints associated with these three optimization 
variables. Consider: 

X = [d, h, P] = [X1, X2, X3].             (24) 
Minimize: 
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Variable range: 0.05X12, 0.25X21.3, 2X315. 
Table 2 illustrates the statistical results of the TCSD 

problem. Each algorithm was independently run 50 times, 
the maximum number of iterations and the population size 
were set to 1000 and 30, respectively. Overall, the I-MsPSO 
algorithm ranks first since it explores a solution to make the 
spring weight smaller for the TCSD problem. VPPSO offer 
similar solution, ranking second. 

Table 2 
Optimal solutions of tension/ compression spring design 

problem optimized by different algorithms 
Algorithm d H p Value 

GA 0.0598 0,3521 11,5980 0,032 
GWO 0.0513 0.3474 11.8763 0.0127 
PSO 0,0500 0,3104 14,998 0,0131 

VPPSO 0.0525 0.3756 10.2659 0.0127 
I-MsPSO 0.0516 0.356 11.3186 0.01266 

 

Pressure vessel design (PVD). Pressure vessels 
typically comprise a cylindrical shell and 2 hemispherical 
heads, fabricated through the welding processes. The 
design objective is to minimize the overall cost, encompass 
material acquisition, form operations, and weld expenses. 
This optimization problem involves 4 design variables: 
cylinder wall thickness Es(X1), the thickness of the 
spherical cover Eh(X2), cylinder inner diameter D(X3), and 
cylinder length L(X4). A description of the objective 
functions and constraints relevant to these 3 optimization 
variables is presented. Consider: 

X = [Es, Eh, D, L] = [X1, X2, X3, X4].        (30) 
Minimize: 
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Variable range: 
}0625.099,...,0625.02,0625.01{, 21 XX , 

310 X  and 2004 X . 

Table 3 presents the best solutions of all algorithms. 
It is evident that I-MsPSO achieved the best result. 

Table 3 
Optimal solutions of PVD problem optimized by different 

algorithms 
Algorithm X1 X2 X3 X4 Optimal cost

GA 0.810 0.436 42.096 176.655 6059.945 
GWO 0.812 0.4375 42.098 176.636 6059.719 
PSO 0.875 0.4375 45.288 140.743 6096.830 

VPPSO 0.8125 0.4375 42.0979 176.646 6059.850 
I-MsPSO 0.8125 0.4375 42.0973 176.654 6059.714 

Application of STaSuM to Box-Jenkins gas 
furnace data. Due to its non-linear nature, the Box-
Jenkins system [29] has become widely adopted to 
validate the performance of the recently developed 
modeling methods. The used dataset contained 296 paired 
input-output observations (y(t), u(t)) for a gas furnace 
process, where t ranged from 1 to 296. At each sampling 
time t, u(t) is the input gas flow rate and y(t) is the output 
CO2 concentration. The simulation was conducted to 
predict y(t) based on y(t1), y(t2), u(t1), u(t2). The first 148 
input-output data were employed as training data and the 
final 148 were utilized as testing data in order to validate 
the efficiency of the suggested method. The population 
size in the 4 subswarms was set to 6, the number of rules 
was 3, the number of iterations was 50, the acceleration 
coefficients were set according to the equations and the 
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inertia weight was chosen as shown in (13), (15), (17). In 
prediction case, compared to the A-MsPSO algorithm and 
other algorithms mentioned in Table 4 the I-MsPSO 
algorithm had the best performance index of 0.104. 

Table 4 
Identification results obtained by the different methods 

on the Box-Jenkins system 
Reference Number of inputs Number of rules MSE 

[35] 6 – 0.202
[36] 2 3 0.110
[37] 2 4 0.148
[38] 2 2 0.161
[18] 2 3 0.106

I-MsPSO 2 3 0.104
 

Figure 7 shows the STaSuM model’s prediction, the 
actual outputs and the errors between them for the training 
set of data. The other 148 data points were used to validate 
the generalization performance of the obtained fuzzy mode 
– Fig. 8 reveals the test results. Their respective related 
MSEs are 0.057 and 0.145.  

 

Sampling (t)

a

Sampling (t)

b

CO2 concentration, % 

Error, % 

 
Fig. 7. Modeling with 296 pairs of observations: a – the real 

output and the output of the fuzzy model; b – the estimation error 
 

 

Sampling (t)

a

Sampling (t)

b

CO2 concentration, % 

Error, % 

 
Fig. 8. Testing with 148 pairs of observations: a – the real output 

and the output of the fuzzy model; b – the estimation error 
 

Table 5 presents a comparison with various models and 
demonstrates that our method’s generalization ability 
outperforms that reported in the literature. Therefore, it can be 
noticed that the real output and the estimated output were 
within a negligible error. These results were justified by 
observing the values of the MSE performance index given in 
Table 5. The latter reveals that the performance indices 
obtained by the developed model during the identification and 
validation phase are the best, compared to those provided by 
other models mentioned in this table, even in the case of 
reduced number of input variables and minimized number of 

rules, which guarantees better quality of approximation. The 
results show that the proposed model has more powerful 
generalization ability with a good accuracy in modeling the 
system of the Box-Jenkins gas furnace dataset. 

Table 5 
Prediction results provided the different methods 

on the Box-Jenkins system 
Reference Number of rules MSE identification MSE validation

[36] 3 0.059 0.152 
[37] 6 0.022 0.236 
[39] 3 0.0159 0.126 
[18] 3 0.058 0.146 

I-MsPSO 3 0.057 0.145 
 

Conclusions. In this paper, improved multiswarm 
particle swarm optimization (I-MsPSO) algorithm was used 
to optimize and estimate the parameters of Takagi-Sugeno 
(T-S) fuzzy systems. In the proposed specific Takagi-Sugeno 
modeling (STaSuM), the structure and the parameters of T-S 
fuzzy model were encoded into a nest vector to find the 
optimal solution simultaneously. The main advantage of 
STaSuM is that it can keep the inner-correlation between the 
system structure and the parameters, and more highly-
accurate model than the traditional 2-stage identification 
process method. I-MsPSO divided the population into 
4 subswarms; each of which utilized a search strategy 
independent of the other. The exchange of information 
between the 4 subswarms allowed collecting useful 
messages from the subswarms, maintaining particle diversity 
and improving the search capability. The best personal 
interactive learning strategy increased the convergence 
speed. The experimental results on 12 benchmark functions 
proved that the proposed algorithm had good comprehensive 
performance in the optimization of unimodal and multimodal 
functions and kept a good balance between exploration and 
exploitation. Additionally, the developed method was 
applied to estimate blur T-S system models using a fuzzy 
model STaSuM. The obtained finding showed experimental 
results proved that the suggested method can produce robust, 
reliable and effective fuzzy T-S models. The obtained 
finding showed experimental results proved that the 
suggested method can produce robust, reliable and effective 
fuzzy T-S models. In our upcoming work, we will: apply 
I-MsPSO to solve real industry problems; use I-MsPSO in 
solar PV; analyze the influence of different levels of noise on 
the accuracy of this algorithm. 
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