UDC 621.3
V.T.K. Nhi, B.T. Quy, H.H.B. Nghia, L.V. Dai

https://doi.org/10.20998/2074-272X.2025.6.09

A robust hybrid control strategy for enhancing torque stability and performance in PMSM drives

Introduction. Recently, permanent magnet synchronous motors (PMSMs) have become essential in various high-performance
applications, including electric vehicles and renewable energy systems. However, traditional control methods, such as PI controllers,
often struggle to handle dynamic operating conditions and external disturbances, resulting in torque ripple and stability issues. Problem.
The main issue with existing control strategies is their inability to maintain accurate torque control and system stability under
Sfluctuating loads and varying motor parameters, which negatively impacts performance in real-world applications. Goal. This paper
proposes a robust hybrid control strategy that integrates sliding mode control (SMC) with proportional resonant control (PRC),
enhanced by Luenberger and Kalman observers. The goal is to improve torque stability, reduce errors, and optimize performance in
PMSM drive systems. Methodology. The proposed method combines SMC and PRC to form an SMC-PRC controller, with Luenberger
and Kalman observers integrated for effective load torque estimation. Results. The simulation experiments were carried out to compare
the effectiveness of the proposed control strategy with that of traditional PI controllers. The results revealed that the SMC-PRC
approach offers a notable improvement in overall control performance, including reduced tracking error, enhanced dynamic response,
and better stability. Furthermore, the proposed method achieved faster settling times and maintained robust operation under varying
system conditions. Scientific novelty. This work introduces a hybrid control approach that combines SMC and PRC with advanced state
estimation techniques, providing a robust and efficient solution to PMSM control. Practical value. The proposed method is highly
beneficial for applications under dynamic operating conditions, such as electric vehicles and renewable energy systems, improving
system efficiency and stability. References 40, tables 7, figures 10.

Key words: permanent magnet synchronous motor, sliding mode control, proportional resonant control, integral absolute
error, integral time absolute error, integral square error, Luenberger observer, Kalman filter.

Bcemyn. Ocmanniv wacom cunxponui OeueyHu 3 nocmitiHumu macvimamu (PMSM) cmanu Hegio 'emHol0 yacmunowo pisHux
BUCOKONPOOYKMUBHUX 3ACTNOCYBAHb, GKIIOUAIOYU eleKmpomobini ma cucmemu 6i0HO806aHOI enepeii. OOnax mpaouyiini memoou
ynpasninua, maki ax Il-pecynamopu, uacmo e cnpagiaiomsvCsa 3 OUHAMIYHUMU POOOUUMU YMOBAMU A 306HIUHIMU 30YPEHHAMU, WO
npu3B00Ums 00 NyIbCayill KPymHo2o MomMeHmy ma npoonem 3i cmabinoHicmio. OCHOBHOIO BPOOIEMOIO ICHYIOUUX MemOOi8 YNPAGTIHHA €
ix Hez0amHicmv NIOMpUMY8amu Mo4He YNPAGIIHHA KPYMHUM MOMEHMOM | CIMIUKICMb CUCeMU NpU KOIUBAHHAX HAGAHMAJICEHHS |
napamempax 08USYHA, WO 3MIHIOIOMbCA, WO He2amUeHO 6NIUSAE HA NPOOYKMUSHICMb 6 peanbhux cumyayiax. Mema. Y yiti cmammi
NPONOHYEMbCA HAOIUHA 2IOpUOHA cmpame2is YNPAGIiHHA, WO NOEOHYE YNpagninHa KoesHum pescumom (SMC) 3 nponopyiiino-
pezonanchum ynpasninuam (PRC), yoockonanena 3a donomoeoio cnocmepicayie Jlioenbepeepa ma Kanmana. Mema nonscac 6 momy,
Woob nidsuwumu cmabitbHiCMe KPYMHO20 MOMEHIMY, 3MEHWUMU NOXUOKY | ONMUMizyeamu npoOyKmueHicms cucmem npueody PMSM.
Memooonozia. Ilpononosanuii memoo o06’eonye SMC ma PRC ona ¢hopmysanus peeyismopa SMC-PRC, 3 inmezposanumu
cnocmepieavamu Jloenbepeepa ma Kammana 015 oyinku epexmugnozo Kpymuozo Mmomenmy Haganmadicenns. Pezynomamu.
Ilposederno imimayitini  excnepumenmu  NOpIGHAHHA e@eKmMUSHOCII  3anpoONnOHO8AHOI cmpamezii YNPAGIiHHA 3  eqeKMUGHICIO
mpaduyitinux Ill-pecynamopis. Pesyromamu noxazanu, wo nioxio SMC-PRC 3abesneuye nomimue NOKpAWEHHS 3A2ATbHUX
Xapakmepucmux ynpaeninHa, 6KIIOHAIOYYU 3HUNCEHHS NOXUOKU CMEdCeHHs, NOKPAWeHHs OUHAMIYHO20 GIiO2YKYy ma NiOuujeHHs
cmitikocmi. Kpim moeco, npononosanuii memoo 3abesneuye Oinbul WEUOKUL YAC GCMAHOGNCHH I CMIUKY pobomy npu ymosax
@ynkyionyeanns cucmemu, wo 3minoiomecs. Haykoea noeusna. Y pobomi npedcmagienuii 2iopudnuii nioxio 00 ynpaguinms, wo
noeonye SMC ma PRC 3 nepedogumu memooamu oyinku cmamny, wo sabesneuye naoditine ma egexmugne piwients Ons YnpasiiHHs
PMSM. IIpaxmuuna 3suauumicme. 3anpononoganuii Memoo € KOPUCHUM OJisl 3ACMOCYSAHHSL Y OUHAMIYHUX YMO8AX eKCHIyamayii,
MAaKUX sIK eneKmpomoObini ma cucmemu 8iOHOBII06AHOL enepeii, niosuwyrouu ix egpekmusnicmo ma cmitikicmo. bion. 40, Tabn. 7, puc. 10.
Kniouoei cnosa: cHHXpOHHHUH JBUTYH 3 NOCTifHUMM MarHiTaMH, KepyBAHHS KOB3HHM Pe:KHMOM, NPONOPLiiHO-pe30HAHCHE
KepyBaHHs, iHTerpajbHa a0co/l0THA NMoxubKa, iHTerpajbHa THMYacoBa a0COIIOTHA MOXHOKA, iIHTerpajibHa KBAaJpPATH4YHA
noxudka, cnocrepirau Jlroenodeprepa, pinstp Kasimana.

Introduction. The permanent magnet synchronous
motor (PMSM) is widely used in critical applications
across various industries, including electric vehicles,
industrial robotics, aerospace, and especially in the
rapidly expanding renewable energy sector [1-3].
PMSMs offer key advantages such as high power density,
exceptional efficiency, and a broad speed range, all of
which contribute to their high reliability [4, 5]. PMSM
control methods are generally categorized into 3 main
approaches: field-oriented control (FOC), direct torque
control (DTC) and V/F control [6, 7]. While DTC and
V/F control are relatively simple to implement, they are
prone to significant torque ripple and lower efficiency [8].
In contrast, FOC provides precise control of the magnetic
field by adjusting the frequency, voltage, and inverter
output position, which ensures stable torque, low noise,
high power, and excellent dynamic performance [6, 9].

Linear control methods, such as PI control, PID
control, and linear state feedback, have been commonly
applied to control PMSMs. However, PMSMs exhibit
numerous nonlinear characteristics, including system
uncertainties and external disturbances, which increase

the complexity of controller design. These nonlinearities
also make it more challenging to achieve the desired
tracking performance in PMSM control systems [10]. To
address these challenges, nonlinear control methods such
as sliding mode control (SMC), fuzzy logic control,
adaptive control, and model predictive control have
gained popularity. For example, articles [11, 12] explore
integrating a fuzzy event-trigger mechanism with super-
twisting SMC to enhance sampling efficiency and
tracking performance. Additionally, disturbance observer-
based SMC has been introduced to counteract external
disturbances in PMSM control [13].

As a result, sensorless control algorithms for
PMSMs have become a key research area in motor
control. These algorithms include high-frequency
injection, extended Kalman filters (EKFs), model
reference adaptive systems, and sliding mode observers
(SMO) [14, 15]. Among these, SMO has become a
preferred method due to its advantages in variable-
structure control systems, simple implementation, and
high robustness against parameter variations and external
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disturbances. Sensorless control methods primarily
involve high-frequency signal injection [16] and the
fundamental frequency model [17]. The high-frequency
injection method involves injecting a high-frequency
voltage or current into the system and analyzing the
response to estimate rotor position, even when the motor
is stationary or running at low speeds. However, this
approach can introduce high-frequency noise, which
impacts system performance. On the other hand, the
fundamental frequency model is typically used for
medium-to-high speed ranges, where the stator current is
employed as input to an observer to determine rotor
position. Common observers used in this method include
the EKF [18, 19], model reference adaptive control [20],
SMO [21] and a nonlinear flux observer [22, 23]. Among
these, EKF has better convergence at low speeds but
heavily depends on tuning the noise matrix to achieve
high accuracy, requiring extensive simulation experiments
to fine-tune suitable parameters [24].

Recently, optimization algorithms have been
employed to determine the optimal values for the Q and R
matrices in the EKF [24]. Several studies have utilized
real-coded genetic algorithms in sensorless PMSM
control systems to optimize the noise matrices of the EKF
[25, 26]. Another approach involves the use of a
normalized EKF, designed to improve the adaptability of
the EKF to wvarious control systems. This method
integrates a swarm intelligence algorithm for offline
parameter self-learning. However, these optimization
algorithms come with high computational complexity,
requiring large training datasets and multiple iterations to
achieve optimal results, which results in extended training
times. Additionally, ensuring that the training dataset
sufficiently covers all possible operating conditions of the
system remains a significant challenge in practical
applications [24]. Some studies [27] have incorporated
fuzzy logic into the EKF to adjust the O and R noise
matrices in the sensorless control system of PMSM.
However, the effectiveness of this method is heavily
dependent on the accuracy of the fuzzy logic control
rules. Furthermore, other research [24, 28, 29] has applied
the Sage-Husa Kalman algorithm to sensorless control
systems of PMSM and linear PMSMs. This approach uses
the Sage-Husa noise estimator to compute R via
regression methods and determine (. However, the
traditional Sage-Husa noise estimator may lead to
observer divergence. As a result, recent improvements
have focused on enhancing the stability and accuracy of
the observer, while preserving the benefits of fast
convergence and high adaptability [24].

This study proposes a linear state estimation
approach for load estimation of PMSM based on an
improved Luenberger observer and a Kalman filter,
incorporating the principles of the SMC for speed loop
control and 2 proportional resonant control (PRC)
controllers for current loop control. The proposed system
aims to create a robust motor control system for surface-
mounted PMSM (SPMSM) with precise state estimation,
strong speed control, and stable current control, optimized
for high-performance applications in environments with
noise and load variations. The Kalman filter is utilized to
estimate unmeasured states and filter the measured
signals. This filter is a common choice in industrial
applications due to its optimal performance in linear
systems with zero-mean, uncorrelated Gaussian noise.

Interestingly, the Kalman filter remains optimal even
when the noise is non-Gaussian [30]. The Luenberger
observer offers notable advantages, such as simplicity and
low computational cost, particularly for linear systems. It
is easy to implement and does not require complex
calculations like the Kalman filter, allowing for quick and
efficient state estimation. The estimated signal is then
used for direct torque load compensation to enhance the
system’s instantaneous response. The SMC algorithm is
introduced to reduce oscillation during sliding mode
operation and improve system stability. This algorithm
utilizes continuous control signals to replace traditional
high-gain switching terms, thereby enhancing robustness
against speed variations. Additionally, the algorithm
integrates adaptive feedback gain correlated with the
motor speed, mitigating the effects of speed fluctuations
on system performance.

The goal of the paper is to propose a robust hybrid
control strategy for PMSM drive systems, specifically
targeting improved torque stability and overall system
performance. By integrating SMC with PRC, the strategy
seeks to minimize torque ripple and enhance system
efficiency. The approach is further reinforced by the use
of enhanced Luenberger state observer (LSP) and Kalman
state observer (KSP) for accurate load torque estimation.
The ultimate goal is to offer a more reliable, robust and
efficient control solution, surpassing traditional PI
controllers, particularly in environments with fluctuating
loads and dynamic motor parameters.

Main contributions of this study are:

1. The proposal of a hybrid control strategy combining
SMC and PRC, improving both torque stability and
system performance, resulting in better performance than
traditional PI controllers.

2. The integration of Luenberger and Kalman observers
enhances load torque estimation and improves system
reliability by accurately estimating unmeasured states.

3. The introduction of feed-forward compensation
(FFC), which compensates for changes in load torque and
disturbances, thus reducing delays and enhancing
transient response.

4. Significant improvements in key performance
metrics (integral of absolute error — IAE, integral of time-
weighted absolute error — ITAE, integral of squared error
— ISE) based on simulation results, showing reductions of
up to 94.614 % in IAE, 94.603 % in ITAE and 99.708 %
in ISE compared to PI control.

5.A focus on applications in fluctuating load
environments such as electric vehicles and renewable
energy systems, where dynamic motor parameters and
environmental changes often occur.

Mathematical model of PMSM. In the dg-axis
reference frame, disregarding the magnetic saturation
effect, the extended back electromotive force (EMF) model
of a PMSM can be represented as follows [4, 6, 24, 31]:

Ug Rs +SLd —a)eLq id 0
= . +ea ° s (1)
Uy a)eLq Ry +sLy iy 1

where s is the Laplace operator; u, u, are the stator
voltages in the dg-axis; iy i, are the components of the
stator current in the dg-axis; R, is the stator winding
resistance; Ly, L, are the dg-axis inductances; @, is the
rotational speed of the magnetic flux; e, is the magnitude of
the extended EMF of the PMSM, described as [1, 2, 24]:
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di
€q = (Ld _Lq )weid _(Ld _Lq )d_f ’ 2

Applying the inverse Park transformation to (1)
yields the EMF model in the of-axis coordinate system,

expressed as follows [6, 24]:
ug| [ Rotsly —alty—L,)] [ia —sing
= 1 ey ., (3)
ug a)e(Ld — Lq) Ry +sL, ig cosd

where @ is the electrical rotor angle; u,, uz are the stator
voltages in the ayfaxis; i,, igare the components of the stator
current in the gf-axis.

The governing torque 7, equation can be derived from
the input power equation of the windings. By simplifying
this equation and applying the characteristics of the PMSM,
the following expression is obtained [4, 32]:

R AT W R

where p is the number of pole pairs; ¢, is the rotor
permanent magnet flux linkage.

In a PMSM, the permanent magnets are positioned
on the rotor’s surface, making the motor non-salient.
Consequently, the reluctance paths along both the d-axis
and g-axis are identical, resulting in equal inductances for
both axes. For simplicity, the machine’s inductance will
be represented by L, = L, = L,. Therefore, (4) can be
written as [33, 34]:

3 .
T, =5 POriq- (5)

Using Newton’s second law,
equation of the system can be derived as:
dg‘;r + B, ©)
where j is the total system inertia; 77 is the load torque;
. is the mechanical angular velocity of the rotor; B, is
the viscous friction coefficient of the motor.

The total system inertia accounts for the inertia of
the PMSM and all coupling or fastening components
connecting them. The first term in the equation
corresponds to the torque required to accelerate the
system without the effects of friction. The other 2 terms
refer to the torque needed to overcome viscous friction
and disturbance torque, respectively. Disturbance torque
can originate from factors such as load torque, unmodeled
friction, or other dynamic effects within the system.

Load torque identification method. FFC is a
control technique that improves system response to rapid
input signal changes without relying on feedback from the
system. This method effectively reduces delays and helps
the control system stabilize quickly when there are sudden
changes in load torque, disturbances, or external factors.
FFC works by providing a control signal based on the
predicted behavior of the system. When there are changes
in load torque or external disturbances, the FFC control
signal is computed and applied immediately without
waiting for feedback from the system’s sensors or
measurement devices. To apply FFC, we first need to
develop the dynamic model of the system. For SPMSM,
this model describes the relationship between the
electromagnetic torque, load torque and frictional effects
within the system. From (6) we rewrite the general

equation for the SPMSM system as follows:
o _p 1, B0, (7)
dt —

the mechanical

I,=T,+j

T, p

where 77 is the load torque acting on the motor, caused by
external factors like mechanical load; 7T, is the
disturbance torque, including unmeasured factors such as
unmodeled friction or external disturbances affecting the
system. Angular acceleration dw/dt is a key factor in
determining how the motor system responds to the
applied torque. The above equation can be restructured to
calculate angular acceleration easily:

do, 1 B, 1

=T, ——w,——T} p;
T A Y A ®
m =7, pIL p*+wWL D>

where 7;_p is the attenuation coefficient; w;_p is the noise
affecting the load. Determining dw,/d¢ helps understand
the rate of change of the motor’s rotational angle under
the influence of various factors such as electromagnetic
torque, load torque and friction. The system can measure
the @, but cannot directly measure 7; p. Therefore, the
speed sensor will give the result:

Omeas = O Y Vot _spd » ©)

where @4 is the measured motor speed; Vyuor_spa 1S the
measurement noise.
From (8), (9) we can rewrite in the form:

do,
dr @y Vmot _spd
=4 +B-T,+C- ;
dTL_D |:TL D:| € |: Wi p i|
d ) - a0

@y

DOmeas = C'|:TL D:|+Vm0tspd»

whereA:{_Bm/j _1/11;3{1/1} G:{l O}C:[l 0].
0 0 01

L

From (7), it can be seen that the electromagnetic
torque 7, must overcome the total load force and friction
force to produce the angular acceleration of the motor. To
calculate and control torque in the system, the drive
system needs to respond to changes in the control signal
and reference torque. The following equation can
represent a dynamic model of the drive system:
dT, 1
d: = (Teiref_Te)s (1)

where T,_,.is the reference torque that the system needs
to achieve, provided by the controller, 7, is the time
constant of the drive system, which reflects the response
speed of the drive system. This equation (11) means that
the electromagnetic torque 7, will change over time and
adjust to match the reference torque 7, ,, The time
response of the drive system is controlled z,, helping the
system achieve stability when there are changes in the
control signal.

FFC uses predictive models to react immediately to
changes in load torque and disturbances. The FFC control
signal u(?) is calculated in advance and applied directly to
the system to minimize delays:

u(t):KFFC'TLiD"'Teiref: (12)
where Kprc is the gain constant for FFC. The FFC control

signal u(f) is calculated from the estimated load torque
and disturbance torque, allowing the electromagnetic

m

66

Electrical Engineering & Electromechanics, 2025, no. 6



torque to reach the desired value without waiting for
feedback from the system.

Therefore, the modified system structure is depicted
in Fig. 1. FFC helps transient response and eliminates
interference in the control system. Figure 1 illustrates the
control diagram of the system, integrating FOC to
effectively manage the SPMSM. The speed controller
takes the reference speed @, ,.r as input and combines it
with one of the 2 observers, using the torque signal 7 to
generate the i,z . signal for motor control. This signal,
along with the feedback current in the dg-axis, creates the
reference currents Ai; and Aj,. The current controller then
produces the voltage commands u, and wu,, which are
converted into a 3-phase signal and supplied to the space

vector pulse width modulation converter. The actual stator
current i,, the real position 6, obtained from the position
sensor, and @,, derived from the derivative of the real
position, are used as inputs for the feedback signal, the
Luenberger observer, and the Kalman filter. The torque
estimation methods are: discrete Luenberger observer in
simulation 1 and discrete Kalman filter in simulation 2.
These 2 simulations are independent of each other to test
the response of the proposed controller against each
observer. This design ensures that only one independent
estimation method is active at any given time, thus
avoiding data conflicts and facilitating the evaluation and
comparison of the performance of both methods in a

unified simulation framework.
il
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Fig. 1. Diagram of proposed control strategy

Design of discrete Luenberger observer. The basic
structure of the Luenberger observer is shown in Fig. 2.
Based on the mathematical model of the PMSM, the speed
and torque of the PMSM, which are easy to measure, are
typically used as inputs to reconstruct the motor’s state. In
Fig. 2 a feedback control is introduced, where the feedback
signal is the difference between the estimated state and the
actual state, such as the g-axis current. This feedback
mechanism adjusts the observer to make the estimated
value infinitely close to the actual value as time progresses.
A linear state observer is constructed based on the
mechanical equation of the system.

— System] TE’LODV
\@L» % { Da 7 .
TCUr -:— B(ILJTETNCM . y T
Z :
T A
La |

Fig. 2. Structure of the discreteﬁenberger load observer

The plant in state-space form is presented in (13)
[35-37]:
x = Ax + Bu+ Gw;
13)
y=Cx+Du+v,
where in the Luenberger observer the matrices 4, B, C, D,
G are the essential components in the state-space model of
the system. These matrices describe the system dynamics
and the relationship between the system’s states, inputs and

outputs. With x representing the system states (such as
speed and torque); u is the input, which is the actual motor
torque 7,; w is the disturbance acting on the system; y is the
output, which signals like speed or torque can measure.

The state space representation of the Luenberger
observer is established in (10), we see that (13) is a
shortened form of (10) to simplify the control system design
process. The load is already transformed into a state. The
Luenberger observer equation is used to estimate the states
of the system. It is based on the system’s dynamic model
and adjusts the estimated states based on the measured
outputs and inputs. The equation is given by [35, 38]:

A

%:A;}+Bu+L'[y—(éx+D”)l

ﬁ:(A—LC).chr[B L]{”}; (14)
dr y
$=C#,

where X is the estimated state of the system; L is the
observer gain matrix; y is the measured output of the system.

The equation indicates that by designing the observer
gains L = [, b]" such that the new system (4 — LC)
becomes stable and fast enough, the estimation error can
be driven to zero by using the estimated speed as a
feedback signal (Aw, = @, .., — ®,), where @, . is the
reference value and , is the response rate. The observer
gains L can be determined using the pole placement
method. The closed-loop system poles are placed at the
desired locations, and then the new characteristic equation
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is derived. By comparing the coefficients of the latest and
old characteristic equations, the observer gains can be
found. By converting the above continuous state function
A, B, C, D into a discrete state A, B, Cy Dy G, and
reconstructing the estimation matrices using the existing
observer gain L, the values of the Luenberger observers
are then AdL: BdL: CdL’ DdL: GdL~ Hence the new system
matrices are rewritten as:

Ad = eAtS 5 - AdL = eAdtS 5

ts ts
By = [e™Bdt; — By = [ Bydr;

0 0
Cd =C; _)CdL :Cd; (15)
Dd ZD; _)DdL ZDd;
Ly =Gy S,

where ¢, is the sampling time; G, is the arbitrary matrix;
S is obtained by solving the Sylvester equation.
The control parameters are given in Table 1.

Table 1
Discrete parameter values of the controller
Parameters Value Parameters Value
) [0.006 0.009 ]
512 —50+j10 Dy 0 0003
7 0 1,(s) 0.2:10°
99.885 0.980 —0.013
L [737.960} Aa 10.007 0999 |
1 -0.013 [0.013  0.019 ]
Aa {0 1.0 } Ba | 0 -0.007]
0.013 [0.990 —0.006
B { 0 } Ca 10003 1.0 |
0.990 —0.006 [0.006  0.009 ]
Ca {0.003 1.0 } Da | 0 -0.003]

Design of discrete steady-state Kalman filtering.
This section presents a simple discrete Kalman filter. The
system in discrete state space is represented as [24, 39, 40]:

(16)

X = Axk_l +Buk_1 + Wi
Vi = ka +Duk + Vi,

where the subscript &—1, k are represented as the time step
k-1 and £, respectively; x; is the state vector; x;; is the
vector state of the system; uy | is the system input; wy | is
the process noise affecting the state; y; is the output
vector; y; is the output vector at the time step &; vy is the
measurement noise affecting the output. The process
noise w; and measurement noise v; are assumed to be
white, zero-mean, uncorrelated, and have the following
covariance properties [24, 39]:

wy ~(0.0p ) v ~(0.Ry )

E-[wkva-]:Qké'k_l; E-[vkvjr]szé'k_l; E-[wkvjr]:O, a7

where Oy is the covariance matrix of the process noise;
Ry is the covariance matrix of the measurement noise;
01 1s the Kronecker delta function (equals 1 if k& = j,
otherwise 0).

Kalman filter algorithm, including initialization,
state propagation, covariance update, and Kalman gain
calculation. The process of solving this algorithm is
presented as follows.

Initialization. The first step is to initialize the filter
by defining the initial state estimate Xj as the expected
value of the initial state x,. Similarly, the state estimation

error covariance matrix By is initialized. These are
described as [24, 39]:

At X

% =E-(x)

P0+ = E'|:(XO —)%a—) (xo —)’(\fa—y.:|
State propagation. In this step, the filter propagates
the state estimate forward in time. This is referred to as

the prior state estimate in the literature. It is calculated
using as [24, 39]:

(18)

(19)

.)2]; = A')%];_l +B'uk_1 ,

where xj, is the prior state estimate.

Covariance update. The next step is to update the
state estimation error covariance matrix F, , which
describes the uncertainty in the state estimate. The
equation for this update is [24, 39]:

- - T
Pk =A'Pk_1'A +Qk_1,
where O, ; is the process noise covariance matrix.

Kalman gain calculation. Finally, the Kalman gain
K is computed to determine how much the state estimate

should be corrected based on the measurement error. The
formula for this is [24, 39]:

e
p-c-cT+R,
The next step in the Kalman filter algorithm is the
correction step, where the posterior state estimate Xj is

(20)

Ky @n

updated based on the measurement. This process is
described as [24, 39]:

5=+ K- ) 22)

The term y, —C-x; is called the residual or

innovation, representing the difference between the actual
measurement and the predicted output. After updating the

state estimate, the error covariance matrix P, is updated
by [24, 39]:

B =(I-C-K;) P, (23)
where [/ is the identity matrix; C-K; represents the
adjustment to the covariance based on the Kalman gain
and output matrix. It is expected that P will decrease

over time because the term (I — C-K};) < 1. This reduces
uncertainty in the state estimate as more measurements
are processed. The noise covariance matrices Oy (process
noise) and R, (measurement noise) significantly affect the
Kalman gain K;. When Q, increases, the state estimation
error covariance £, increases, leading to a higher

Kalman gain K. Lowering R; also increases the Kalman
gain K. With a higher Kalman gain, the algorithm puts
more weight on the new measurement, leading to larger
corrections in the state estimate. Conversely, if K} is close
to 0, the algorithm ignores new measurements and
assumes the current estimate is accurate. By substituting
the same data as in the subsection of «design of discrete
Luenberger observer», it gets the control parameters for
the Kalman filter shown in Table 2.
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Table 2
Discrete parameter values of the controller
Parameter| Value |Parameter| Value |Parameter

B 125.686 . 0 0 © 0.835
Yk 5.985 B 0 0.084 k ~0.556
0.001 0 0.001 0 123.819

- ot
Qe [ 0 o} k [ 0 o} * [0.966}

In embedded systems, due to limitations in memory
and computational resources, it is often preferable to fix
the Kalman gain to reduce processing costs. This means
that parameters K and P, are not updated continuously,
which is only feasible under the assumption that the
system and noise remain time-invariant. The steady-state
Kalman filter, although not fully optimal, approaches
optimality k—oo. Figure 3 illustrates that the Kalman gain
converges to a stable value after approximately 50 and
500 time samples, with a sampling time of 0.2 ms. In the
left plot, the Kalman gain increases rapidly from 0.81 to
0.835 within the first 30 steps and then stabilizes,
indicating quick adaptation to the measured signal.
Meanwhile, the right plot shows the Kalman gain
decreasing from —0.6 to near 0 over 500 steps, reflecting
an increasing trust in system predictions over time. These
variations enable the Kalman filter to enhance the
accuracy of state estimation and noise reduction,
effecotg:/ely supporting the control of PMSMs.
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Kalman Gain (1) Kalman Gain (2)
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&) &)
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Fig. 3. Kalman gains captured during simulation

Proposed speed controller. To introduce the SMC
design, we first define the system’s state variables, which
are crucial for implementing this control approach. By
establishing these state variables, we can proceed to
formulate the control law and analyze the system’s behavior
under SMC. Therefore, the system state is defined as:

Aa)r = a)r_ref — Oy,

B d(4e,) _ do, (24)
: dt dr
Additionally, the following equations can be
obtained based on (6) and (24):
d4w,)  do, p (3 . j
- 0= =2 | —. . -1 _T ;
dr FPEE CIR AR C A B
5 5 (25)
dy __&(de,)_ _do, 3 p7 - dy
dr di? d 2 dr’
3 p°0f diy
with 4== / , u=——, the system (25) is
2 Jj dt

represented under the state space system as:

d | Ao, 0 1| |4, 0
— = - +u- . (26)
dt X1 0 0 X1 —a
The sliding surface function is defined as:
sy =c-Aw, +x . 27)
Differentiating (27) becomes:
A
ﬁ:C.MjL%:c.xl_a.u' 28)

de de dr
According to the SMC law, the control signal is
expressed as:

u=l~(c~x1+e~|X|a~sgn(Ss)+k'Ss)a (29)
a

where u is the control signal; ¢, e, k are the control
parameters respectively; X is the state variable of the
system; s, is the deviation (or error) of the system from the
sliding surface; a is the adaptive switching power term.

The reference current for the g-axis can be expressed as:

T
iy o = [{ e e [X sents )+ ks, Yo G0)
0

To analyze the stability of the controller, define the
Lyapunov function:
L,=s/2. (31)
Substituting (27) and (28) into (31), it has follows as:

dL dx
d_ty:SS «(C-Aa),+d—tlJ=—e-|X|a -|ss|+k-sS2. (32)

The derivative of the Lyapunov function L, gives us
the above result, where dL,/d¢ is the change in the
Lyapunov function over time. Since the parameters satisfy
e>0, a>0, k>0, then dL,/df < 0 will be established,
ensuring that the system enters the sliding mode as long
as the conditions are met. SMC speed control diagram is
shown in Fig. 4.

Wy ref +< ) ACOr

Fig. 4. The proposed speed control diagram

iq_ref
Eq. 30) —>

Proposed current controller. PRC is an effective
control method designed to improve accuracy in control
systems, especially in systems that require the resolution
of issues related to steady-state error at the fundamental
frequency. Unlike traditional PI control methods, PRC
control is capable of adjusting the signal at the
fundamental frequency without producing a steady-state
error. PRC has the following transfer function:

Gpre(s) =k, + szl ; ,

57w,

(33)

where k, is the proportional gain; £; is the integral gain;
@, is the resonant frequency, which determines the
frequency at which the PRC has the most effect.

When the angular frequency of the AC signal is
given as @, the magnitude of the transfer function

GpRc(S) will be:
2-k ’
. l . a)c
¥ (ﬁ] - 9

-0, + @,

(Grre )4, =1(kp

From (34), it can be observed that the magnitude of
Gprc(s) becomes infinite, which allows the control of a
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sinusoidal signal with the same frequency as the resonant
frequency to achieve zero steady-state error control.
However, in practical applications, due to issues in
implementing the ideal PRC, this section uses an
improved quasi-PRC, with its transfer function being:

2-ki-w,-s
Gpre(s) =k, +———— 35)

ST+2-w,. s+,

E

where @, is the cutoff frequency of the quasi-resonant
controller.

From (35), it can be seen that the controller has 3
design parameters: k,, k; and @.. For ease of analysis,
assume that any 2 parameters are kept constant, and then
observe how the variation of the 3™ parameter affects the
system’s performance. Figure 5 shows the corresponding
changes in the Bode plot when only £, & and . is
changed, and analyzes the role of each parameter.

In Fig. 5,a, where k, is changed, it can be seen that
the magnitude outside the bandwidth increases as k,
increases, while the fundamental frequency does not

increases, the gain at the fundamental frequency
increases, indicating that it plays a role in eliminating
steady-state error. However, the increase in &; also widens
the bandwidth of the PRC, thus increasing the influence
of resonance and amplifying unnecessary signals, which
is detrimental to the overall stability of the system. In Fig.
5,¢, where only @, is changed, it can be seen that as @,
decreases, the gain at the fundamental frequency
increases, and the bandwidth narrows. This indicates that
it has good selectivity for the signal, and f, determines the
bandwidth of the controller. Therefore, to achieve a good
control effect with the resonant controller, the principle of
parameter tuning is to adjust &, to eliminate the steady-
state error of the system and adjust @, to suppress the
impact of frequency fluctuations. The transfer function
(33) is in the s-domain. When using PRC for digital
control of a 3-phase PMSM system, to simplify the
discretization process, only the resonant controller is
discretized. Its implementation can be done using bilinear
transformation, and the transformation formula is:

increase significantly. This indicates that when &k, 1 1-2"!
becomes too large, its effect on resonance is negligible. In §=— - 306)
Fig. 5,b, where only £; is changed, it can be seen that as k; Iy 1+z
40 T 40
S _ |k=10% | g _ ~a g _ .
Ea ol it £3 k=100 | £330
52 ° Vg 52300 k=1 | &2
= k =50 k=1 = \i,/,,k!. =50 | £
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Fig. 5. The changes in the Bode plot corresponding: a) k, is changed; b) k; is changed; ¢) @, is changed

Substituting (36) into (35), it can become as follows:
by +bz  +byz7?

Gpre(2) = = — > (37
l+az +ayz
in which:
a = 2603{3—822 : 2:4—4a)cts+a)ezt§ :
4+4w.t; + o)t 4+4w,t, + )t
bo = 4.kt b= by —4k;w,t -
4+4w,t, + w,t; 4+4w.t, + )t

After organizing, the difference equation of the
controller is:

g q(k) = bpe(k) + bye(k —2) —ayy(k 1) —ayy(k =2) . (38)
Equation (38) achieves steady-state control of the error
signal. It can be seen that the control is relatively simple and
easy to implement. The implementation block diagram of the
PRC is shown in Fig. 6 and parameters are listed in Table 3.

Table 3
Parameter of the PRC
Parameter Value Parameter Value
k, 5.775 W, 20
k; 1000 1, 0.0001

We have the resonant frequency matches the motor
speed, thus achieving near-error-free tracking of the current.
Compared to traditional PI control methods, the control
system based on the PR controller does not contain feed-
forward compensation terms or decoupling terms related to

motor parameters. This reduces coordinate rotation, thereby
simplifying the implementation of the control algorithm and
improving the robustness of the control system.

Ald,q 77777777777777 N
(2 L/ | x
—— b -
| 3 *
! e -1
i 1 z x 3
by ~N !
> b > +
AN o |
//% | z” X
Eq. 374y N N +
’—E'H b, ) (V ud,q(k)
i 1 X
| ‘ -1 -
; : z
b : x
>« : > *
3 L 772 +
b o x
Loy \ !
—%-H\ a I >
| e S 1

Fig. 6. Implementation block diagram of the PRC

Results and discussion. The simulation cases were
conducted under steady-state conditions and assumed
operating conditions to observe the control signals and
performance between LSP and KSP under the influence of
the proposed SMC-PRC controller and the traditional PI
controller. The parameters of the SPMSM are listed in
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Table 4. MATLAB/Simulink software was used to conduct
3 simulation experiments (Fig. 7), to demonstrate the
operational capability of the SPMSM under all conditions
and evaluate the effectiveness of the observation methods
tested in this study. The data from the 3 conditions display
key parameters, including the actual rotor speed, estimated

\3 Load Selection 1

speed, reference speed, current components, dg-axis
voltage (ig, iy, tq and u,), and 3-phase current (iz.). In each
experimental case, the parameters were calculated and
compared with the proposed SMC-PRC observer and the
traditional PI controller. These values indicate the
superiority of the proposed controller in this study.

. ,
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Table 4
The parameters of tested system
Parameter Value Parameter Value

Rated power P,, kW 9.4 |d-axis inductance L, mH 2.2
Rated speed #,, rpm 4500 |g-axis inductance L,, mH 2.2
Number of pole pairs 4 ﬁr?li(;rgg i:;n]i I\)Vl\g flux 0.12258
Stator resistance R,, Q | 0.268 |Viscous friction B,,, N-s/m|0.001665
Total inertia j, kg-m> |0.0146|Rated torque 7}, N-m 20
DC-link voltage U, V| 360 |Switching frequency f;, kHz 5

Case study 1. In this experiment, 2 control
strategies (SMC-PRC and PI) were compared when the
motor operated at a low speed of 50 rpm and under no-
load conditions. The simulation results showed that both
control strategies were able to track the reference signal
well (Fig. 8,a,b). However, during the startup process, the
torque of SMC-PRC was lower compared to PI, with the
startup values being 4.888 N-m and 12.994 N-m,
respectively, as shown in Fig. 8,c,d. The startup currents
also exhibited a significant difference: while SMC-PRC
had a startup current of 6.649 A, PI had a much higher
current — 17.671 A (Fig. 8,ef). This indicates that
SMC-PRC reduces the startup current by up to 62.382 %.
Additionally, the 3-phase currents (Fig. 8,g,4), displayed
distinct changes in both control strategies, with
SMC-PRC providing a more stable current during startup.

The error indices TAE, ITAE, and ISE (Table 5)
show that the SMC-PRC method significantly improves
over PI, with TAE reduced by 10.837 %, ITAE — 9.6 %,
ISE —20.72 %.

Table 5
A comparison of the error indices in the case study 1
Observer type SMC-PRC PI Ratios, %
IAE 0.3258 0.3654 10.837
ITAE 1.9548 2.1624 9.6
ISE 0.0176 0.0222 20.72

Plark

These results demonstrate that the use of the SMC-
PRC controller not only helps reduce startup current but
also enhances control performance, improving the
accuracy and stability of the system compared to PI.

Case study 2. This test provides a comprehensive
overview of the observed results when the speed command
is increased from 2000 to 3000 rpm at 2 s and then reduced
from 3000 rpm to 1000 rpm at 3 s, after which the motor
stabilizes. The simulation results with both the SMC-PRC
and PI controllers (Fig. 9) reveal significant differences in
the control parameters throughout the operation. The speed
of both controllers follows the reference signal almost
exactly, but PI shows a slower settling time compared to
SMC-PRC (Fig. 9,a,b). Based on the comparison of settling
times between the 2 methods, SMC-PRC proves to be
superior. Specifically, at 3000 rpm, the settling time of SMC-
PRC is 2.089 s, which is shorter than PI’s 2.265 s, and faster
by approximately 0.176 s. At 2000 rpm, SMC-PRC has a
settling time of just 0.165 s, while PI takes 0.568 s, faster by
about 0.403 s. Finally, at 1000 rpm, SMC-PRC achieves a
settling time of 3.186 s, while PI takes 3.63 s, faster by
0.444 s. In total, the settling time of SMC-PRC is 5.44 s,
while PI’s settling time is 6.463 s, with a difference of
1.023 s. Therefore, SMC-PRC is not only faster, but also
enables the system to reach the reference speed more
quickly and stably compared to PI. The torque in
SMC-PRC during startup is 0.105 N-m, lower than PI’s
0.343 N-m, indicating that SMC-PRC is more stable in the
initial phase (Fig. 9,c,d). The startup currents i, and i,
(Fig. 9.,e,f/) have values of 34.551 A and -15.355 A
for SMC-PRC, significantly lower compared to PI’s startup
currents of 55.116 A and —17.964 A, indicating that SMC-
PRC helps reduce the startup current by approximately
37.312 % for iyand 14.634 % for i,.
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PI methods; g) and /) the 3- phase current applylng SMC-PRC and PI methods
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The 3-phase current images also show significantly Table 6
greater stability in SMC-PRC compared to PI, where PI A comparison of the error indices in the case study 2
experiences strong oscillations in the phases. These results Observer type SMC-PRC Pl Ratios, %
demonstrate that the SMC-PRC controller outperforms PI in IAE 0.548 10.182 94.614
reducing startup current and maintaining system stability. ITAE 3.296 61.092 94.603

The error indices IAE, ITAE, and ISE (Table 6) show ISE 0.05 17.278 | 99.708
significant improvements in the SMC-PRC method compared Case study 3. In this case, the simulation results were

to PI, with IAE reduced by 94.614 %, ITAE — 94.603 %, and ~ carried out by setting the speed to 2000 rpm and varying the
ISE — 99.708 %. These results confirm that the use of the load torque from 0 to 12 N-m at 3 s (Fig. 10). The resu_lts for
SMC-PRC controller not only helps reduce the startup both the SMC-PRC and PI control methods show significant
current, but also enhances control performance, improving the dlffire(tilces n thacliing the dspleed andh currfent s1gnalls ‘ Bgth

iy methods maintain the speed close to the reference value, but
accuracy and stability of the system compared to PI. SMC-PRC exhibits higher stability, especially during the
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rapid speed change from 2.9 s to 3 s (Fig. 10,a,b). The
torque in SMC-PRC stabilizes at around 12 N-m, while
PI shows greater fluctuation, reaching approximately
12.53 N'm (Fig. 10,c,d). The currents in Fig. 10,e,f show
large variations in both methods during startup. SMC-PRC
starts with a significantly lower current about 18.558 A for i,
while PI peaks at 20.229 A for i,, indicating that SMC-PRC
is more effective in reducing the startup current. Also, the
3-phase currents (Fig. 10,g,/), are more stable in SMC-PRC
compared to PI, helping to minimize unnecessary
oscillations. These results show that SMC-PRC not only
reduces the startup current, but also improves the stability
and overall performance of the system compared to PI.
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The error indices IAE, ITAE, and ISE (Table 7)
show that the SMC-PRC method significantly improves
over PI, with IAE reduced by 74.18 %, ITAE — 74.18 %,
and ISE — 93.333 %. These results confirm that the use of
the SMC-PRC controller not only helps reduce the startup
current but also enhances control performance, improving
the accuracy and stability of the system compared to PI.

Table 7
A comparison of the error indices in the case study 3
Observer type SMC-PRC PI Ratios, %
IAE 82.68 320.22 74.18
ITAE 496.08 1921.32 74.18
ISE 1139.33 17090.141 93.333
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Fig. 10. Dynamic response of the system in the case study 3: @) and b) the rotor speed applying SMC- PRC and PI methods;
¢) and d) the electromagnetic torque applying SMC-PRC and PI methods; e) and /) the d- and g-axis current applying SMC-PRC
and PI methods; g) and #) the 3-phase current applying SMC-PRC and PI methods

Conclusions. The purpose of this work was, firstly,
to evaluate the performance of the use of field
programmable gate array programmable logic circuits for
the diagnosis of faults in an induction machine by
introducing a fuzzy inference system into the algorithm of
the analysis of the motor current signal analysis by taking
the RMS signal of the stator phase current as the fault
indicator signal. Secondly, to implement and validate the
proposed hardware detection algorithm. The originality of
our work has been to combine the performance of artificial
intelligence techniques, the simplicity of motor current
signal analysis algorithms and the execution power of
programmable logic circuits, for the definition of a fault
diagnosis structure for the induction machine achieving the
best simplicity/performance and speed/performance ratios.
Finally, the proposed solution has improved the
performance of fault detection for the induction machine,
especially in terms of hardware resource consumption, real-
time online detection and speed of detection.
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