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Robust control of single input multi outputs systems

Introduction. Most of mechanical systems are nonlinear and complex, the complexity of these latter lies on highly nonlinear
characteristics, or on dynamics that stimulate the development or change of the process through an applied force in a disturbed
environment. Single input multi outputs (SIMO) systems, which are structured into subsystems, are considered as complex systems. The
task to control their degrees of freedom is more complicated, and it is not easily reachable, due to the fact that nonlinear laws are not
directly applicable to those systems, which requires to trait them in a particular way. Problem. First order sliding mode control (FOSMC)
has already been applied in several previous works to this kind of systems, and due to its robustness property, this control gave good
results in term of stabilization and tracking, but the chattering phenomenon remains a big problem, which affects the control structure and
the actuators. Purpose. In order to address the problem of chattering encountered when applying the FOSMC to a category of second
order subsystems, a second order sliding mode control (SOSMC) is designed. Methods. This work consists of developing an appropriate
second order system structure, which can go with the sliding control expansion, and then studying the SOSMC for this chosen system. The
hierarchical structure of the sliding surface which is made using a linear combination between subsurfaces, according to the system
structure, allows the only control input to affect subsystems in graded manner from the last one to the first one. Results. We have applied
the constructed control law to a SIMO system for two cases with and without disturbances. Simulation results of the application have
shown the effectiveness and the robustness of the designed controller. References 30, figures 10.
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Bcmyn. Binvwicmy mexaniunux cucmem HeniHitini ma CKIAoHi, o NOASAE Y 3HAYHO HENTHIHUX XaPAKMEPUCMuKax abo 6 OUHamiyi, axa
CIMUMYTIIOE PO36UMOK Ab0 3MIHY Npoyecy 3a ONOMO20I0 NPUKIAOeHOT cunu Yy 30y0xcenomy cepedosuwyi. Cucmemu 3 0OHUM 6X000M Ma
Kinokoma euxooamu (SIMO), axi cmpykmypoeani y niocucmemu, po32A0aiomvcsa AK CKIAOHI cucmemu. 3a80aHHA YNPAGNIHHA iX
cmyneHamu c80600u CKAAOHiuLe, i OHO CKIAOHO OOCAN’CHE Yepe3 me, W0 HeAiHIliHI 3aKOHU He 3ACMOCO8YIombCs 6e31n0cepeoHbo 00 YuX
cucmem, wo eumazac xapakmepusyeamu ix nesuum uunom. Ilpoonema. Ynpaeninua kossuum pesxcumom nepuio2o nopsaoky (FOSMC)
80iCe 3ACMOCO8Y8ANOCS 8 KLTbKOX NONEpeOHix pobomax 00 ybo2o muny cucmem, i 3a805Ku C80ill HAOIHOCMI Oane YNpaeiiHHa NOKA3AN0
Xopouwii pezynomamu 3 MOYKu 30py cmadinizayii ma i0cmedicenHs, ane Asulye Giopayii 3aIUaemvcs 8eIUKO NpodIeMor, IKd
BNAUBAE HA CIMPYKMYPY YNPasinHa ma npusoou. Mema. /s supiwenns npobremu sibpayii, wo sunuxae npu 3acmocysanti FOSMC 0o
Kamezopii niocucmem 0py2020 nopsoKy, po3poONeHO Kepy8aHHI KOBIHUM percumom opyeozo nopaoky (SOSMC). Memoou. 1 po6oma
CKIA0AaemuCsl 3 po3podKu 8I0NOGIOHOI CIMPYKmMypu cucmemu 0py2020 HOPAOKY, KA MOJice MU 3 POSUIUPEHHAM KOB3HO20 Kepy6aHHs, a
nomim eusuenna SOSMC ona yiei obpanoi cucmemu. lepapxiuna cmpykmypa KO83HOI NOGepXHi, AKA 3poOieHa 3 BUKOPUCMAHHAM
JUHITIHOT KOMOIHAYIT Midc NION0BepXHAMU, BIONOBIOHO 00 CMPYKMYPU CUCeMU, 00380JAE EOUHOMY BXIOHOMY CUSHANY YNPAGTIHHA
enaugamuy Ha niocucmemu paoyuo8aHum UYUHOM 6i0 ocmanHboi 00 nepuoi. Pesynsmamu. 3acmocosano noOyoosanuti 3aKOH
ynpasninns 0o cucmemu SIMO 0ns deox eunaodkie i3 36y0dicennam ma 6e3 Hbo2o. Pe3ynomamu MoOemnosants nokazaiu eqeKkmugHicme
ma naoditinicms pospobnenozo konmponepa. bioin. 30, puc. 10.

Kniouosi cnosa: nentiniiiHa cucrema, cucTeMa 3 OJHUM BXOJI0M Ta KiJIbKOMa BUXOIaMH, CTiliKicTh, HAiliHiCTh, KepyBaHHSI KOB3HUM
PeKIMOM.

Introduction. The control of single input multi
outputs (SIMO) systems has been constantly evolving for
several years. The complexity of these systems
(nonlinearity, single input of control and decomposition),
makes the task of designing and developing a control
more difficult, and performed more slowly.

A structured system with subsystems is nonlinear
system, which has a minimum number of control inputs
compared to what it needs. This property limits the
application of conventional and classical theories of control,
which has been established for nonlinear systems. The use of
the control with variable structure, such as the sliding mode
control (SMC), it has been adopted and applied to control
SIMO systems, using their new structure, but unfortunately
this control has the drawback of chattering.

Mainly, applications in robotics, automotive and
automation are essential sources that motivate the analysis
and control of this category of systems. Generally,
researchers rely on benchmarks set up in laboratories,
which are the subject of in-depth studies and a source of
knowledge that makes it possible to develop more and
more control techniques. For this raison this category of
subsystems is of great importance.

Among the most effectiveness robust control, we
find the SMC, this later has been widely applied for
different type of systems linear, nonlinear, complex,
uncertain systems, as in [1-5], it also has been applied for

power converter as in [6, 7] and for photovoltaic systems
as in [8]. Many works based on SMC has been developed
for SIMO systems. A stable sliding mode controller has
been designed in [9] for a class of second-order
mechanical systems, an SMC of double-pendulum crane
systems has been designed in [10]. More recently, sliding
mode controller has been developed, as an effective
strategy against uncertainties, in such important
applications as self-balancing robots, mobile robots [11,
12] and submarines as in [13]. Using incremental SMC
system method, in [14] was proposed a robust controller
for a class of mechanical systems for the trajectory
tracking. An adaptive multiple-surface sliding controller
based on function approximation techniques for a
nonlinear system with disturbances and mismatched
uncertainties, has been proposed in [15].

An approach to design an SMC for a specific
structured mechanical system in cascade form has been
presented in [9]. In this approach, the system has been
decoupled using a systematic approach to transform a
class of mechanical systems into a subsystems form. In
this work, we have adopted this approach to develop our
controller. SMC achieves robust control by adding a
discontinuous control signal across the sliding surface,
satisfying the sliding condition. Nevertheless, this type of
control has an essential disadvantage, which is the
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chattering phenomenon caused by the discontinuous
control action. To treat these difficulties, several
modifications to the original SMC law have been
proposed, the most popular being the boundary layer
approach [16]. The chattering phenomenon can have a
detrimental effect on the actuators and manifests itself on
the controlled quantities. This difficulty can be solved
using the second order sliding mode control (SOSMC),
several works have adopted this strategy of control as in
[17, 18]. This technique consists of moving the
discontinuity of the control law on the higher order
derivatives of the sliding variable [19]. The conventional
SMC technique implies that the control input appears
after the first differentiation of the sliding manifold, in
other words, the relative degree of the sliding manifold is
equal to one. For nonlinear systems where the relative
degree is greater than one, higher-order sliding mode
methods have been developed, which have attracted
considerable research interest in the last three decades
[20]. SOSMC controller is a special case of higher order
SMC which preserve the desirable properties, particularly
invariance and order reduction but they achieve better
accuracy and guarantee finite-time stabilization of relative
degree two systems [21]. A number of different
algorithms based on high order SMC, have been
developed to achieve finite-time stability in a variety of
system, but twisting (TA) and super-twisting algorithms
(STA) are two of the best-known SOSMC methods [22].

To resolve the problem of chattering, encountered in
SMC while applying it on SIMO systems, we have
proposed to use the SOSMC, where we have used STA
taking into account the sliding surfaces combination of
subsystems.

Model development of the second order
mechanical system. Mechanical systems are nonlinear,
and have specific properties, which make the control
more difficult, these properties come from several
reasons, either the dynamics are not completely actuated
which belong to SIMO systems (by conception in order to
reduce the cost and the weight, and maybe for security
reason when one of the controller fails), or the system is
non affine in control. The variety and the complexity of
those systems lead to classify them in several classes and
study them case by case. In this work we focus on second
order mechanical systems, which have the following
Lagrangian [23, 24]:

ad)=K -V =2 H@N V().

where V(q), K(g) are respectively the potential and kinetic
energies; ¢ = (¢1, ¢»)" is the configuration vector; and
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i(42) 2(42)

From some mathematical development, using Euler-
Lagrange equation, we can obtain the following matrix
representation:

o) il g o) @

where G(i = 1, 2) is the vector which represents
centrifugal, Coriolis and gravity term, where:

Gi(g.9) EEQQQ+}zg”ﬁ+h@% 3)
Galand)= 220025+ 20N 1), o
where bl(q)=agT(lq) and bz(q)=657(2q).

Thus, the system can be presented as the following
state representation [19]:

X =xp;
% = filx)+ g (U +a(e) )
5('3 = X4,

x4 = fo(x)+ g2 (x)U +d(0),
where d(¢) is the vector of extern disturbances; f;(x), g1(x),
f2(x), g2(x) are the nonlinear functions.

We suppose that system in (5) is bounded input
bounded output and all state variables signals are measurable.

First order sliding mode control procedure
(FOSMC). SMC strategy is a very powerful nonlinear tool
that has been widely employed by researchers [25, 26]. It
has been also applied for nonlinear and complex
mechanical systems.

In this work, we will apply this controller to the
mechanical system presented in (5), the objective is to
construct a control law which simultaneously leads errors e,
and e, converge to zero, such that: e; = x; — x14, €3 = X3 — X34,
X14, X34 are desired values [9, 17].

The first sliding surface is chosen as:

S|=01€té). (6)
The second sliding surface is chosen as:
S;=0€e3+s5;. ™

The third and the last sliding surface is given by:
s3=03e4+5; . 3
Lyapunov functions V| — V; are defined as:

1 o 1 29 1 5
Vi=—s{ =—of ef +oye1e,+—e5, 9
=St =Soie toja et ©)

for V; to be greater than 0, it must be oje;e,>0.
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for V; to be greater than 0, it must be cze351>0, so we have:

[

1
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for V, to be greater than 0, it must be c3e45,>0, so:
1 1
ESzz <ES§ ZOSVI SV2SV3.

where o;, i = {1, 2, 3} are the positive constants chosen
such that: oje1e,>0, 03e35:>0, 03e45,>0.
From the derivative of (11) we can get the control
law of the whole system as follows:
U=Upy+Ugy -~
_O10 0 X o3 Ht o1 Ne —Yid | (12)
0382 + 81
L O2%34 + 03 X3 — ksign(s3)
0382 + 81 ’
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where U,, is the equivalent control; Ui, is the switching
control; & is a positive constant.

Stability analysis for the FOSMC procedure. The
Lyapunov expression is given by (11), we calculate its
derivative as follows:

V3=s5383 = 53(0384+5)

13)
V3 = 33(0'3 fr+o3bU+0yx4 +01%0 + £ +b1U)—

— 0y 3y — 01 iy — Kig — 03 g + (03 +1)d.
Substituting the control law (12) in (14), we can get:
Vy=—ksign(s3). (15)

(14)

So:

V3<0. (16)

From (16), we can conclude that the system is stable.

SOSMC procedure. A basic approach to avoid
chattering problem is to augment the controlled system
dynamics, by adding integrators at the input side, so as to
obtain a higher-order system in which the actual control
signal and its derivatives explicitly appear. If the
discontinuous signal coincides with the highest derivative
of the actual plant control, the latter results are continuous
with a smoothness degree depending on the considered
derivative order. This procedure refers to higher order
SMC, as mentioned in [27].

Among the most algorithms which are used in
SOSMC we find the TA and the STA. In this work we
have chosen to use the STA, because of its simplicity and
durability, and in this algorithm the convergence of state
variables is faster and more precise, than other techniques.
This method has been applied in several fields [28]. In the
STA, the system trajectory rotates around the phase plan
origin, approaching it in typical way (Fig. 1).

A5

~]

Fig. 1. Super twisting controller trajectory in the phase plane

The control objective is to establish a second order
sliding regime with respect to s3, such as: s3 = s3 = 0. The
continuous control law is composed of two terms, the first
one is defined by a continuous function of the sliding
variable and the second is defined by its discontinuous
time derivative.

Since our system is of relative degree equal to 1 with

. 0
respect to S, which means % # 0, then we have:

§=alx,t)+ plx,1)U,
where « and f are the bounded functions:
alx,t)= fi+016 —fig +03f2 + 0263 =03 %345 (19)
Blxt)=g+o3g,. (20)

(18)

To state a rigorous control problem, (reach ability of
the sliding surface and boundedness of 5 ), the following
conditions are assumed [29, 30]:

1) Control values are part of the set

v= {U : |U| < UM}, where Uy > 1 is a real constant,
moreover the solution of the system is well defined for all
t, provided that U(¥) is continuous, and V¢,U (t) ev.

2) There exists U,(f)e(0, 1), such that for any continuous
function U(¢), U (t) > U, , there is #, such that s(r)U(¥)>0 for
any t > t;. However the control U(f) = —U,, sign(s(t)),
where #, is the initial value of time, allows to reach the
variety s = 0 in finite time.

3) Let _é(x,t,U ), the derivative with respect to time

of the sliding surface s(x, ¢), there are positive constants
s0.Ug <L, 1,303y, such that if |s(x,tl<s0, So:

o .
0<rms%s(x,t,U)er,VUeu,xeX, and the

inequality |U | >U, leads sU >0.

4) There exists a positive constant ¢ such that in the
region |s(x,t] <8y , the following inequality is satisfied:

%é(x,t,U)—i—a—iS(x,t,U)fc <g.

The control law of our system is given by:

U=Ug,+Uy., 1)
such that:
Uy = —(o1x + o x4 +03 fo + fi— o1 d1a)
0382t &1 (22)
(o3 530 —F1g + 02%34).
0382t &1 ’
Uy =—q |s3|psign(s3 )— CrS3+ @, (23)
and
o= —c3sign(a))— £53, (24)

where U,, is the equivalent control; U, is the super
twisting control; ¢ — ¢; are the positive constants.

Stability analysis for STA. The Lyapunov function
candidate is given by:

R SN S 3
V—2s3+2ga) ; (25)
V = 5383 Lo ; (26)
&
V= S3(— cl|S3|psign(S3)— Cp83 + a)) +
! @7
+—o(- cysign(w) - &3 )
£
V=— |S3|'D+1 —c2S32 —C—3|a)| , (28)
£

such that -1 < p < 0.5 and &> 0, therefore V <0, which
guarantees the stability of the system.

Simulation results. The studied controller is applied
to a cart-pendulum system as presented in Fig. 2. The
objective of the control is the stabilization of this system
in its equilibrium points (x, ) = (x, 0), which are the
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linear position of the cart and the upright position of the
pendulum. The dynamical model of this system is given
by (5) [19], where:
o YY)
fl(x): smﬁ(mglcosﬁ2 ml~6 );
Z(M + msin 6’)
((M + m)g — mglcos06* )sin@
e (x)z ) ’
Z(M +msin 6?)
/
gilx :T—);
1( ) I\M + msin® @
—cosd

gz(x): Z‘M + msin? 6’) ’

where M, m are respectively the masses of the cart and the
pendulum; / is the length of the pendulum; U is the
controller signal; y is the output vector.

m &

*

Zy

k.)

i
-
¥
Fig. 2. The cart-pendulum system

Case 1 (without disturbances). Parameters of the
system are: / = 0.25 m, M =2 kg, m = 0.1 kg. The initial
conditions of the system are:

(1.5)=02.0), (0,0)= (—%,Oj ,

and the desired position is chosen as:

(xq,%q)=(0,0)= (edﬁd)Z (0,0).

From the development, we refer x by x;, and &by x;.
From Fig. 3, 4 we can see that the system could follow the
reference trajectory when using the two controllers —
FOSMC and SOSMC. We can also see in Fig. 5 that the
sliding surface is stable and converge to 0. Figure 6 shows
the control signal; this latter is very smooth when using
SOSMC, which presents the advantage of the second
controller in reducing or even eliminating the chattering
phenomenon.

03

—— X1(®/FOSMC
—X1d(y
—— X1®/SOSMC

-01

X1, X14, M

02 4
-0.3)

-04

-0‘50

5 10 5 20
Fig. 3. The output x,(¢) for case 1

X3, X34, M ——X3()/FOSMC
——X3d{)

——X3(/SOSMC

L I ! '
4 8 ] 10 12 14 18 18 20

Fig. 4. The output x;(¢) for case 1

04 T T T T T T

53 —— S3(/ FOSMG
—— S3(t) SOSMC

02k -

R 1 I L L ! | L
0 2 4 6 8 10 12 14 16 18 20

Fig. 5. The sliding surface s5(¢) for case 1

——U()/FOSMC
——U(/SOSMC

e e .

80 T T T T T T T

B T B s S ES—

.60 i I i i ; i ! i i
o] 2 4 ] 8 10 12 14 16 18 20

Fig. 6. The control signal U(%) for case 1

Case 2 (with disturbances). In this section, we
assume that the system undergoes structured external
perturbation, and parameter uncertainties. The parameter
uncertainty of the pendulum’s mass is Am = 0.1 kg, and
the perturbation is d(¢) = 0.05-randn(1, ¢f), where d(¢) is a
Gaussian white noise function of 1 row and #f columns.

The initial conditions of the system are:

(r.5)= (0.00). (0.6)- (%oj ,

and the desired position is chosen as:

(xg,%4) = (2.0)= <Hds‘9d): 0,0).

Figure 7 shows the sliding surface, so we can see
that it is stable. Figure 8 shows the control signal, it is
clear that using SOSMC this signal is smooth than using
FOSMC. We see that despite the existence of
disturbances and uncertainties, the system was able to
follow its reference, but the response of the system is
slower when using SOSMC, which is shown in Fig. 9, 10.
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—— S3{FOSMC
—— S3(ISOSMC

R | i I | | i i | I
o 2 4 8 8 10 12 14 18 18 20

Fig. 7. The sliding surface s5(¢) for case 2

" [—uorosmc
—U/SOSME

20| : : b

40 T T T T T T T

30

20H}-

LBO R e e e o]

.40 L L L | 1 H I L
0 2 4 ] :3 10 12 14 16 18 20

Fig. 8. The control signal U(¢) for case 2

T T T T
: : ——X10)/FOSMC
—X1d(t

——X1(/SOSMC

T T
X1, X1g, M

05 : : i

‘ ‘ . : . ; ‘ s LS
00 2 4 6 8 10 12 14 16 18 20
Fig. 9. The output x;(¢) for case 2
0.4 T T
—— X3®/FOSMC
X3, X34, M ey
Lo | I T | ——XawisosMe
0.2]
0.1 H
MN\\/\,\/\ O
VR
-0.1 .
02 ,
-0.3)
0d j i i j ; j j ; LS
o 2 4 6 8 10 12 14 16 18 2C

Fig. 10. The output x;(7) for case 2

Conclusions. In this paper, a SOSMC has been
given to stabilize a category of second order SIMO
systems which are structured into subsystems.

SOSMC is an extension of the first order SMC, and can
preserve the robustness property of this latter. In this work,
we had presented the mathematical development of the two
controllers, and then we applied them to the system.

The proposed SOSMC controller is effective, it
guarantees robustness with good performances, namely
the stability and the good precision, which is shown in
simulation results, and resolve the problem of chattering
encountered in FOSMC that affects the actuators, by

shifting the control law discontinuity, to the higher order
derivatives of the sliding variable.

As perspectives, we can propose to enhance the
performances of the system (such as the response time
and the precision) by developing an integral SOSMC
controller for this category of systems. Also, it will be
more significant, if we resolve the problem considering
unstructured uncertainties and perturbations.
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