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Introduction. In this paper, the adaptive finite time controller is designed for flexible-joint manipulator (FJM) to stabilize oscillations 
and track the desired trajectory based on synergetic control theory (SCT) under disturbance inputs. The problem of the proposed work 
consists in the development of a mathematical model of the flexible joint while ignoring the nonlinear components of the actuator and 
synthesizing the control law that ensures the system stability within a settling time. The aim of this study is to use finite-time synergetic 
controller to ensure the reduction of system tracking error, avoid vibration and achieve steady state in a certain time period. An adaptive 
synergetic law is developed to solve the problem of uncertainty in the mathematical model of the actuator of FJM and input 
disturbances. Methodology. First, based on SCT the finite-time controller is constructed via the functional equation of the first manifold. 
The control law is designed to ensure the movement of the closed-loop system from an arbitrary initial state into the vicinity of the 
desired attractive invariant manifold, that is, the target attracting manifold. Secondly, to adjust the control law online, an adaptive law is 
developed to estimate the disturbance acting on the input. Then, the Lyapunov function is used to prove that the system can be stabilized 
in a sufficiently small neighborhood of the origin within finite time under input disturbances. Novelty. The implemented controller is 
effective in ensuring stability over a given time, minimizing the jitter problem while maintaining tracking accuracy and system 
robustness in the presence of input noise. Results. Numerical simulation and experimental results are presented to illustrate the 
effectiveness of the proposed method. The research directions of the model were determined for the subsequent implementation of the 
results in experimental samples. References 25, table 1, figures 7. 
Key words: flexible-joint manipulator, synergetic control theory, finite-time control, Lyapunov function, adaptive control. 
 

Вступ. У роботі розроблено адаптивний кінцевий регулятор часу для гнучкого шарнірного маніпулятора (FJM) для стабілізації 
коливань та відстеження бажаної траєкторії на основі синергетичної теорії управління (SCT) при вхідних збуреннях. Завдання 
пропонованої роботи полягає у розробці математичної моделі гнучкого шарніра з ігноруванням нелінійних складових приводу та 
синтез закону управління, що забезпечує стійкість системи протягом часу встановлення. Метою даного дослідження є 
використання кінцевочасного синергетичного регулятора для забезпечення зниження помилки відстеження системи, виключення 
вібрації та досягнення стійкого стану за певний проміжок часу. Розроблено адаптивний синергетичний закон для вирішення 
проблеми невизначеності в математичній моделі приводу FJM та вхідних збурень. Методологія. По-перше, на основі SCT будується 
кінцевий регулятор часу за допомогою функціонального рівняння першого різноманіття. Закон управління розроблений для 
забезпечення переміщення замкнутої системи з довільного початкового стану в область бажаного притягуючого інваріантного 
різноманіття, тобто цільового різноманіття. По-друге, для налаштування закону управління в режимі онлайн розробляється 
адаптивний закон для оцінки обурення, що діє на вході. Потім за допомогою функції Ляпунова доводиться, що система може бути 
стабілізована у досить малої околиці початку координат за кінцевий час при вхідних збуреннях. Новизна. Реалізований регулятор 
ефективний для забезпечення стійкості протягом заданого часу, мінімізуючи проблему коливань, зберігаючи точність відстеження 
та надійність системи за наявності вхідного шуму. Результати. Наведено чисельне моделювання та експериментальні результати 
для ілюстрації ефективності запропонованого методу. Визначено напрями досліджень моделі для подальшої реалізації результатів у 
експериментальних зразках. Бібл. 25, табл. 1, рис. 7. 
Ключові слова: гнучко-шарнірний маніпулятор, синергетична теорія управління, кінцевий час управління, функція 
Ляпунова, адаптивне управління. 
 

1. Introduction. Nowadays, robotic technology has 
developed strongly, flexible-joint manipulator (FJM) have 
been widely used in mechatronic systems. Compared to 
traditional robot joint drive systems, FJM has smaller 
structures and lighter weights. FJMs are typical 
representatives of nonlinear coupling systems, which have 
complex dynamic relationships between rigid links and 
flexible joints. In these systems, the joints are often driven by 
elastic mechanisms such as speed reducers or cables [1], and 
joints with torsional stiffness are known as flexible joints. The 
existence of joint flexibility causes oscillations in the output 
of the system. Reducing output oscillation and improving 
control quality of flexible joints has become a topical issue of 
interest to many researchers [2]. 

To achieve high quality control of servo systems, 
most control methods require establishing an accurate 
dynamic model. The modeling and control of single 
disturbances in flexible joint robot controllers have been 
extensively studied in many researches [3–11]. In [3] the 
influence of friction force on the control moment of the 
FJM system is considered. In [4] the dynamic modeling 
and analytical modeling for robot manipulators with rigid 
links and flexible joints are presented. Dynamic equations 
of flexible-joints are firstly developed using the 

Lagrangian formulation in minimal joint and motor 
coordinates. In [6] presents a way to derive a low-order 
model for multi-space serial arms. Due to the low number 
of degrees of freedom, this model can be used in real-time 
systems for control and estimation. To build a more 
accurate dynamic model, work [7] considers the 
flexibility of the load. Many researches indicate that small 
power motors are always prioritized as joint actuators to 
make the mechanical structure compact enough in the 
design of robot controllers. Consequently, this leads to the 
fact that joint actuators cannot provide arbitrarily large 
torque as required by the unconstrained control laws 
proposed in most previous controllers. In [8, 9] the 
presence of actuator dynamics is not considered in 
controller calculations, assuming motor torque is 
proportional to the voltage supplied to the actuator, 
simplifying the mathematical model in the synthesis of 
control laws. In many real-world situations, flexible joint 
controllers do not account for motor dynamics and input 
disturbances. If these impacts on torque are ignored in the 
control method design, the performance of the FJM 
controller system will decrease, which can lead to a 
reduction in the system’s control quality. Therefore, 



46 Electrical Engineering & Electromechanics, 2025, no. 3 

practical problems require considering motor dynamic 
uncertainties and input disturbances when designing 
controllers for FJM. 

In recent years, many researches have presented 
control laws have been designed to improve the control 
quality performance of FJM systems, such as PID 
controller [10], fuzzy logic controller (FLC) [11–13], 
sliding mode control [8, 14, 15], backstepping control [9, 
16, 17], robust control [18], intelligent control [19], 
synergetic controller [20, 21] and adaptive control [22]. 
For example, in [10] the authors designed a PID 
controller, similar to a rigid robot for the flexible joint 
robot system, and its effectiveness was demonstrated 
through simulation. In [12], the authors proposed an 
adaptive FLC using the backstepping approach and 
dynamic surface method. In [8], an adaptive SMC was 
proposed, which improves tracking quality under 
disturbances and is implemented on a real system. In [15], 
a finite-time sliding mode controller is designed in 
combination with a disturbance observer to enhance 
control quality. A novel hybrid control strategy for single-
link flexible articulated robot manipulators, addressing 
the inherent uncertainties and nonlinear dynamics. By 
integrating nonlinear reduced-order active disturbance 
rejection control with backstepping control is presented in 
the paper [16]. In [18], a robust model predictive 
controller scheme for flexible joint robots modeled as 
nonlinear Lipschitz systems with unknown bounded 
perturbations is designed. In [19], a neural network 
control method was presented for the flexible joint 
controller system under disturbance conditions. In 
research [20], synergetic control theory (SCT) was applied 
with the proposed sliding manifolds. This research show 
the control system has high robustness, but they do not 
consider stabilization time and input disturbances. The 
research on flexible joint controllers that account for input 
disturbances and stabilization time are still limited. In [22], 
a generalized adaptive saturated controller based on 
backstepping control, singular perturbation separation, and 
neural networks was designed to achieve tracking control 
with limited torque inputs. 

Purpose and objectives of the article. With the 
requirement of ensuring the stability of the FJM system in 
a given time and overcoming the effects of input 
disturbances and actuator uncertainties. This work 
proposes a adaptive finite-time synergetic controller to 
overcome the effects of external disturbances and ensure 
the stability time, the adaptive control law compensates 
the disturbance observed at the system input. The main 
contribution of this study is to develop a controller by 
constructing manifolds that satisfy the functional 
equations that ensure a predetermined convergence time, 
while simultaneously resisting disturbances and reducing 
static errors, with the best performance and chattering 
reducing. In addition, the adaptive control law has been 
used in the ensemble controller to identify input 
disturbances and actuator uncertainties. The main 
objective of this work is to evaluate the effectiveness of 
the proposed control law for the FJM system. Second, 
deploy and validate the control law on a real system. The 
Lyapunov method is used to prove the stability, with the 
contributions of the work highlighted by: 

1) The manifold design using regression and 
functional equations ensures the finite-time stable system 
to improve the control accuracy, finite-time convergence 
and fast transient response. 

2) The stability analysis is proven according to the 
Lyapunov criterion, in which the adaptive law is generated. 

3) The control law is realized on an embedded system 
to verify the effectiveness of the proposed control law.  

2. Methods. 
2.1. Concept of finite-time control.  
There is a nonlinear system that can be described as: 

0)0(),),(()( xxuxx  tft ,                 (1) 

where xRn is the state variable vector and f(0, 0) = 0, 
uRp is the control signal; f(x, 0) = 0 is the continuously 
nonlinear function in an open neighborhood near the origin. 
If the convergence time is limited by a function T(x0), the 
system without input impact is considered finite-time 
stable. In other words, the system can achieve convergence 
with certain predetermined time constants denoted by Tmax, 
where Tmax is a constant satisfying T(x0) < Tmax. 

Lemma 1 [25]. Consider the system (1), when u = 0 
and suppose there exist a Lyapunov function V(x), c>0, 
k>0 and 0 <  < 1 such that  

0)()()(  xxx kVcVV                        (2) 

holds. Then, the equilibrium is finite-time stable and the 
convergence time is given by 
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Similarly, the origin U = D = Rn and V(x) is globally 
finite-time stable if and only if and is radially unbounded. 

2.2. Synergetic control law design process. The 
main steps of the STC controller synthesis process can be 
summarized as follows [19, 23, 24]. Assume the 
controlled system is described by the nonlinear 
differential equation system in the form (3). First, by 
defining a manifold as a function 1(x), the control law is 
designed to force the system to move to the manifold 
1(x) = 0. The designer can select the manifold type with 
characteristics according to the desired control quality 
criteria. In specific cases, the manifold may be a simple 
linear combination of the state variables.  

When the system has not reached technological 
maturity, continue the same process, defining m manifolds 
(with p  n–1) sequentially in a decreasing order. The 
synthesized controller will ensure the system converges to 
the next manifold 2 and then to m. On the final manifold, 
the system will ensure movement along m towards the 
origin. These manifolds will have dynamic characteristics 
satisfying the equation of the form: 

0,0)(  iiiii TFT  ,                  (4) 

where Ti is the parameter that affects the rate of 
convergence to the manifold specified by the macro 
variable. Simultaneously, the functions Fi(i) must satisfy 
the following conditions: Fi(0) = 0 and Fi(i)(i) for all 
i = 0, meaning equation (4) is globally asymptotically 
stable. Additionally, the functions Fi(i) are chosen in 
such a way that they satisfy the requirements of the 
control problem.  
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The process of designing the control law for system 
(1) with p = 1 is performed as follows: First, take the 
derivative of the manifold i(x) = 0 and substitute it into 
(4) combined with system (1) to obtain: 
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Solving (5) we find the control law u. With such a 
control law, the system enters the first manifold, leading to 
system (1) being partitioned into a subsystem of a lower 
order than the original system. Continue the steps above 
with the partitioned subsystems until the final manifold is 
reached to obtain the complete control law of the system. 

In this design process, each manifold introduces a 
new constraint in the state space and reduces the order of 
the control system, operating towards global stability. The 
quality of the system can be determined through the form 
of the functional equation and the form of the manifold. As 
presented above, the settling time can be predetermined 
through the choices of functional equation forms. The 
process summarized here can be easily implemented as a 
computer program for automatic control law synthesis or 
can be manually executed for simple systems, such as the 
synthesis of control for a two-degree-of-freedom FJM. 

2.3. Platform introduction and operating 
principle. In this paper, the flexible joint system built in 
the laboratory is taken as the research object (Fig. 1), and 
the nominal parameters of the system are approximately 
determined, with the model of the DC motor not fully 
identified. The motor is considered as a proportional link 
between the output torque and the input voltage. The 
prototype of the FJM system and the experimental setup 
are shown in Fig. 1. The system includes a FMJ system, 
an OMRON E6B2-CWZ6C 1000 (P/R) rotary encoder 
sensor, a 385-P16 Hall magnet encoder sensor, a BTS 
7960 motor control power amplifier circuit, a 775 
planetary gear reducer motor, and power supply circuits 
of 3.3 V and 12 V. 
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Fig. 1. FJM: a – block diagram; b – schematic diagram 

 

The STM32F411 embedded board is used as the main 
board of the real-time control model system. This 
embedded board has a system frequency of up to 100 MHz 
and a high-performance 32-bit CPU. The embedded board 
is the core of the experimental platform and is used to 
implement real-time algorithms. A large number of 

peripheral interfaces make the STM32F411 not only 
capable of good data processing but also facilitate the 
design of digital systems. The control program is written 
in C language on the STM32CubeIDE software. 
Experimental data readings are displayed on MATLAB 
software through UART communication with a baud rate 
of 9600 bit/s. The rotational angle data of the link and 
motor shaft are collected through 2 encoders and read 
through the interrupt pins of the embedded board. The 
control algorithm is implemented in embedded software. 
The control signal is modulated in pulse-width 
modulation from the general-purpose input/output pins of 
the embedded board to the voltage amplifier and then to 
the motor and actuate the link of the FJM. 

2.4. Mathematical model of the FJM. This section 
refers to works [8, 14]. The basis of the controller 
determines the angular position of the flexible link 
controlled by a direct current motor with an encoder, 
while the flexible link will respond based on the action of 
the motor shaft. The deviation of the soft link response is 
determined by the stiffness of the joint. Due to unknown 
motor parameters, it is assumed that the output torque is 
proportional to the voltage applied to the motor, and its 
joint can only deform when rotating in the vertical plane 
in the direction of the joint’s rotation. Assuming that the 
frictional force between the links is very small and can be 
neglected and the states can be measured, the dynamic 
equation of the FJM takes the form [9, 21]: 
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where q1, q2 are the rotation angles of the 2 links of the 
FJM in Fig. 1. The coefficient k is the stiffness of the 
flexible joint controller model. The larger the elastic 
stiffness k, the larger the elastic stiffness and the smaller 
the flexibility of the flexible joint, and q1 is closer to qm. 
The smaller the k, the smaller the elastic stiffness of the 
flexible joint, the greater the flexibility, and the easier it is 
to bend the soft arm. I and J are the moments of inertia of 
the flexible link and the motor rotor; m is the mass of the 
flexible link; l is the distance from the center of the 
flexible link to the flexible – joints; g is the gravitational 
acceleration;  is the control torque generated by the 
motor. In this research, the motor model is not used in the 
synthesis of the control law, assuming  is proportional to 
the voltage supplied to the motor, meaning  = Nu, in 
there u is the voltage supplied to the motor and N is the 
coefficient; d is the control torque disturbance and the 
uncertainty of the motor model. 

We define 24231211 ;;; qxqxqxqx   . The 

system of equations of FJM (6) is rewritten as: 
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Assumption 1. The unmeasurable factor d is 
bounded: maxDd  , where Dmax is positive constant. 
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Assumption 2. If x1 = 0; x2 = 0 and 02 x  then 

x3  0. 
The model above shows that the system is complex 

and non-linear. Importantly, the state vector elements are 
connected to each other through a chained integration 
procedure and the last state variable can be obtained by 
integrating the control input u. The objective of the FJM 
control problem is that the angle q1 of link rotates 
correctly according to the desired signal, the setting time 
is within the given time tf and while maintaining control 
quality under input disturbance d. 

2.5. Synthesis of finite-time control law based on 
SCT without input disturbance. In this section, the FJM 
control problem is to ensure that link q1 moves according 
to the desired trajectory xsp by adjusting the voltage u 
supplied to the motor to create a torque acting on link q2. 
Under the effect of the motor torque acting on link q2 to 
bring the system to the desired point in a finite time and 
keep the system stable at that position. First, the control 
law is designed when there is no disturbance, which 
means d = 0. From the perspective of SCT, this means 
that it is necessary to synthesize the control signal u(x). 
The action of the control law will move the links through 
the joints from the initial position following a given signal 
or stabilize at the desired position when there is a 
disturbance to ensure control quality. 

From the requirement of FJM control problem to 
follow the desired value, based on SCT for engineering 
systems, we propose the first technological invariant 
corresponding to the control objective: 

x1 = xsp.                                 (8) 
In the first step, based on the purpose of controlling 

and reducing the order of the system model according to 
SCT, the first manifold selected has the form:  

1 = x4 – 1(x1, x2, x3).                      (9) 
In the manifold (9) contains the function 1(x1, x2, x3), 

which determines the desired properties of the link 
velocity x4 at the intersection with the invariant manifold 
1 = 0. The function 1(x1, x2, x3) is calculated in the next 
steps, to ensure that it satisfies the technological invariant 
(8). According to SCT, to ensure that the manifold 1 = 0 
and satisfies the finite-time condition, the macro variable 
1 is chosen as the solution of the functional equation of 
the following form: 

0)sgn( 11
12

1111    
kc ,           (10) 

In there c1>0, k1>0 and 0.5 <  < 1. Substituting (9) into 
(10) we have: 
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Substituting 4x  in the system of equations (7) when 

d = 0 into (11), we obtain the control signal u as follows: 
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With the synthesis of the control law u as described, 
after some time, the manifold 1 will change and 
asymptotically stabilize to 0 (i.e., x4 becomes 1). At this 

point, the dynamics of the initial system will become the 
dynamics of the following system: 
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In the following steps, the synthesis process is 
carried out sequentially to determine the internal control 
signals 1, 2(x1, x2) and the technological invariant (8). 
The manifolds are chosen sequentially to ensure system 
stability and convergence to the following manifolds: 
2 = x3 – 2, 3 = x2 – K(x1 – xsp). These manifolds satisfy 
the following functional equations: 

0222 T ;                          (14) 

0333 T ,                          (15) 

where T2, T3 are the positive constants. 
With the synthesis steps as described above, the 

system will move to the final manifold 3. When the 
system reaches the final manifold, it means that: 

0)(0 123  spxxKx .             (16) 

The condition for (15) to be stable about xsp is K<0. 
From equations (15) and (16), we find the internal 

control signals 1 and 2: 
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From (12), (17) and (18), we find the control law u 
for the FJM. To analyze the stability of system (7) with 
control law (12) and prove the stability time of the control 
system, we choose the Lyapunov function of the form: 

2
12

1V .                                 (19) 

Derivative of function (19) gets: 
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According to the Lyapunov method, 10 as t. 
Combined with SCT 20, 30 and x1xsp. 
Therefore, the system is asymptotically stable. From (20) 
and according to Lemma 1, the settling time to the first 
manifold from the initial position is calculated using (3). 

2.6 Adaptive synergetic control design. In practice, 
control systems can be subject to model uncertainties and 
input disturbances. As presented in the mathematical model 
of the FJM above, the component of the actuating motor is 
not fully modeled. For this reason, the finite-time controller 
must be designed to counteract these input disturbances. A 
common approach is to design an adaptive control law, 
incorporating estimated values of uncertainties into the 
control law. In this section, an adaptive control law is 
designed to estimate the input disturbance d. The proposed 
adaptive controller is as follows:  
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where d̂  is the estimated value of d.  
Consider the Lyapunov function as in (19). The 

derivative of function (19) with the controller (21) applied 
to the system (7) when the system enters the first 
manifold is given by: 
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where ddd ˆ~
  is the error between the input 

disturbance and the observed disturbance. The Lyapunov 
function for designing adaptive controller has the 
following form: 

2~

2

1
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where  is the positive constant. 
The derivative of function (23), we have: 
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The adaptive controller is determined based on adV  

being negative: 

1
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

.                                 (25) 

The function (25) becomes: 
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 .                  (26) 

According to the Lyapunov method and SCT, the 
controller (21) with the adaptive law (25) ensures that the 
system (7) is asymptotically stable. The block diagram of 
the control system with the finite-time adaptive controller 
for the FJM is shown in Fig. 2. 
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Fig. 2. Control system diagram of FJM 

 

3. Results and discussion. In this section, to verify the 
effectiveness of the SCT law for flexible joints in the 
presence of input disturbances, different cases are conducted 
on numerical simulations and on the experimental model. 

3.1 Simulation results. In the simulation, the FJM 
system is controlled according to the adaptive synergetic 
controller (21) implemented in MATLAB software. The 
model parameter values used in the simulation include: 
m = 0.25 kg; k = 20 Nm/rad; J = 1 kgm2; I = 0.2 kgm2; 
g = 9.81 m/s2; l = 0.35 m; N = 30 Nm/V. The parameters 
of the proposed control law (23) are as follows: K = –90; 

T2 = 0.12; T3 = 0.12; c1 = 100;  = 0.9; k1 = 100;  = 0.01. 
The input disturbance d = 50 Nm. The simulation process 
of implementing the proposed finite-time adaptive 
synergetic control law is carried out with 2 cases: the first 
case, where the initial state of the system is at the origin 
x1 = 0; x2 = 0; x3 = 0; x4 = 0 moving to position x1–sp = /2; 
x2–sp = 0; x3–sp = /2; x4–sp = 0 in the first 5 s, and in the next 
5 s, it moves to position x1–sp = –/2; x2–sp = 0; x3–sp =–/2; 
x4–sp = 0. The second case, where the initial position of the 
system is x1 = 0; x2 = 0; x3 = 0; x4 = 0 and then the link q1 
tracks the desired trajectory signal in the form x1–sp = cost 
with the angular frequency  = 1 rad/s. The maximum 
voltage applied to the motor is 12 V. 

In the first case, the results indicate that the angle 
response of link q1(x1–pro) and q2(x3–pro) compared to the set 
value (x1–sp) are shown in Fig. 3. From the graph, we see 
that the response of link q1 stabilizes to the desired value 
with times of 0.495 s and 0.509 s, respectively (Table 1). 
The response of link q2 shows oscillations during the 
transient process. This indicates that the actuator control 
signal adjusts quickly to ensure the system is stable within 
the given time according to Lemma 1. The difference in 
angle response between the two links and the set value is 
due to input disturbances and the flexible connection 
between the two links. The angular velocity response of 
link q2(x4–pro) is faster than link q1(x2–pro) to reduce the 
oscillation of link q1. The control signal is clearly changing 
during the transient process to ensure the tracking 
performance of link q1. The control signal does not return 
to zero because of the existence of the input disturbance d. 
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Fig. 3. Stability results in the first case with input disturbance: 

a – angle response; b – angular velocity response; 
c – control input 
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Table 1 
Control system performance indicators 
Time 0–5, s Time 5–10, s 

Ts, s P.O., % ess, rad Ts, s P.O., % ess, rad x1 

0,495 0 0 0.509 0.8 0 
*Ts is the settling time; P.O. is the percent overshoot; ess is the 
steady-state error. 

 

In the second case, the results indicate that the angle 
response of link q1 tracking the setpoint signal and the 
angle of q2 are shown in Fig. 4. From the graph, we can 
see that the response of link q1 tracks the desired 
trajectory after 0.52 s. The response of link q2 shows 
oscillations during the transient process, but eventually 
tracks the setpoint angle. During the transient process, the 
angular response oscillations indicate a change in the 
rotation direction of link q2 to cancel out the oscillations 
in link q1. The control signal with oscillations during the 
transient process and then following the periodic value of 
the setpoint signal once tracking is achieved. 
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Fig. 4. Stability results in the second case with input disturbance: 

a – angle response; b – angular velocity response; 
c – control input 

 

3.2 Experimental verification. To confirm the 
effectiveness of the proposed controller, experiments 
were conducted on the experimental model described in 
section 2 (Fig. 5). The control algorithms were 
implemented on STM32 cube IDE using C language with 
a sampling time of 2.5 ms. The experimental results of the 
proposed controller demonstrate the effectiveness of the 
proposed method without explicitly modeling the motor 
and input disturbances. In this case, model errors 
including of the motor and the controller, are inherent in 

the model. In the simulation section, these errors are 
considered as disturbance d. The dynamic parameters of 
the controller and the cases conducted are the same as in 
the simulation section. 

 

FJM 

STM32F4 -Dis. Computer 
 

Fig. 5. Experimental platform FJM 
 

The results presented in Fig. 6 show that the angle 
response of the FJM with the angle feedback of link q1 
stabilizes to the desired value. The angle response stabilizes 
to zero when the system is stable at the set value. The control 
signal supplied to the motor. Clearly, when stabilized at the 
balanced position, the voltage does not completely return to 
0. This is due to various sources of disturbance such as 
friction, backlash in the gearbox, and joints, leading to the 
above errors. This also leads to the systems response not 
completely matching the simulation part. 
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Fig. 6. Experimental results in the first case: a – angle response; 

b – angular velocity response; c – control input 
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The tracking performance on the experimental 
model is shown in Fig. 7. From the results, the angle of 
link q1 tracks quite well. Besides, for the set-point signal 
in the form of an evaluation quantity, the response on the 
actual system is greatly affected by the motor with a 
gearbox. However, its results also show the possibility of 
realizing the controller appearing on real objects. 
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Fig. 7. Experimental results in the second case: a – angle 
response; b – angular velocity response; c – control input 

 

4. Conclusions. The article presents the synthesis 
method of the finite-time adaptive synergetic control law 
for flexible joint systems. The synthesized control law 
ensures small system tracking errors and avoids 
oscillations. The finite-time characteristic is established 
based on the choice of the function equation. The 
developed adaptive law has well solved the problem of 
uncertainty in the mathematical model of the actuator and 
input disturbances. The stability of the system with the 
proposed control law is proven by the Lyapunov function. 
The simulation results of the proposed controller 
demonstrate its effectiveness. With two different tracking 
signal forms, the results show stability and tracking 
performance within a specified time. The results show 
that the system response has no oscillation and no 
overshoot. The proposed control law has been applied on 
the experimental model. Experimental results demonstrate 
the above tracking capability of the developed control 
method in the presence of input disturbances and without 
taking into account the mathematical model of the motor. 

Although the results on the actual system have limitations 
due to equipment quality and model uncertainty FJM, 
they also affirm the practical applicability of the control 
law. Finally, future researches will consider the effects of 
strong nonlinear disturbances from the actuator. It will 
also incorporate some modern theories such as fuzzy 
logic, neural networks, and nature-inspired optimization 
algorithms to fine-tune controller parameters and design 
the adaptive law. 
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