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A robust hybrid control strategy for enhancing torque stability and performance in PMSM drives 
 

Introduction. Recently, permanent magnet synchronous motors (PMSMs) have become essential in various high-performance 
applications, including electric vehicles and renewable energy systems. However, traditional control methods, such as PI controllers, 
often struggle to handle dynamic operating conditions and external disturbances, resulting in torque ripple and stability issues. Problem. 
The main issue with existing control strategies is their inability to maintain accurate torque control and system stability under 
fluctuating loads and varying motor parameters, which negatively impacts performance in real-world applications. Goal. This paper 
proposes a robust hybrid control strategy that integrates sliding mode control (SMC) with proportional resonant control (PRC), 
enhanced by Luenberger and Kalman observers. The goal is to improve torque stability, reduce errors, and optimize performance in 
PMSM drive systems. Methodology. The proposed method combines SMC and PRC to form an SMC-PRC controller, with Luenberger 
and Kalman observers integrated for effective load torque estimation. Results. The simulation experiments were carried out to compare 
the effectiveness of the proposed control strategy with that of traditional PI controllers. The results revealed that the SMC-PRC 
approach offers a notable improvement in overall control performance, including reduced tracking error, enhanced dynamic response, 
and better stability. Furthermore, the proposed method achieved faster settling times and maintained robust operation under varying 
system conditions. Scientific novelty. This work introduces a hybrid control approach that combines SMC and PRC with advanced state 
estimation techniques, providing a robust and efficient solution to PMSM control. Practical value. The proposed method is highly 
beneficial for applications under dynamic operating conditions, such as electric vehicles and renewable energy systems, improving 
system efficiency and stability. References 40, tables 7, figures 10. 
Key words: permanent magnet synchronous motor, sliding mode control, proportional resonant control, integral absolute 
error, integral time absolute error, integral square error, Luenberger observer, Kalman filter. 
 

Вступ. Останнім часом синхронні двигуни з постійними магнітами (PMSM) стали невід’ємною частиною різних 
високопродуктивних застосувань, включаючи електромобілі та системи відновлюваної енергії. Однак традиційні методи 
управління, такі як ПІ-регулятори, часто не справляються з динамічними робочими умовами та зовнішніми збуреннями, що 
призводить до пульсацій крутного моменту та проблем зі стабільністю. Основною проблемою існуючих методів управління є 
їх нездатність підтримувати точне управління крутним моментом і стійкість системи при коливаннях навантаження і 
параметрах двигуна, що змінюються, що негативно впливає на продуктивність в реальних ситуаціях. Мета. У цій статті 
пропонується надійна гібридна стратегія управління, що поєднує управління ковзним режимом (SMC) з пропорційно-
резонансним управлінням (PRC), удосконалена за допомогою спостерігачів Люенбергера та Калмана. Мета полягає в тому, 
щоб підвищити стабільність крутного моменту, зменшити похибки і оптимізувати продуктивність систем приводу PMSM. 
Методологія. Пропонований метод об’єднує SMC та PRC для формування регулятора SMC-PRC, з інтегрованими 
спостерігачами Люенбергера та Калмана для оцінки ефективного крутного моменту навантаження. Результати. 
Проведено імітаційні експерименти порівняння ефективності запропонованої стратегії управління з ефективністю 
традиційних ПІ-регуляторів. Результати показали, що підхід SMC-PRC забезпечує помітне покращення загальних 
характеристик управління, включаючи зниження похибки стеження, покращення динамічного відгуку та підвищення 
стійкості. Крім того, пропонований метод забезпечує більш швидкий час встановлення і стійку роботу при умовах 
функціонування системи, що змінюються. Наукова новизна. У роботі представлений гібридний підхід до управління, що 
поєднує SMC та PRC з передовими методами оцінки стану, що забезпечує надійне та ефективне рішення для управління 
PMSM. Практична значимість. Запропонований метод є корисним для застосування у динамічних умовах експлуатації, 
таких як електромобілі та системи відновлюваної енергії, підвищуючи їх ефективність та стійкість. Бібл. 40, табл. 7, рис. 10. 
Ключові слова: синхронний двигун з постійними магнітами, керування ковзним режимом, пропорційно-резонансне 
керування, інтегральна абсолютна похибка, інтегральна тимчасова абсолютна похибка, інтегральна квадратична 
похибка, спостерігач Люенбергера, фільтр Калмана. 
 

Introduction. The permanent magnet synchronous 
motor (PMSM) is widely used in critical applications 
across various industries, including electric vehicles, 
industrial robotics, aerospace, and especially in the 
rapidly expanding renewable energy sector [1–3]. 
PMSMs offer key advantages such as high power density, 
exceptional efficiency, and a broad speed range, all of 
which contribute to their high reliability [4, 5]. PMSM 
control methods are generally categorized into 3 main 
approaches: field-oriented control (FOC), direct torque 
control (DTC) and V/F control [6, 7]. While DTC and 
V/F control are relatively simple to implement, they are 
prone to significant torque ripple and lower efficiency [8]. 
In contrast, FOC provides precise control of the magnetic 
field by adjusting the frequency, voltage, and inverter 
output position, which ensures stable torque, low noise, 
high power, and excellent dynamic performance [6, 9].  

Linear control methods, such as PI control, PID 
control, and linear state feedback, have been commonly 
applied to control PMSMs. However, PMSMs exhibit 
numerous nonlinear characteristics, including system 
uncertainties and external disturbances, which increase 

the complexity of controller design. These nonlinearities 
also make it more challenging to achieve the desired 
tracking performance in PMSM control systems [10]. To 
address these challenges, nonlinear control methods such 
as sliding mode control (SMC), fuzzy logic control, 
adaptive control, and model predictive control have 
gained popularity. For example, articles [11, 12] explore 
integrating a fuzzy event-trigger mechanism with super-
twisting SMC to enhance sampling efficiency and 
tracking performance. Additionally, disturbance observer-
based SMC has been introduced to counteract external 
disturbances in PMSM control [13].  

As a result, sensorless control algorithms for 
PMSMs have become a key research area in motor 
control. These algorithms include high-frequency 
injection, extended Kalman filters (EKFs), model 
reference adaptive systems, and sliding mode observers 
(SMO) [14, 15]. Among these, SMO has become a 
preferred method due to its advantages in variable-
structure control systems, simple implementation, and 
high robustness against parameter variations and external 
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disturbances. Sensorless control methods primarily 
involve high-frequency signal injection [16] and the 
fundamental frequency model [17]. The high-frequency 
injection method involves injecting a high-frequency 
voltage or current into the system and analyzing the 
response to estimate rotor position, even when the motor 
is stationary or running at low speeds. However, this 
approach can introduce high-frequency noise, which 
impacts system performance. On the other hand, the 
fundamental frequency model is typically used for 
medium-to-high speed ranges, where the stator current is 
employed as input to an observer to determine rotor 
position. Common observers used in this method include 
the EKF [18, 19], model reference adaptive control [20], 
SMO [21] and a nonlinear flux observer [22, 23]. Among 
these, EKF has better convergence at low speeds but 
heavily depends on tuning the noise matrix to achieve 
high accuracy, requiring extensive simulation experiments 
to fine-tune suitable parameters [24]. 

Recently, optimization algorithms have been 
employed to determine the optimal values for the Q and R 
matrices in the EKF [24]. Several studies have utilized 
real-coded genetic algorithms in sensorless PMSM 
control systems to optimize the noise matrices of the EKF 
[25, 26]. Another approach involves the use of a 
normalized EKF, designed to improve the adaptability of 
the EKF to various control systems. This method 
integrates a swarm intelligence algorithm for offline 
parameter self-learning. However, these optimization 
algorithms come with high computational complexity, 
requiring large training datasets and multiple iterations to 
achieve optimal results, which results in extended training 
times. Additionally, ensuring that the training dataset 
sufficiently covers all possible operating conditions of the 
system remains a significant challenge in practical 
applications [24]. Some studies [27] have incorporated 
fuzzy logic into the EKF to adjust the Q and R noise 
matrices in the sensorless control system of PMSM. 
However, the effectiveness of this method is heavily 
dependent on the accuracy of the fuzzy logic control 
rules. Furthermore, other research [24, 28, 29] has applied 
the Sage-Husa Kalman algorithm to sensorless control 
systems of PMSM and linear PMSMs. This approach uses 
the Sage-Husa noise estimator to compute R via 
regression methods and determine Q. However, the 
traditional Sage-Husa noise estimator may lead to 
observer divergence. As a result, recent improvements 
have focused on enhancing the stability and accuracy of 
the observer, while preserving the benefits of fast 
convergence and high adaptability [24]. 

This study proposes a linear state estimation 
approach for load estimation of PMSM based on an 
improved Luenberger observer and a Kalman filter, 
incorporating the principles of the SMC for speed loop 
control and 2 proportional resonant control (PRC) 
controllers for current loop control. The proposed system 
aims to create a robust motor control system for surface-
mounted PMSM (SPMSM) with precise state estimation, 
strong speed control, and stable current control, optimized 
for high-performance applications in environments with 
noise and load variations. The Kalman filter is utilized to 
estimate unmeasured states and filter the measured 
signals. This filter is a common choice in industrial 
applications due to its optimal performance in linear 
systems with zero-mean, uncorrelated Gaussian noise. 

Interestingly, the Kalman filter remains optimal even 
when the noise is non-Gaussian [30]. The Luenberger 
observer offers notable advantages, such as simplicity and 
low computational cost, particularly for linear systems. It 
is easy to implement and does not require complex 
calculations like the Kalman filter, allowing for quick and 
efficient state estimation. The estimated signal is then 
used for direct torque load compensation to enhance the 
system’s instantaneous response. The SMC algorithm is 
introduced to reduce oscillation during sliding mode 
operation and improve system stability. This algorithm 
utilizes continuous control signals to replace traditional 
high-gain switching terms, thereby enhancing robustness 
against speed variations. Additionally, the algorithm 
integrates adaptive feedback gain correlated with the 
motor speed, mitigating the effects of speed fluctuations 
on system performance.  

The goal of the paper is to propose a robust hybrid 
control strategy for PMSM drive systems, specifically 
targeting improved torque stability and overall system 
performance. By integrating SMC with PRC, the strategy 
seeks to minimize torque ripple and enhance system 
efficiency. The approach is further reinforced by the use 
of enhanced Luenberger state observer (LSP) and Kalman 
state observer (KSP) for accurate load torque estimation. 
The ultimate goal is to offer a more reliable, robust and 
efficient control solution, surpassing traditional PI 
controllers, particularly in environments with fluctuating 
loads and dynamic motor parameters. 

Main contributions of this study are: 
1. The proposal of a hybrid control strategy combining 

SMC and PRC, improving both torque stability and 
system performance, resulting in better performance than 
traditional PI controllers. 

2. The integration of Luenberger and Kalman observers 
enhances load torque estimation and improves system 
reliability by accurately estimating unmeasured states. 

3. The introduction of feed-forward compensation 
(FFC), which compensates for changes in load torque and 
disturbances, thus reducing delays and enhancing 
transient response. 

4. Significant improvements in key performance 
metrics (integral of absolute error – IAE, integral of time-
weighted absolute error – ITAE, integral of squared error 
– ISE) based on simulation results, showing reductions of 
up to 94.614 % in IAE, 94.603 % in ITAE and 99.708 % 
in ISE compared to PI control. 

5. A focus on applications in fluctuating load 
environments such as electric vehicles and renewable 
energy systems, where dynamic motor parameters and 
environmental changes often occur. 

Mathematical model of PMSM. In the dq-axis 
reference frame, disregarding the magnetic saturation 
effect, the extended back electromotive force (EMF) model 
of a PMSM can be represented as follows [4, 6, 24, 31]: 
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where s is the Laplace operator; ud, uq are the stator 
voltages in the dq-axis; id, iq are the components of the 
stator current in the dq-axis; Rs is the stator winding 
resistance; Ld, Lq are the dq-axis inductances; e is the 
rotational speed of the magnetic flux; ea is the magnitude of 
the extended EMF of the PMSM, described as [1, 2, 24]: 
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Applying the inverse Park transformation to (1) 
yields the EMF model in the αβ-axis coordinate system, 
expressed as follows [6, 24]: 
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where  is the electrical rotor angle; u, u are the stator 
voltages in the -axis; i, i are the components of the stator 
current in the -axis. 

The governing torque Te equation can be derived from 
the input power equation of the windings. By simplifying 
this equation and applying the characteristics of the PMSM, 
the following expression is obtained [4, 32]: 

   qdqdqfe iiLLipT  
2

3
,             (4) 

where p is the number of pole pairs; φf is the rotor 
permanent magnet flux linkage. 

In a PMSM, the permanent magnets are positioned 
on the rotor’s surface, making the motor non-salient. 
Consequently, the reluctance paths along both the d-axis 
and q-axis are identical, resulting in equal inductances for 
both axes. For simplicity, the machine’s inductance will 
be represented by Ld = Lq = Ls. Therefore, (4) can be 
written as [33, 34]: 

qfe ipT 
2

3
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Using Newton’s second law, the mechanical 
equation of the system can be derived as: 
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where j is the total system inertia; TL is the load torque; 
r is the mechanical angular velocity of the rotor; Bm is 
the viscous friction coefficient of the motor. 

The total system inertia accounts for the inertia of 
the PMSM and all coupling or fastening components 
connecting them. The first term in the equation 
corresponds to the torque required to accelerate the 
system without the effects of friction. The other 2 terms 
refer to the torque needed to overcome viscous friction 
and disturbance torque, respectively. Disturbance torque 
can originate from factors such as load torque, unmodeled 
friction, or other dynamic effects within the system. 

Load torque identification method. FFC is a 
control technique that improves system response to rapid 
input signal changes without relying on feedback from the 
system. This method effectively reduces delays and helps 
the control system stabilize quickly when there are sudden 
changes in load torque, disturbances, or external factors. 
FFC works by providing a control signal based on the 
predicted behavior of the system. When there are changes 
in load torque or external disturbances, the FFC control 
signal is computed and applied immediately without 
waiting for feedback from the system’s sensors or 
measurement devices. To apply FFC, we first need to 
develop the dynamic model of the system. For SPMSM, 
this model describes the relationship between the 
electromagnetic torque, load torque and frictional effects 
within the system. From (6) we rewrite the general 
equation for the SPMSM system as follows: 
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where TL is the load torque acting on the motor, caused by 
external factors like mechanical load; TD is the 
disturbance torque, including unmeasured factors such as 
unmodeled friction or external disturbances affecting the 
system. Angular acceleration dr/dt is a key factor in 
determining how the motor system responds to the 
applied torque. The above equation can be restructured to 
calculate angular acceleration easily: 
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where L_D is the attenuation coefficient; wL_D is the noise 
affecting the load. Determining dr/dt helps understand 
the rate of change of the motor’s rotational angle under 
the influence of various factors such as electromagnetic 
torque, load torque and friction. The system can measure 
the r but cannot directly measure TL_D. Therefore, the 
speed sensor will give the result: 

spdmotrmeas v _ ,                     (9) 

where meas is the measured motor speed; vmot_spd is the 
measurement noise. 

From (8), (9) we can rewrite in the form: 
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where ;
0

1







 


L

m jjB
A


 ;

0

1










j
B  ;

10

01








G   01C . 

From (7), it can be seen that the electromagnetic 
torque Te must overcome the total load force and friction 
force to produce the angular acceleration of the motor. To 
calculate and control torque in the system, the drive 
system needs to respond to changes in the control signal 
and reference torque. The following equation can 
represent a dynamic model of the drive system: 
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where Te_ref is the reference torque that the system needs 
to achieve, provided by the controller, m is the time 
constant of the drive system, which reflects the response 
speed of the drive system. This equation (11) means that 
the electromagnetic torque Te will change over time and 
adjust to match the reference torque Te_ref. The time 
response of the drive system is controlled m, helping the 
system achieve stability when there are changes in the 
control signal. 

FFC uses predictive models to react immediately to 
changes in load torque and disturbances. The FFC control 
signal u(t) is calculated in advance and applied directly to 
the system to minimize delays: 

refeDLFFC TTKtu __)(  ,                (12) 

where KFFC is the gain constant for FFC. The FFC control 
signal u(t) is calculated from the estimated load torque 
and disturbance torque, allowing the electromagnetic 
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torque to reach the desired value without waiting for 
feedback from the system.  

Therefore, the modified system structure is depicted 
in Fig. 1. FFC helps transient response and eliminates 
interference in the control system. Figure 1 illustrates the 
control diagram of the system, integrating FOC to 
effectively manage the SPMSM. The speed controller 
takes the reference speed r_ref as input and combines it 
with one of the 2 observers, using the torque signal T to 
generate the iqT_ref signal for motor control. This signal, 
along with the feedback current in the dq-axis, creates the 
reference currents id and iq. The current controller then 
produces the voltage commands ud and uq, which are 
converted into a 3-phase signal and supplied to the space 

vector pulse width modulation converter. The actual stator 
current iq, the real position , obtained from the position 
sensor, and r, derived from the derivative of the real 
position, are used as inputs for the feedback signal, the 
Luenberger observer, and the Kalman filter. The torque 
estimation methods are: discrete Luenberger observer in 
simulation 1 and discrete Kalman filter in simulation 2. 
These 2 simulations are independent of each other to test 
the response of the proposed controller against each 
observer. This design ensures that only one independent 
estimation method is active at any given time, thus 
avoiding data conflicts and facilitating the evaluation and 
comparison of the performance of both methods in a 
unified simulation framework. 
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Fig. 1. Diagram of proposed control strategy 

 

Design of discrete Luenberger observer. The basic 
structure of the Luenberger observer is shown in Fig. 2. 
Based on the mathematical model of the PMSM, the speed 
and torque of the PMSM, which are easy to measure, are 
typically used as inputs to reconstruct the motor’s state. In 
Fig. 2 a feedback control is introduced, where the feedback 
signal is the difference between the estimated state and the 
actual state, such as the q-axis current. This feedback 
mechanism adjusts the observer to make the estimated 
value infinitely close to the actual value as time progresses. 
A linear state observer is constructed based on the 
mechanical equation of the system. 
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Fig. 2. Structure of the discrete Luenberger load observer 

 

The plant in state-space form is presented in (13) 
[35–37]: 
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where in the Luenberger observer the matrices A, B, C, D, 
G are the essential components in the state-space model of 
the system. These matrices describe the system dynamics 
and the relationship between the system’s states, inputs and 

outputs. With x representing the system states (such as 
speed and torque); u is the input, which is the actual motor 
torque Te; w is the disturbance acting on the system; y is the 
output, which signals like speed or torque can measure. 

The state space representation of the Luenberger 
observer is established in (10), we see that (13) is a 
shortened form of (10) to simplify the control system design 
process. The load is already transformed into a state. The 
Luenberger observer equation is used to estimate the states 
of the system. It is based on the system’s dynamic model 
and adjusts the estimated states based on the measured 
outputs and inputs. The equation is given by [35, 38]: 
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where x̂  is the estimated state of the system; L is the 
observer gain matrix; y is the measured output of the system. 

The equation indicates that by designing the observer 
gains L = [l1   l2]

T such that the new system (A – LC) 
becomes stable and fast enough, the estimation error can 
be driven to zero by using the estimated speed as a 
feedback signal (r = r_ref – r), where r_ref is the 
reference value and r is the response rate. The observer 
gains L can be determined using the pole placement 
method. The closed-loop system poles are placed at the 
desired locations, and then the new characteristic equation 
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is derived. By comparing the coefficients of the latest and 
old characteristic equations, the observer gains can be 
found. By converting the above continuous state function 
A, B, C, D into a discrete state Ad, Bd, Cd, Dd, Gd and 
reconstructing the estimation matrices using the existing 
observer gain L, the values of the Luenberger observers 
are then AdL, BdL, CdL, DdL, GdL. Hence the new system 
matrices are rewritten as: 

,

;;

;;

;d;d

;;

00

.

SGL

DDDD

CCCC

tBeBtBeB

eAeA

dLdL

ddLd

ddLd

t

d
tA

dL

t
tA

d

tA
dL

At
d

s

d

s

sds










        (15) 

where ts is the sampling time; GdL is the arbitrary matrix; 
S is obtained by solving the Sylvester equation. 

The control parameters are given in Table 1. 
Table 1 

Discrete parameter values of the controller 

Parameters Value Parameters Value 

s1,2 –50 ± j10 Dd 







 003.00

009.0006.0  

L 0  ts(s) 0.210–3 

L 







 960.37

885.99  AdL 






 
999.0007.0

013.0980.0  

Ad 






 
0.10

013.01  BdL 







 007.00

019.0013.0  

Bd 







0

013.0  CdL 






 
0.1003.0

006.0990.0  

Cd 






 
0.1003.0

006.0990.0  DdL 







 003.00

009.0006.0  

 

Design of discrete steady-state Kalman filtering. 
This section presents a simple discrete Kalman filter. The 
system in discrete state space is represented as [24, 39, 40]: 

,

;111
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kkkk

vDuCxy

wBuAxx



                (16) 

where the subscript k–1, k are represented as the time step 
k–1 and k, respectively; xk is the state vector; xk–1 is the 
vector state of the system; uk–1 is the system input; wk–1 is 
the process noise affecting the state; yk is the output 
vector; yk is the output vector at the time step k; vk is the 
measurement noise affecting the output. The process 
noise wk and measurement noise vk are assumed to be 
white, zero-mean, uncorrelated, and have the following 
covariance properties [24, 39]: 
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where Qk is the covariance matrix of the process noise; 
Rk is the covariance matrix of the measurement noise; 
k–1 is the Kronecker delta function (equals 1 if k = j, 
otherwise 0). 

Kalman filter algorithm, including initialization, 
state propagation, covariance update, and Kalman gain 
calculation. The process of solving this algorithm is 
presented as follows. 

Initialization. The first step is to initialize the filter 

by defining the initial state estimate 
0x̂  as the expected 

value of the initial state x0. Similarly, the state estimation 

error covariance matrix 
0P  is initialized. These are 

described as [24, 39]: 
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State propagation. In this step, the filter propagates 
the state estimate forward in time. This is referred to as 
the prior state estimate in the literature. It is calculated 
using as [24, 39]: 

11ˆˆ 



  kkk uBxAx ,                   (19) 

where 
kx̂  is the prior state estimate. 

Covariance update. The next step is to update the 
state estimation error covariance matrix 

kP , which 
describes the uncertainty in the state estimate. The 
equation for this update is [24, 39]: 

11 



  k
T

kk QAPAP ,                  (20) 
where Qk–1 is the process noise covariance matrix. 

Kalman gain calculation. Finally, the Kalman gain 
Kk is computed to determine how much the state estimate 
should be corrected based on the measurement error. The 
formula for this is [24, 39]: 
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T
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k
RCCP

CP
K




 


.                       (21) 

The next step in the Kalman filter algorithm is the 
correction step, where the posterior state estimate 

kx̂  is 
updated based on the measurement. This process is 
described as [24, 39]: 

   kkkkk xCyKxx ˆˆˆ .                  (22) 

The term  kk xCy ˆ  is called the residual or 
innovation, representing the difference between the actual 
measurement and the predicted output. After updating the 
state estimate, the error covariance matrix 

kP  is updated 
by [24, 39]: 

  kkk PKCIP )( ,                     (23) 

where I is the identity matrix; CKk represents the 
adjustment to the covariance based on the Kalman gain 
and output matrix. It is expected that 

kP  will decrease 

over time because the term (I – CKk) < 1. This reduces 
uncertainty in the state estimate as more measurements 
are processed. The noise covariance matrices Qk (process 
noise) and Rk (measurement noise) significantly affect the 
Kalman gain Kk. When Qk increases, the state estimation 
error covariance 

kP  increases, leading to a higher 
Kalman gain Kk. Lowering Rk also increases the Kalman 
gain Kk. With a higher Kalman gain, the algorithm puts 
more weight on the new measurement, leading to larger 
corrections in the state estimate. Conversely, if Kk is close 
to 0, the algorithm ignores new measurements and 
assumes the current estimate is accurate. By substituting 
the same data as in the subsection of «design of discrete 
Luenberger observer», it gets the control parameters for 
the Kalman filter shown in Table 2. 
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Table 2  
Discrete parameter values of the controller 

Parameter Value Parameter Value Parameter Value 


kx̂  








985.5

686.125  
kP  








084.00

00  Kk 







 556.0

835.0

Qk–1 







00

0001.0  
kP  








00

0001.0  
kx̂  








966.0

819.123

In embedded systems, due to limitations in memory 
and computational resources, it is often preferable to fix 
the Kalman gain to reduce processing costs. This means 
that parameters Kk and Pk are not updated continuously, 
which is only feasible under the assumption that the 
system and noise remain time-invariant. The steady-state 
Kalman filter, although not fully optimal, approaches 
optimality k. Figure 3 illustrates that the Kalman gain 
converges to a stable value after approximately 50 and 
500 time samples, with a sampling time of 0.2 ms. In the 
left plot, the Kalman gain increases rapidly from 0.81 to 
0.835 within the first 30 steps and then stabilizes, 
indicating quick adaptation to the measured signal. 
Meanwhile, the right plot shows the Kalman gain 
decreasing from –0.6 to near 0 over 500 steps, reflecting 
an increasing trust in system predictions over time. These 
variations enable the Kalman filter to enhance the 
accuracy of state estimation and noise reduction, 
effectively supporting the control of PMSMs. 
 

t, s t, s

 
Fig. 3. Kalman gains captured during simulation 

 

Proposed speed controller. To introduce the SMC 
design, we first define the system’s state variables, which 
are crucial for implementing this control approach. By 
establishing these state variables, we can proceed to 
formulate the control law and analyze the system’s behavior 
under SMC. Therefore, the system state is defined as: 
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Additionally, the following equations can be 
obtained based on (6) and (24): 
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with ,.
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q  the system (25) is 

represented under the state space system as: 
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The sliding surface function is defined as: 

1xcs rs   .                       (27) 

Differentiating (27) becomes: 
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According to the SMC law, the control signal is 
expressed as: 



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  ss sksXexc
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1
1
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,       (29) 

where u is the control signal; c, e, k are the control 
parameters respectively; X is the state variable of the 
system; ss is the deviation (or error) of the system from the 
sliding surface; α is the adaptive switching power term. 

The reference current for the q-axis can be expressed as: 

tsksXexc
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i ss

T

refq d)sgn(
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1
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_ 

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
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.   (30) 

To analyze the stability of the controller, define the 
Lyapunov function: 

Ly = ss
2 / 2.                             (31) 

Substituting (27) and (28) into (31), it has follows as: 
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The derivative of the Lyapunov function Ly gives us 
the above result, where dLy/dt is the change in the 
Lyapunov function over time. Since the parameters satisfy 
e > 0,  > 0, k > 0, then dLy/dt < 0 will be established, 
ensuring that the system enters the sliding mode as long 
as the conditions are met. SMC speed control diagram is 
shown in Fig. 4. 

ωr_ref +
Eq. (30)
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Fig. 4. The proposed speed control diagram 

 

Proposed current controller. PRC is an effective 
control method designed to improve accuracy in control 
systems, especially in systems that require the resolution 
of issues related to steady-state error at the fundamental 
frequency. Unlike traditional PI control methods, PRC 
control is capable of adjusting the signal at the 
fundamental frequency without producing a steady-state 
error. PRC has the following transfer function: 
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where kp is the proportional gain; ki is the integral gain; 
e is the resonant frequency, which determines the 
frequency at which the PRC has the most effect.  

When the angular frequency of the AC signal is 
given as e, the magnitude of the transfer function 
GPRC(s) will be: 
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From (34), it can be observed that the magnitude of 
GPRC(s) becomes infinite, which allows the control of a 
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sinusoidal signal with the same frequency as the resonant 
frequency to achieve zero steady-state error control. 
However, in practical applications, due to issues in 
implementing the ideal PRC, this section uses an 
improved quasi-PRC, with its transfer function being: 
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ss
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 ,           (35) 

where c is the cutoff frequency of the quasi-resonant 
controller. 

From (35), it can be seen that the controller has 3 
design parameters: kp, ki and c. For ease of analysis, 
assume that any 2 parameters are kept constant, and then 
observe how the variation of the 3rd parameter affects the 
system’s performance. Figure 5 shows the corresponding 
changes in the Bode plot when only kp, ki and c is 
changed, and analyzes the role of each parameter.  

In Fig. 5,a, where kp is changed, it can be seen that 
the magnitude outside the bandwidth increases as kp 
increases, while the fundamental frequency does not 
increase significantly. This indicates that when kp 
becomes too large, its effect on resonance is negligible. In 
Fig. 5,b, where only ki is changed, it can be seen that as ki 

increases, the gain at the fundamental frequency 
increases, indicating that it plays a role in eliminating 
steady-state error. However, the increase in ki also widens 
the bandwidth of the PRC, thus increasing the influence 
of resonance and amplifying unnecessary signals, which 
is detrimental to the overall stability of the system. In Fig. 
5,c, where only c is changed, it can be seen that as c 
decreases, the gain at the fundamental frequency 
increases, and the bandwidth narrows. This indicates that 
it has good selectivity for the signal, and fe determines the 
bandwidth of the controller. Therefore, to achieve a good 
control effect with the resonant controller, the principle of 
parameter tuning is to adjust kp to eliminate the steady-
state error of the system and adjust c to suppress the 
impact of frequency fluctuations. The transfer function 
(33) is in the s-domain. When using PRC for digital 
control of a 3-phase PMSM system, to simplify the 
discretization process, only the resonant controller is 
discretized. Its implementation can be done using bilinear 
transformation, and the transformation formula is: 
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Fig. 5. The changes in the Bode plot corresponding: a) kp is changed; b) ki is changed; c) c is changed 

 

Substituting (36) into (35), it can become as follows: 
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in which: 
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After organizing, the difference equation of the 
controller is: 

)2()1()2()()( 2120,  kyakyakebkebku qd . (38) 

Equation (38) achieves steady-state control of the error 
signal. It can be seen that the control is relatively simple and 
easy to implement. The implementation block diagram of the 
PRC is shown in Fig. 6 and parameters are listed in Table 3. 

Table 3 
Parameter of the PRC 

Parameter Value Parameter Value 
kp 5.775 c 20 
ki 1000 ts 0.0001 

 

We have the resonant frequency matches the motor 
speed, thus achieving near-error-free tracking of the current. 
Compared to traditional PI control methods, the control 
system based on the PR controller does not contain feed-
forward compensation terms or decoupling terms related to 

motor parameters. This reduces coordinate rotation, thereby 
simplifying the implementation of the control algorithm and 
improving the robustness of the control system. 

 
 

ωe
b0

b1

× 

Δid,q

b2

a1

a2

× 

× 

× 

× 

+
+

+

+

+

+

‐

ud,q(k)

1z

2z

1z

2z

Eq. (37)

 
Fig. 6. Implementation block diagram of the PRC 

 
Results and discussion. The simulation cases were 

conducted under steady-state conditions and assumed 
operating conditions to observe the control signals and 
performance between LSP and KSP under the influence of 
the proposed SMC-PRC controller and the traditional PI 
controller. The parameters of the SPMSM are listed in 
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Table 4. MATLAB/Simulink software was used to conduct 
3 simulation experiments (Fig. 7), to demonstrate the 
operational capability of the SPMSM under all conditions 
and evaluate the effectiveness of the observation methods 
tested in this study. The data from the 3 conditions display 
key parameters, including the actual rotor speed, estimated 

speed, reference speed, current components, dq-axis 
voltage (id, iq, ud and uq), and 3-phase current (iabc). In each 
experimental case, the parameters were calculated and 
compared with the proposed SMC-PRC observer and the 
traditional PI controller. These values indicate the 
superiority of the proposed controller in this study. 

 
 

Table 4  
The parameters of tested system 

Parameter Value Parameter Value 
Rated power Pr, kW 9.4 d-axis inductance Ld, mH 2.2 
Rated speed nr, rpm 4500 q-axis inductance Lq, mH 2.2 

Number of pole pairs 4 
Rotor peak PM flux 
linkage φm, Wb 

0.12258

Stator resistance Rs, Ω 0.268 Viscous friction Bm, Ns/m 0.001665
Total inertia j, kgm2 0.0146 Rated torque Tr, Nm 20 
DC-link voltage Udc, V 360 Switching frequency fs, kHz 5 

 

Case study 1. In this experiment, 2 control 
strategies (SMC-PRC and PI) were compared when the 
motor operated at a low speed of 50 rpm and under no-
load conditions. The simulation results showed that both 
control strategies were able to track the reference signal 
well (Fig. 8,a,b). However, during the startup process, the 
torque of SMC-PRC was lower compared to PI, with the 
startup values being 4.888 Nm and 12.994 Nm, 
respectively, as shown in Fig. 8,c,d. The startup currents 
also exhibited a significant difference: while SMC-PRC 
had a startup current of 6.649 A, PI had a much higher 
current – 17.671 A (Fig. 8,e,f). This indicates that 
SMC-PRC reduces the startup current by up to 62.382 %. 
Additionally, the 3-phase currents (Fig. 8,g,h), displayed 
distinct changes in both control strategies, with 
SMC-PRC providing a more stable current during startup. 

The error indices IAE, ITAE, and ISE (Table 5) 
show that the SMC-PRC method significantly improves 
over PI, with IAE reduced by 10.837 %, ITAE – 9.6 %, 
ISE – 20.72 %.  

Table 5 
A comparison of the error indices in the case study 1 

Observer type SMC-PRC PI Ratios, % 
IAE 0.3258 0.3654 10.837 

ITAE 1.9548 2.1624 9.6 
ISE 0.0176 0.0222 20.72 

These results demonstrate that the use of the SMC-
PRC controller not only helps reduce startup current but 
also enhances control performance, improving the 
accuracy and stability of the system compared to PI. 

Case study 2. This test provides a comprehensive 
overview of the observed results when the speed command 
is increased from 2000 to 3000 rpm at 2 s and then reduced 
from 3000 rpm to 1000 rpm at 3 s, after which the motor 
stabilizes. The simulation results with both the SMC-PRC 
and PI controllers (Fig. 9) reveal significant differences in 
the control parameters throughout the operation. The speed 
of both controllers follows the reference signal almost 
exactly, but PI shows a slower settling time compared to 
SMC-PRC (Fig. 9,a,b). Based on the comparison of settling 
times between the 2 methods, SMC-PRC proves to be 
superior. Specifically, at 3000 rpm, the settling time of SMC-
PRC is 2.089 s, which is shorter than PI’s 2.265 s, and faster 
by approximately 0.176 s. At 2000 rpm, SMC-PRC has a 
settling time of just 0.165 s, while PI takes 0.568 s, faster by 
about 0.403 s. Finally, at 1000 rpm, SMC-PRC achieves a 
settling time of 3.186 s, while PI takes 3.63 s, faster by 
0.444 s. In total, the settling time of SMC-PRC is 5.44 s, 
while PI’s settling time is 6.463 s, with a difference of 
1.023 s. Therefore, SMC-PRC is not only faster, but also 
enables the system to reach the reference speed more 
quickly and stably compared to PI. The torque in 
SMC-PRC during startup is 0.105 Nm, lower than PI’s 
0.343 Nm, indicating that SMC-PRC is more stable in the 
initial phase (Fig. 9,c,d). The startup currents iq and id  
(Fig. 9,e,f) have values of 34.551 A and –15.355 A 
for SMC-PRC, significantly lower compared to PI’s startup 
currents of 55.116 A and –17.964 A, indicating that SMC-
PRC helps reduce the startup current by approximately 
37.312 % for id and 14.634 % for iq. 

 

Fig. 7. The tested simulation model



72 Electrical Engineering & Electromechanics, 2025, no. 6 

 

a b 

t, s t, s 

t, s t, s 

t, s t, s 

t, s t, s 

c d 

e f 

g h 

 
Fig. 8. Dynamic response of the system in the case study 1: a) and b) the rotor speed applying SMC-PRC and PI methods; 

c) and d) the electromagnetic torque applying SMC-PRC and PI methods; e) and f ) the d- and q-axis current applying SMC-PRC and 
PI methods; g) and h) the 3-phase current applying SMC-PRC and PI methods 
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Fig. 9. Dynamic response of the system in the case study 2: a) and b) the rotor speed applying SMC-PRC and PI methods; 

c) and d) the electromagnetic torque applying SMC-PRC and PI methods; e) and f ) the d- and q-axis current applying SMC-PRC 
and PI methods; g) and h) the 3-phase current applying SMC-PRC and PI methods 

 

The 3-phase current images also show significantly 
greater stability in SMC-PRC compared to PI, where PI 
experiences strong oscillations in the phases. These results 
demonstrate that the SMC-PRC controller outperforms PI in 
reducing startup current and maintaining system stability. 

The error indices IAE, ITAE, and ISE (Table 6) show 
significant improvements in the SMC-PRC method compared 
to PI, with IAE reduced by 94.614 %, ITAE – 94.603 %, and 
ISE – 99.708 %. These results confirm that the use of the 
SMC-PRC controller not only helps reduce the startup 
current, but also enhances control performance, improving the 
accuracy and stability of the system compared to PI. 

Table 6 
A comparison of the error indices in the case study 2 

Observer type SMC-PRC PI Ratios, % 
IAE 0.548 10.182 94.614 

ITAE 3.296 61.092 94.603 
ISE 0.05 17.278 99.708 

Case study 3. In this case, the simulation results were 
carried out by setting the speed to 2000 rpm and varying the 
load torque from 0 to 12 Nm at 3 s (Fig. 10). The results for 
both the SMC-PRC and PI control methods show significant 
differences in tracking the speed and current signals. Both 
methods maintain the speed close to the reference value, but 
SMC-PRC exhibits higher stability, especially during the 
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rapid speed change from 2.9 s to 3 s (Fig. 10,a,b). The 
torque in SMC-PRC stabilizes at around 12 Nm, while 
PI shows greater fluctuation, reaching approximately 
12.53 Nm (Fig. 10,c,d). The currents in Fig. 10,e,f show 
large variations in both methods during startup. SMC-PRC 
starts with a significantly lower current about 18.558 A for iq, 
while PI peaks at 20.229 A for iq, indicating that SMC-PRC 
is more effective in reducing the startup current. Also, the 
3-phase currents (Fig. 10,g,h), are more stable in SMC-PRC 
compared to PI, helping to minimize unnecessary 
oscillations. These results show that SMC-PRC not only 
reduces the startup current, but also improves the stability 
and overall performance of the system compared to PI. 

The error indices IAE, ITAE, and ISE (Table 7) 
show that the SMC-PRC method significantly improves 
over PI, with IAE reduced by 74.18 %, ITAE – 74.18 %, 
and ISE – 93.333 %. These results confirm that the use of 
the SMC-PRC controller not only helps reduce the startup 
current but also enhances control performance, improving 
the accuracy and stability of the system compared to PI. 

Table 7 
A comparison of the error indices in the case study 3 

Observer type SMC-PRC PI Ratios, % 
IAE 82.68 320.22 74.18 

ITAE 496.08 1921.32 74.18 
ISE 1139.33 17090.141 93.333 
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Fig. 10. Dynamic response of the system in the case study 3: a) and b) the rotor speed applying SMC-PRC and PI methods; 

c) and d) the electromagnetic torque applying SMC-PRC and PI methods; e) and f ) the d- and q-axis current applying SMC-PRC 
and PI methods; g) and h) the 3-phase current applying SMC-PRC and PI methods 

 

Conclusions. The purpose of this work was, firstly, 
to evaluate the performance of the use of field 
programmable gate array programmable logic circuits for 
the diagnosis of faults in an induction machine by 
introducing a fuzzy inference system into the algorithm of 
the analysis of the motor current signal analysis by taking 
the RMS signal of the stator phase current as the fault 
indicator signal. Secondly, to implement and validate the 
proposed hardware detection algorithm. The originality of 
our work has been to combine the performance of artificial 
intelligence techniques, the simplicity of motor current 
signal analysis algorithms and the execution power of 
programmable logic circuits, for the definition of a fault 
diagnosis structure for the induction machine achieving the 
best simplicity/performance and speed/performance ratios. 
Finally, the proposed solution has improved the 
performance of fault detection for the induction machine, 
especially in terms of hardware resource consumption, real-
time online detection and speed of detection. 
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