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Adaptive finite-time synergetic control for flexible-joint robot manipulator with disturbance
inputs

Introduction. In this paper, the adaptive finite time controller is designed for flexible-joint manipulator (FJM) to stabilize oscillations
and track the desired trajectory based on synergetic control theory (SCT) under disturbance inputs. The problem of the proposed work
consists in the development of a mathematical model of the flexible joint while ignoring the nonlinear components of the actuator and
synthesizing the control law that ensures the system stability within a settling time. The aim of this study is to use finite-time synergetic
controller to ensure the reduction of system tracking error, avoid vibration and achieve steady state in a certain time period. An adaptive
synergetic law is developed to solve the problem of uncertainty in the mathematical model of the actuator of FJM and input
disturbances. Methodology. First, based on SCT the finite-time controller is constructed via the functional equation of the first manifold.
The control law is designed to ensure the movement of the closed-loop system from an arbitrary initial state into the vicinity of the
desired attractive invariant manifold, that is, the target attracting manifold. Secondly, to adjust the control law online, an adaptive law is
developed to estimate the disturbance acting on the input. Then, the Lyapunov function is used to prove that the system can be stabilized
in a sufficiently small neighborhood of the origin within finite time under input disturbances. Novelty. The implemented controller is
effective in ensuring stability over a given time, minimizing the jitter problem while maintaining tracking accuracy and system
robustness in the presence of input noise. Results. Numerical simulation and experimental results are presented to illustrate the
effectiveness of the proposed method. The research directions of the model were determined for the subsequent implementation of the
results in experimental samples. References 25, table 1, figures 7.
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Bemyn. Y pobomi pospobreno adanmueHuil KiHyeuil pecyisimop 4acy Olisi 2HyUKo20 wiapHipHozo mawinyismopa (FJM) ons cmabinizayii
KOMUSAHb Ma GIOCMENCEHHs Oaxicanoi mpaekmopii Ha ocHosi cunepeemuynoi meopii ynpaeninnus (SCT) npu exionux 30ypennsx. 3asoanis
NpONoHO8anoi pobomu noiacac 'y po3pooyi MamemMamuiHoi Mooemi SHyuK020 WapHIpa 3 i2HOPYBAHHAM HENIHIUHUX CKIa008ux npusooy ma
cunmes 3aKOHYy YNpAaGliHHA, WO 3abe3neyye CMILKICMb cucmemu npomsazom udacy ecmanoenenus. Memoro Oanozo Oocniodicenns €
BUKOPUCIAHHA KIHYEB0UACHO20 CUHEPLeMUYHO20 peyliamopa Ol 3a0e3nedeH st 3HUNCCHHS. NOMUIKU GIOCIEICEHHs. CUCIEMU, GUKTIOYEHHS
8iOpayii ma O00CACHeHHA CMIIKO20 CMAHY 3a Ne6HULl NPOMIdCOK uacy. Po3pobieHo adanmueHull cuHepeemudHull 3aKOH Olsl GUDIUEHH
npobnemu HesusHaveHoCi 8 MamemamuuHit mooeni npueody FJM ma exionux 30ypenv. Memoodonozin. Ilo-nepwe, na ochosi SCT 6yoyemucs
KiHyesull pezyisamop 4acy 3a OONOMO2010 (DYHKYIOHATLHO2O PIGHAHHA NEPUio20 PISHOMAHIMMA. 3aKOoH YnpaguiHHA po3pobneHuil ons
3abe3neyents nepemiujerHs 3aMKHymoi cucmemu 3 008UIbHO20 NOYAMKOB020 CIAHY 6 0ONACHb OaNCAH020 NPUMAZYIOYO20 THEAPIAHMHOZO
piBHOMaHimmsL, mobmo yinboso2o pisomarnimms. Ilo-Opyee, O HANQUIMYBAHHS 3AKOHY VAPAGTIHHA 6 PEXCUMI OHIALH PO3POOIIEMbCS
aoanmueHuil 3aKoH OJis OYyiHKu 00ypennsi, wo Oie Ha exoodi. [lomim 3a donomozoro Gyrnryii JanyHosea 00600umbCs, Wo cucmema modice Gymu
cmabinizoeana y 00Cums Manoi OKOMUYi NOYamKy KoopouHam 3a Kinyesuil yac npu exionux 36ypennsx. Hoeusna. Peanizosanuii pezynamop
epexmuenuil 0151 3a0e3neyeH s CMIIKOCII NPOMALOM 3A0AHO20 YACY, MIHIMIZYIOUU NPOOeMY KOMUEAaHD, 30epiearouu MOYHICIb 6I0CIEeHCeHHs
ma Haditinicms cucmemu 3a HasagHocmi 6xionoz2o uiymy. Pesynomamu. Haseoeno uucenste Mooentosants ma eKchepumMeHmansHi pesyiiemanmu
ons Lmocmpayii epeKmusHOCmi 3anpPoONOHOBAH020 Memody. BusHaueno nanpsmu 0ociiodxcenb Mooeii 0l NOOAbUol peanizayii pe3yibmamis y
excnepumenmanshux 3paskax. biom. 25, taon. 1, puc. 7.

Kniouogi cnosa: rHyYKO-IAPHiIPpHUIT MAHINYJISATOP, CHHEPreTHYHA Teopis yNpaBJliHHA, KiHIEeBUH Yac ynpaBiaiHHsA, GpyHKkuis
JlsimyHoBa, ajanTUBHE YHPaBJIiHHA.

1. Introduction. Nowadays, robotic technology has
developed strongly, flexible-joint manipulator (FJM) have
been widely used in mechatronic systems. Compared to
traditional robot joint drive systems, FJM has smaller
structures and lighter weights. FJMs are typical
representatives of nonlinear coupling systems, which have
complex dynamic relationships between rigid links and
flexible joints. In these systems, the joints are often driven by
elastic mechanisms such as speed reducers or cables [1], and
joints with torsional stiffness are known as flexible joints. The
existence of joint flexibility causes oscillations in the output
of the system. Reducing output oscillation and improving
control quality of flexible joints has become a topical issue of
interest to many researchers [2].

To achieve high quality control of servo systems,
most control methods require establishing an accurate
dynamic model. The modeling and control of single
disturbances in flexible joint robot controllers have been
extensively studied in many researches [3—11]. In [3] the
influence of friction force on the control moment of the
FIM system is considered. In [4] the dynamic modeling
and analytical modeling for robot manipulators with rigid
links and flexible joints are presented. Dynamic equations
of flexible-joints are firstly developed using the

Lagrangian formulation in minimal joint and motor
coordinates. In [6] presents a way to derive a low-order
model for multi-space serial arms. Due to the low number
of degrees of freedom, this model can be used in real-time
systems for control and estimation. To build a more
accurate dynamic model, work [7] considers the
flexibility of the load. Many researches indicate that small
power motors are always prioritized as joint actuators to
make the mechanical structure compact enough in the
design of robot controllers. Consequently, this leads to the
fact that joint actuators cannot provide arbitrarily large
torque as required by the unconstrained control laws
proposed in most previous controllers. In [8, 9] the
presence of actuator dynamics is not considered in
controller calculations, assuming motor torque is
proportional to the voltage supplied to the actuator,
simplifying the mathematical model in the synthesis of
control laws. In many real-world situations, flexible joint
controllers do not account for motor dynamics and input
disturbances. If these impacts on torque are ignored in the
control method design, the performance of the FIM
controller system will decrease, which can lead to a
reduction in the system’s control quality. Therefore,
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practical problems require considering motor dynamic
uncertainties and input disturbances when designing
controllers for FIM.

In recent years, many researches have presented
control laws have been designed to improve the control
quality performance of FJM systems, such as PID
controller [10], fuzzy logic controller (FLC) [11-13],
sliding mode control [8, 14, 15], backstepping control [9,
16, 17], robust control [18], intelligent control [19],
synergetic controller [20, 21] and adaptive control [22].
For example, in [10] the authors designed a PID
controller, similar to a rigid robot for the flexible joint
robot system, and its effectiveness was demonstrated
through simulation. In [12], the authors proposed an
adaptive FLC using the backstepping approach and
dynamic surface method. In [8], an adaptive SMC was
proposed, which improves tracking quality under
disturbances and is implemented on a real system. In [15],
a finite-time sliding mode controller is designed in
combination with a disturbance observer to enhance
control quality. A novel hybrid control strategy for single-
link flexible articulated robot manipulators, addressing
the inherent uncertainties and nonlinear dynamics. By
integrating nonlinear reduced-order active disturbance
rejection control with backstepping control is presented in
the paper [16]. In [18], a robust model predictive
controller scheme for flexible joint robots modeled as
nonlinear Lipschitz systems with unknown bounded
perturbations is designed. In [19], a neural network
control method was presented for the flexible joint
controller system under disturbance conditions. In
research [20], synergetic control theory (SCT) was applied
with the proposed sliding manifolds. This research show
the control system has high robustness, but they do not
consider stabilization time and input disturbances. The
research on flexible joint controllers that account for input
disturbances and stabilization time are still limited. In [22],
a generalized adaptive saturated controller based on
backstepping control, singular perturbation separation, and
neural networks was designed to achieve tracking control
with limited torque inputs.

Purpose and objectives of the article. With the
requirement of ensuring the stability of the FIM system in
a given time and overcoming the effects of input
disturbances and actuator uncertainties. This work
proposes a adaptive finite-time synergetic controller to
overcome the effects of external disturbances and ensure
the stability time, the adaptive control law compensates
the disturbance observed at the system input. The main
contribution of this study is to develop a controller by
constructing manifolds that satisfy the functional
equations that ensure a predetermined convergence time,
while simultaneously resisting disturbances and reducing
static errors, with the best performance and chattering
reducing. In addition, the adaptive control law has been
used in the ensemble controller to identify input
disturbances and actuator uncertainties. The main
objective of this work is to evaluate the effectiveness of
the proposed control law for the FIM system. Second,
deploy and validate the control law on a real system. The
Lyapunov method is used to prove the stability, with the
contributions of the work highlighted by:

1) The manifold design using regression and
functional equations ensures the finite-time stable system
to improve the control accuracy, finite-time convergence
and fast transient response.

2) The stability analysis is proven according to the
Lyapunov criterion, in which the adaptive law is generated.

3) The control law is realized on an embedded system
to verify the effectiveness of the proposed control law.

2. Methods.

2.1. Concept of finite-time control.

There is a nonlinear system that can be described as:

x(1) = f(x(1),u), x(0) = xp, D
where xeR" is the state variable vector and f0, 0) = 0,
ueR’ is the control signal; f{x, 0) = 0 is the continuously
nonlinear function in an open neighborhood near the origin.
If the convergence time is limited by a function 7(x,), the
system without input impact is considered finite-time
stable. In other words, the system can achieve convergence
with certain predetermined time constants denoted by 7.y,
where T, 1S a constant satisfying 7(xp) < Tipax.

Lemma 1 [25]. Consider the system (1), when u =0
and suppose there exist a Lyapunov function V(x), ¢>0,
k>0 and 0 < < 1 such that

V(x)+cV % (x)+kV(x)<0 )

holds. Then, the equilibrium is finite-time stable and the
convergence time is given by
l-a
T.(x) < ln(l +(k/c)V (xo)) . 3)
k(l-a)

Similarly, the origin U = D = R" and V(x) is globally
finite-time stable if and only if and is radially unbounded.

2.2. Synergetic control law design process. The
main steps of the STC controller synthesis process can be
summarized as follows [19, 23, 24]. Assume the
controlled system is described by the nonlinear
differential equation system in the form (3). First, by
defining a manifold as a function y;(x), the control law is
designed to force the system to move to the manifold
wi(x) = 0. The designer can select the manifold type with
characteristics according to the desired control quality
criteria. In specific cases, the manifold may be a simple
linear combination of the state variables.

When the system has not reached technological
maturity, continue the same process, defining m manifolds
(with p < n—1) sequentially in a decreasing order. The
synthesized controller will ensure the system converges to
the next manifold y5 and then to ,. On the final manifold,
the system will ensure movement along y;, towards the
origin. These manifolds will have dynamic characteristics
satisfying the equation of the form:

Tyj; + Fi(w) = 0,T; >0, 4)
where 7; is the parameter that affects the rate of
convergence to the manifold specified by the macro
variable. Simultaneously, the functions F( ;) must satisfy
the following conditions: F;(0) = 0 and Fy(y;)(y;) for all
w; = 0, meaning equation (4) is globally asymptotically
stable. Additionally, the functions Fy(y;) are chosen in
such a way that they satisfy the requirements of the
control problem.
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The process of designing the control law for system
(1) with p = 1 is performed as follows: First, take the
derivative of the manifold yi(x) = 0 and substitute it into
(4) combined with system (1) to obtain:

0
Tl%fl(x,u)m(m):o. 5)

Solving (5) we find the control law u. With such a
control law, the system enters the first manifold, leading to
system (1) being partitioned into a subsystem of a lower
order than the original system. Continue the steps above
with the partitioned subsystems until the final manifold is
reached to obtain the complete control law of the system.

In this design process, each manifold introduces a
new constraint in the state space and reduces the order of
the control system, operating towards global stability. The
quality of the system can be determined through the form
of the functional equation and the form of the manifold. As
presented above, the settling time can be predetermined
through the choices of functional equation forms. The
process summarized here can be easily implemented as a
computer program for automatic control law synthesis or
can be manually executed for simple systems, such as the
synthesis of control for a two-degree-of-freedom FIM.

2.3. Platform introduction and operating
principle. In this paper, the flexible joint system built in
the laboratory is taken as the research object (Fig. 1), and
the nominal parameters of the system are approximately
determined, with the model of the DC motor not fully
identified. The motor is considered as a proportional link
between the output torque and the input voltage. The
prototype of the FIM system and the experimental setup
are shown in Fig. 1. The system includes a FMJ system,
an OMRON E6B2-CWZ6C 1000 (P/R) rotary encoder
sensor, a 385-P16 Hall magnet encoder sensor, a BTS
7960 motor control power amplifier circuit, a 775
planetary gear reducer motor, and power supply circuits
of3.3Vand 12 V.

Magnet Encoer Q

T FIM

-

Sear Reducer Mo-
tor 775 Planetary

R

pc BTS7960 Motor
Embedded board Driver
STM32F411 DIS.

Omron E6B2
Encoder

Fig. 1. FIM: a — block diagram; b — schematic diagram

The STM32F411 embedded board is used as the main
board of the real-time control model system. This
embedded board has a system frequency of up to 100 MHz
and a high-performance 32-bit CPU. The embedded board
is the core of the experimental platform and is used to
implement real-time algorithms. A large number of

peripheral interfaces make the STM32F411 not only
capable of good data processing but also facilitate the
design of digital systems. The control program is written
in C language on the STM32CubelDE software.
Experimental data readings are displayed on MATLAB
software through UART communication with a baud rate
of 9600 bit/s. The rotational angle data of the link and
motor shaft are collected through 2 encoders and read
through the interrupt pins of the embedded board. The
control algorithm is implemented in embedded software.
The control signal is modulated in pulse-width
modulation from the general-purpose input/output pins of
the embedded board to the voltage amplifier and then to
the motor and actuate the link of the FIM.

2.4. Mathematical model of the FJM. This section
refers to works [8, 14]. The basis of the controller
determines the angular position of the flexible link
controlled by a direct current motor with an encoder,
while the flexible link will respond based on the action of
the motor shaft. The deviation of the soft link response is
determined by the stiffness of the joint. Due to unknown
motor parameters, it is assumed that the output torque is
proportional to the voltage applied to the motor, and its
joint can only deform when rotating in the vertical plane
in the direction of the joint’s rotation. Assuming that the
frictional force between the links is very small and can be
neglected and the states can be measured, the dynamic
equation of the FIM takes the form [9, 21]:

{Iiil +mglsin(qy) + k(g1 —q2) = 0;

JG k(g —gq2)=7+d,
where ¢, ¢, are the rotation angles of the 2 links of the
FIM in Fig. 1. The coefficient k is the stiffness of the
flexible joint controller model. The larger the elastic
stiffness k, the larger the elastic stiffness and the smaller
the flexibility of the flexible joint, and ¢, is closer to g,,.
The smaller the £, the smaller the elastic stiffness of the
flexible joint, the greater the flexibility, and the easier it is
to bend the soft arm. 7 and J are the moments of inertia of
the flexible link and the motor rotor; m is the mass of the
flexible link; / is the distance from the center of the
flexible link to the flexible — joints; g is the gravitational
acceleration; 7 is the control torque generated by the
motor. In this research, the motor model is not used in the
synthesis of the control law, assuming 7 is proportional to
the voltage supplied to the motor, meaning 7 = N-u, in
there u is the voltage supplied to the motor and N is the
coefficient; d is the control torque disturbance and the
uncertainty of the motor model.

We define x| =qy; X3 =q1; X3 =q3;%4 =qp. The

(6)

system of equations of FIM (6) is rewritten as:

X =X
Xy = —%xl —Tsinxl +§x3;
X3 = X4; @
Xy =£(x1—x3)+ﬁu+i.
J J J

Assumption 1. The unmeasurable factor d is

bounded: |d | =D where D,y i positive constant.

max >
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Assumption 2. If x;, = 0; x, = 0 and x, > 0 then

x3— 0.

The model above shows that the system is complex
and non-linear. Importantly, the state vector elements are
connected to each other through a chained integration
procedure and the last state variable can be obtained by
integrating the control input u. The objective of the FIM
control problem is that the angle ¢; of link rotates
correctly according to the desired signal, the setting time
is within the given time # and while maintaining control
quality under input disturbance d.

2.5. Synthesis of finite-time control law based on
SCT without input disturbance. In this section, the FJ]M
control problem is to ensure that link ¢; moves according
to the desired trajectory x,, by adjusting the voltage u
supplied to the motor to create a torque acting on link ¢,.
Under the effect of the motor torque acting on link ¢, to
bring the system to the desired point in a finite time and
keep the system stable at that position. First, the control
law is designed when there is no disturbance, which
means d = 0. From the perspective of SCT, this means
that it is necessary to synthesize the control signal u(x).
The action of the control law will move the links through
the joints from the initial position following a given signal
or stabilize at the desired position when there is a
disturbance to ensure control quality.

From the requirement of FIM control problem to
follow the desired value, based on SCT for engineering
systems, we propose the first technological invariant
corresponding to the control objective:

X = Xgpe ()

In the first step, based on the purpose of controlling
and reducing the order of the system model according to
SCT, the first manifold selected has the form:

Wi = x4 — @1(x1, X2, X3). )

In the manifold (9) contains the function ¢y(xy, x,, x3),
which determines the desired properties of the link
velocity x4 at the intersection with the invariant manifold
w1 = 0. The function ¢,(x), x,, x3) is calculated in the next
steps, to ensure that it satisfies the technological invariant
(8). According to SCT, to ensure that the manifold y; =0
and satisfies the finite-time condition, the macro variable
w1 1s chosen as the solution of the functional equation of
the following form:

. 1
v +cp sgn(v)v +hky =0, (10)
In there ¢;>0, k>0 and 0.5 < £ < 1. Substituting (9) into
(10) we have:

pe-

k=0, (1)

Substituting x4 in the system of equations (7) when

d
5(954 — o)+ sgn(y)w,

d=0into (11), we obtain the control signal u as follows:

3 a¢1 dxi
—k(xl—x3)+.]§ et
U= i=1 8xl' dt

24-1
_J(ngn(‘//l)|l//l| / +k1l//1)

With the synthesis of the control law u as described,
after some time, the manifold y; will change and
asymptotically stabilize to 0 (i.e., x4 becomes ¢). At this

IN.  (12)

point, the dynamics of the initial system will become the
dynamics of the following system:

).Cl:XZ;

. k mgl . k

Xy =——x; ——=sin(xy) +—Xx3; 13
25770 (x1) JRE (13)
X3 =g

In the following steps, the synthesis process is
carried out sequentially to determine the internal control
signals @, @(x;, x;) and the technological invariant (8).
The manifolds are chosen sequentially to ensure system
stability and convergence to the following manifolds:
W, = X3 — @, Y53 =X, — K(x; — x,,). These manifolds satisfy
the following functional equations:

hy,+y,=0;
Ty +y3 =0,
where 7>, T; are the positive constants.

With the synthesis steps as described above, the
system will move to the final manifold ys;. When the
system reaches the final manifold, it means that:

V3 =O:>XZ —K(x1 —xsp)=0.

(14)
1s)

(16)
The condition for (15) to be stable about x,, is K<0.
From equations (15) and (16), we find the internal

control signals ¢, and ¢,:

:ZZ opy ﬁ_x3_¢2 . (17)
! i=1 5x,~ dt T2 ’
02 = in(ey) 4 + 2 () -

, I k (18)
_E<X2—K(x1_xsp))

From (12), (17) and (18), we find the control law u
for the FIM. To analyze the stability of system (7) with
control law (12) and prove the stability time of the control
system, we choose the Lyapunov function of the form:

1
V= El//f . (19)
Derivative of function (19) gets:
. . 28-1
V=ywy = —l/fl(cl sgn(y w7 + kll//l) =
(20)
_ 2 2 aup ki
el it —n g
1W1 11 Y >

According to the Lyapunov method, y;—0 as t—0.
Combined with SCT =0, w—>0 and x,—9x,,.
Therefore, the system is asymptotically stable. From (20)
and according to Lemma 1, the settling time to the first
manifold from the initial position is calculated using (3).

2.6 Adaptive synergetic control design. In practice,
control systems can be subject to model uncertainties and
input disturbances. As presented in the mathematical model
of the FIM above, the component of the actuating motor is
not fully modeled. For this reason, the finite-time controller
must be designed to counteract these input disturbances. A
common approach is to design an adaptive control law,
incorporating estimated values of uncertainties into the
control law. In this section, an adaptive control law is
designed to estimate the input disturbance d. The proposed
adaptive controller is as follows:
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3 O dy
i=1 6xl~ dr

251
—J(CSgn(l//1)|¥/1| ’ +k1‘//1j

—k(x—x3)—d+J Y.

U= /N, (1)

where d is the estimated value of d.

Consider the Lyapunov function as in (19). The
derivative of function (19) with the controller (21) applied
to the system (7) when the system enters the first
manifold is given by:

. 241
V= (— ey seny - kl‘//lj i, (22

where d =d-d is the error between the input
disturbance and the observed disturbance. The Lyapunov

function for designing adaptive controller has the
following form:

Vaa =V 42, (23)
where yis the positive constant.
The derivative of function (23), we have:
. ~ 28-1 ~ A
Vaa :—(d + ¢y sgn(y v s +k1‘//1j‘//1 +ydd =
(24)

-t
=——VF ——V+d| -y, |
Y 2 =y

The adaptive controller is determined based on ¥,
being negative:

d=yy. (25)
The function (25) becomes:
o=y Ky (26)

2# 2
According to the Lyapunov method and SCT, the
controller (21) with the adaptive law (25) ensures that the

system (7) is asymptotically stable. The block diagram of
the control system with the finite-time adaptive controller

for the FJM is shown in Fig. 2.

-1 e A | X0 X2, X3, X
Ox, Ot | 2y

-J (q sign(y) [ + k.w.)

T

~ 3 Op, Ox,
1 —k(x,—x)—d+J Yy '—J

l .
o =%sm(x|)+x‘ + Ix, -X |

2 0p, Ox, K, o
LD e A
. . 1 .
X% -0,(x,x) ’kTs(Xf’K(""""))
L

Fig. 2. Control system diagram of FIM

3. Results and discussion. In this section, to verify the
effectiveness of the SCT law for flexible joints in the
presence of input disturbances, different cases are conducted
on numerical simulations and on the experimental model.

3.1 Simulation results. In the simulation, the FIM
system is controlled according to the adaptive synergetic
controller (21) implemented in MATLAB software. The
model parameter values used in the simulation include:
m = 0.25 kg; k=20 N-m/rad; J =1 kg-mz; 1=0.2 kg-mz;
g=9.81 m/s’; [=0.35 m; N =30 N-m/V. The parameters
of the proposed control law (23) are as follows: K = -90;

7,=0.12; T3 =0.12; ¢, = 100; f=0.9; k; = 100; y=0.01.
The input disturbance d = 50 N-m. The simulation process
of implementing the proposed finite-time adaptive
synergetic control law is carried out with 2 cases: the first
case, where the initial state of the system is at the origin
x1 = 0; x, = 0; x3 = 0; x4 = 0 moving to position x;_g, = 7/2;
Xo-gp = 05 X35 = 72; X4 = 0 in the first 5 s, and in the next
5 s, it moves to position x|y, = —/2; X5 g, = 0; x3.5, =772;
X4 = 0. The second case, where the initial position of the
system is x; = 0; x, = 0; x3 = 0; x4 = 0 and then the link ¢,
tracks the desired trajectory signal in the form x,_g, = cosart
with the angular frequency @ = 1 rad/s. The maximum
voltage applied to the motor is 12 V.

In the first case, the results indicate that the angle
response of link ¢;(x;_,) and gx(x3_,,) compared to the set
value (x,_y,) are shown in Fig. 3. From the graph, we see
that the response of link ¢, stabilizes to the desired value
with times of 0.495 s and 0.509 s, respectively (Table 1).
The response of link ¢, shows oscillations during the
transient process. This indicates that the actuator control
signal adjusts quickly to ensure the system is stable within
the given time according to Lemma 1. The difference in
angle response between the two links and the set value is
due to input disturbances and the flexible connection
between the two links. The angular velocity response of
link g»(x4 ) 18 faster than link g(x,,,) to reduce the
oscillation of link ¢;. The control signal is clearly changing
during the transient process to ensure the tracking
performance of link ¢;. The control signal does not return
to zero because of the existence of the input disturbance d.

2

Apbeo-

| S T P —

0 2 4
Fig. 3. Stability results in the first case with input disturbance:

a — angle response; b — angular velocity response;
¢ — control input
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Table 1
Control system performance indicators

Time 0-5, s Time 5-10, s
x| Ty P.O.,% | ey, rad T, s P.O.,% | ey, rad
0,495 0 0 0.509 0.8 0

*T, is the settling time; P.O. is the percent overshoot; e is the
steady-state error.

In the second case, the results indicate that the angle
response of link g; tracking the setpoint signal and the
angle of ¢, are shown in Fig. 4. From the graph, we can
see that the response of link ¢, tracks the desired
trajectory after 0.52 s. The response of link ¢, shows
oscillations during the transient process, but eventually
tracks the setpoint angle. During the transient process, the
angular response oscillations indicate a change in the
rotation direction of link ¢, to cancel out the oscillations
in link ¢g;. The control signal with oscillations during the
transient process and then following the periodic value of
the setpoint signal once tracking is achieved.
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Fig. 4. Stability results in the second case with input disturbance:
a — angle response; b — angular velocity response;
¢ — control input

3.2 Experimental verification. To confirm the
effectiveness of the proposed controller, experiments
were conducted on the experimental model described in
section 2 (Fig. 5). The control algorithms were
implemented on STM32 cube IDE using C language with
a sampling time of 2.5 ms. The experimental results of the
proposed controller demonstrate the effectiveness of the
proposed method without explicitly modeling the motor
and input disturbances. In this case, model errors
including of the motor and the controller, are inherent in

the model. In the simulation section, these errors are
considered as disturbance d. The dynamic parameters of
the controller and the cases conducted are the same as in
the simulation section.

7
7

Fig. 5. Expefimental platform FIM

The results presented in Fig. 6 show that the angle
response of the FIM with the angle feedback of link ¢,
stabilizes to the desired value. The angle response stabilizes
to zero when the system is stable at the set value. The control
signal supplied to the motor. Clearly, when stabilized at the
balanced position, the voltage does not completely return to
0. This is due to various sources of disturbance such as
friction, backlash in the gearbox, and joints, leading to the
above errors. This also leads to the systems response not
completely matching the simulation part.

0 2 4 6 8 10

Fig. 6. Experimental results in the first case: a — angle response;
b — angular velocity response; ¢ — control input
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The tracking performance on the experimental
model is shown in Fig. 7. From the results, the angle of
link g, tracks quite well. Besides, for the set-point signal
in the form of an evaluation quantity, the response on the
actual system is greatly affected by the motor with a
gearbox. However, its results also show the possibility of
realizing the controller appearing on real objects.
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Fig. 7. Experimental results in the second case: a — angle
response; b — angular velocity response; ¢ — control input

4. Conclusions. The article presents the synthesis
method of the finite-time adaptive synergetic control law
for flexible joint systems. The synthesized control law
ensures small system tracking errors and avoids
oscillations. The finite-time characteristic is established
based on the choice of the function equation. The
developed adaptive law has well solved the problem of
uncertainty in the mathematical model of the actuator and
input disturbances. The stability of the system with the
proposed control law is proven by the Lyapunov function.
The simulation results of the proposed -controller
demonstrate its effectiveness. With two different tracking
signal forms, the results show stability and tracking
performance within a specified time. The results show
that the system response has no oscillation and no
overshoot. The proposed control law has been applied on
the experimental model. Experimental results demonstrate
the above tracking capability of the developed control
method in the presence of input disturbances and without
taking into account the mathematical model of the motor.

Although the results on the actual system have limitations
due to equipment quality and model uncertainty FJM,
they also affirm the practical applicability of the control
law. Finally, future researches will consider the effects of
strong nonlinear disturbances from the actuator. It will
also incorporate some modern theories such as fuzzy
logic, neural networks, and nature-inspired optimization
algorithms to fine-tune controller parameters and design
the adaptive law.
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