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Introduction. Most of mechanical systems are nonlinear and complex, the complexity of these latter lies on highly nonlinear 
characteristics, or on dynamics that stimulate the development or change of the process through an applied force in a disturbed 
environment. Single input multi outputs (SIMO) systems, which are structured into subsystems, are considered as complex systems. The 
task to control their degrees of freedom is more complicated, and it is not easily reachable, due to the fact that nonlinear laws are not 
directly applicable to those systems, which requires to trait them in a particular way. Problem. First order sliding mode control (FOSMC) 
has already been applied in several previous works to this kind of systems, and due to its robustness property, this control gave good 
results in term of stabilization and tracking, but the chattering phenomenon remains a big problem, which affects the control structure and 
the actuators. Purpose. In order to address the problem of chattering encountered when applying the FOSMC to a category of second 
order subsystems, a second order sliding mode control (SOSMC) is designed. Methods. This work consists of developing an appropriate 
second order system structure, which can go with the sliding control expansion, and then studying the SOSMC for this chosen system. The 
hierarchical structure of the sliding surface which is made using a linear combination between subsurfaces, according to the system 
structure, allows the only control input to affect subsystems in graded manner from the last one to the first one. Results. We have applied 
the constructed control law to a SIMO system for two cases with and without disturbances. Simulation results of the application have 
shown the effectiveness and the robustness of the designed controller. References 30, figures 10. 
Key words: nonlinear system, single input multi outputs system, stability, robustness, sliding mode control. 
 

Вступ. Більшість механічних систем нелінійні та складні, що полягає у значно нелінійних характеристиках або в динаміці, яка 
стимулює розвиток або зміну процесу за допомогою прикладеної сили у збудженому середовищі. Системи з одним входом та 
кількома виходами (SIMO), які структуровані у підсистеми, розглядаються як складні системи. Завдання управління їх 
ступенями свободи складніше, і воно складно досяжне через те, що нелінійні закони не застосовуються безпосередньо до цих 
систем, що вимагає характеризувати їх певним чином. Проблема. Управління ковзним режимом першого порядку (FOSMC) 
вже застосовувалося в кількох попередніх роботах до цього типу систем, і завдяки своїй надійності дане управління показало 
хороші результати з точки зору стабілізації та відстеження, але явище вібрації залишається великою проблемою, яка 
впливає на структуру управління та приводи. Мета. Для вирішення проблеми вібрації, що виникає при застосуванні FOSMC до 
категорії підсистем другого порядку, розроблено керування ковзним режимом другого порядку (SOSMC). Методи. Ця робота 
складається з розробки відповідної структури системи другого порядку, яка може йти з розширенням ковзного керування, а 
потім вивчення SOSMC для цієї обраної системи. Ієрархічна структура ковзної поверхні, яка зроблена з використанням 
лінійної комбінації між підповерхнями, відповідно до структури системи, дозволяє єдиному вхідному сигналу управління 
впливати на підсистеми градуйованим чином від останньої до першої. Результати. Застосовано побудований закон 
управління до системи SIMO для двох випадків із збудженням та без нього. Результати моделювання показали ефективність 
та надійність розробленого контролера. Бібл. 30, рис. 10. 
Ключові слова: нелінійна система, система з одним входом та кількома виходами, стійкість, надійність, керування ковзним 
режимом. 
 

Introduction. The control of single input multi 
outputs (SIMO) systems has been constantly evolving for 
several years. The complexity of these systems 
(nonlinearity, single input of control and decomposition), 
makes the task of designing and developing a control 
more difficult, and performed more slowly. 

A structured system with subsystems is nonlinear 
system, which has a minimum number of control inputs 
compared to what it needs. This property limits the 
application of conventional and classical theories of control, 
which has been established for nonlinear systems. The use of 
the control with variable structure, such as the sliding mode 
control (SMC), it has been adopted and applied to control 
SIMO systems, using their new structure, but unfortunately 
this control has the drawback of chattering.  

Mainly, applications in robotics, automotive and 
automation are essential sources that motivate the analysis 
and control of this category of systems. Generally, 
researchers rely on benchmarks set up in laboratories, 
which are the subject of in-depth studies and a source of 
knowledge that makes it possible to develop more and 
more control techniques. For this raison this category of 
subsystems is of great importance. 

Among the most effectiveness robust control, we 
find the SMC, this later has been widely applied for 
different type of systems linear, nonlinear, complex, 
uncertain systems, as in [1–5], it also has been applied for 

power converter as in [6, 7] and for photovoltaic systems 
as in [8]. Many works based on SMC has been developed 
for SIMO systems. A stable sliding mode controller has 
been designed in [9] for a class of second-order 
mechanical systems, an SMC of double-pendulum crane 
systems has been designed in [10]. More recently, sliding 
mode controller has been developed, as an effective 
strategy against uncertainties, in such important 
applications as self-balancing robots, mobile robots [11, 
12] and submarines as in [13]. Using incremental SMC 
system method, in [14] was proposed a robust controller 
for a class of mechanical systems for the trajectory 
tracking. An adaptive multiple-surface sliding controller 
based on function approximation techniques for a 
nonlinear system with disturbances and mismatched 
uncertainties, has been proposed in [15]. 

An approach to design an SMC for a specific 
structured mechanical system in cascade form has been 
presented in [9]. In this approach, the system has been 
decoupled using a systematic approach to transform a 
class of mechanical systems into a subsystems form. In 
this work, we have adopted this approach to develop our 
controller. SMC achieves robust control by adding a 
discontinuous control signal across the sliding surface, 
satisfying the sliding condition. Nevertheless, this type of 
control has an essential disadvantage, which is the 
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chattering phenomenon caused by the discontinuous 
control action. To treat these difficulties, several 
modifications to the original SMC law have been 
proposed, the most popular being the boundary layer 
approach [16]. The chattering phenomenon can have a 
detrimental effect on the actuators and manifests itself on 
the controlled quantities. This difficulty can be solved 
using the second order sliding mode control (SOSMC), 
several works have adopted this strategy of control as in 
[17, 18]. This technique consists of moving the 
discontinuity of the control law on the higher order 
derivatives of the sliding variable [19]. The conventional 
SMC technique implies that the control input appears 
after the first differentiation of the sliding manifold, in 
other words, the relative degree of the sliding manifold is 
equal to one. For nonlinear systems where the relative 
degree is greater than one, higher-order sliding mode 
methods have been developed, which have attracted 
considerable research interest in the last three decades 
[20]. SOSMC controller is a special case of higher order 
SMC which preserve the desirable properties, particularly 
invariance and order reduction but they achieve better 
accuracy and guarantee finite-time stabilization of relative 
degree two systems [21]. A number of different 
algorithms based on high order SMC, have been 
developed to achieve finite-time stability in a variety of 
system, but twisting (TA) and super-twisting algorithms 
(STA) are two of the best-known SOSMC methods [22]. 

To resolve the problem of chattering, encountered in 
SMC while applying it on SIMO systems, we have 
proposed to use the SOSMC, where we have used STA 
taking into account the sliding surfaces combination of 
subsystems. 

Model development of the second order 
mechanical system. Mechanical systems are nonlinear, 
and have specific properties, which make the control 
more difficult, these properties come from several 
reasons, either the dynamics are not completely actuated 
which belong to SIMO systems (by conception in order to 
reduce the cost and the weight, and maybe for security 
reason when one of the controller fails), or the system is 
non affine in control. The variety and the complexity of 
those systems lead to classify them in several classes and 
study them case by case. In this work we focus on second 
order mechanical systems, which have the following 
Lagrangian [23, 24]: 

     qVqqHqVKqqL T  
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where V(q), K(q) are respectively the potential and kinetic 
energies; q = (q1, q2)

T is the configuration vector; and 
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where Gi(i = 1, 2) is the vector which represents 
centrifugal, Coriolis and gravity term, where: 
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Thus, the system can be presented as the following 
state representation [19]: 
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where d(t) is the vector of extern disturbances; f1(x), g1(x), 
f2(x), g2(x) are the nonlinear functions. 

We suppose that system in (5) is bounded input 
bounded output and all state variables signals are measurable.  

First order sliding mode control procedure 
(FOSMC). SMC strategy is a very powerful nonlinear tool 
that has been widely employed by researchers [25, 26]. It 
has been also applied for nonlinear and complex 
mechanical systems. 

In this work, we will apply this controller to the 
mechanical system presented in (5), the objective is to 
construct a control law which simultaneously leads errors e1 
and e2 converge to zero, such that: e1 = x1 – x1d, e3 = x3 – x3d, 
x1d, x3d are desired values [9, 17].  

The first sliding surface is chosen as: 

2111 ees  .                             (6) 
The second sliding surface is chosen as: 

1322 ses   .                            (7) 
The third and the last sliding surface is given by: 

2433 ses   .                           (8) 
Lyapunov functions V1 – V3 are defined as: 
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for V1 to be greater than 0, it must be 1e1e2>0. 
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for V2 to be greater than 0, it must be 2e3s1>0, so we have: 
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for V2 to be greater than 0, it must be 3e4s2>0, so: 
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where i, i = {1, 2, 3} are the positive constants chosen 
such that: 1e1e2>0, 2e3s1>0, 3e4s2>0. 

From the derivative of (11) we can get the control 
law of the whole system as follows: 
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where Ueq is the equivalent control; Usw is the switching 
control; k is a positive constant. 

Stability analysis for the FOSMC procedure. The 
Lyapunov expression is given by (11), we calculate its 
derivative as follows: 

 2433333 sesssV    ;                (13) 
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Substituting the control law (12) in (14), we can get: 

 33 sign skV  .                         (15) 

So: 
03 V .                                (16) 

From (16), we can conclude that the system is stable.  
SOSMC procedure. A basic approach to avoid 

chattering problem is to augment the controlled system 
dynamics, by adding integrators at the input side, so as to 
obtain a higher-order system in which the actual control 
signal and its derivatives explicitly appear. If the 
discontinuous signal coincides with the highest derivative 
of the actual plant control, the latter results are continuous 
with a smoothness degree depending on the considered 
derivative order. This procedure refers to higher order 
SMC, as mentioned in [27]. 

Among the most algorithms which are used in 
SOSMC we find the TA and the STA. In this work we 
have chosen to use the STA, because of its simplicity and 
durability, and in this algorithm the convergence of state 
variables is faster and more precise, than other techniques. 
This method has been applied in several fields [28]. In the 
STA, the system trajectory rotates around the phase plan 
origin, approaching it in typical way (Fig. 1). 

 

 

 
Fig. 1. Super twisting controller trajectory in the phase plane 

 
The control objective is to establish a second order 

sliding regime with respect to s3, such as: s3 = 3s  = 0. The 

continuous control law is composed of two terms, the first 
one is defined by a continuous function of the sliding 
variable and the second is defined by its discontinuous 
time derivative. 

Since our system is of relative degree equal to 1 with 

respect to S, which means 0


U

s
, then we have: 
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To state a rigorous control problem, (reach ability of 
the sliding surface and boundedness of s ), the following 
conditions are assumed [29, 30]: 

1) Control values are part of the set 
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any t > t1. However the control U(t) = –UM sign(s(t0)), 
where t0 is the initial value of time, allows to reach the 
variety s = 0 in finite time. 
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The control law of our system is given by:  

steq UUU  ,                           (21) 

such that: 
 

 
;

123

32133

123

111234221

gg

xxx

gg

xffxx
U

ddd

d
eq






















  (22) 

    32331 sign scsscU st ,          (23) 

and 
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where Ueq is the equivalent control; Ust is the super 
twisting control; c1 – c3 are the positive constants. 

Stability analysis for STA. The Lyapunov function 
candidate is given by: 
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such that –1 <  < 0.5 and  > 0, therefore 0V , which 
guarantees the stability of the system.  

Simulation results. The studied controller is applied 
to a cart-pendulum system as presented in Fig. 2. The 
objective of the control is the stabilization of this system 
in its equilibrium points (x, ) = (x, 0), which are the 
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linear position of the cart and the upright position of the 
pendulum. The dynamical model of this system is given 
by (5) [19], where: 
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where M, m are respectively the masses of the cart and the 
pendulum; l is the length of the pendulum; U is the 
controller signal; y is the output vector. 

 

 
Fig. 2. The cart-pendulum system 

 

Case 1 (without disturbances). Parameters of the 
system are: l = 0.25 m, M = 2 kg, m = 0.1 kg. The initial 
conditions of the system are: 
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and the desired position is chosen as: 

       0,0,0,0,  dddd xx   . 

From the development, we refer x by x1, and  by x3. 
From Fig. 3, 4 we can see that the system could follow the 
reference trajectory when using the two controllers – 
FOSMC and SOSMC. We can also see in Fig. 5 that the 
sliding surface is stable and converge to 0. Figure 6 shows 
the control signal; this latter is very smooth when using 
SOSMC, which presents the advantage of the second 
controller in reducing or even eliminating the chattering 
phenomenon. 

 

 

t, s

x1, x1d, m 

 
Fig. 3. The output x1(t) for case 1 

t, s

x3, x3d, m 

 
Fig. 4. The output x3(t) for case 1 
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Fig. 5. The sliding surface s3(t) for case 1 
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U, Nm

 
Fig. 6. The control signal U(t) for case 1 

 
Case 2 (with disturbances). In this section, we 

assume that the system undergoes structured external 
perturbation, and parameter uncertainties. The parameter 
uncertainty of the pendulum’s mass is m = 0.1 kg, and 
the perturbation is d(t) = 0.05randn(1, tf), where d(t) is a 
Gaussian white noise function of 1 row and tf columns. 

The initial conditions of the system are: 

      
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8
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and the desired position is chosen as: 

       0,0,0,2,  dddd xx   . 

Figure 7 shows the sliding surface, so we can see 
that it is stable. Figure 8 shows the control signal, it is 
clear that using SOSMC this signal is smooth than using 
FOSMC. We see that despite the existence of 
disturbances and uncertainties, the system was able to 
follow its reference, but the response of the system is 
slower when using SOSMC, which is shown in Fig. 9, 10. 
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Fig. 7. The sliding surface s3(t) for case 2 
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Fig. 8. The control signal U(t) for case 2 
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Fig. 9. The output x1(t) for case 2 
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Fig. 10. The output x3(t) for case 2 

 

Conclusions. In this paper, a SOSMC has been 
given to stabilize a category of second order SIMO 
systems which are structured into subsystems. 

SOSMC is an extension of the first order SMC, and can 
preserve the robustness property of this latter. In this work, 
we had presented the mathematical development of the two 
controllers, and then we applied them to the system. 

The proposed SOSMC controller is effective, it 
guarantees robustness with good performances, namely 
the stability and the good precision, which is shown in 
simulation results, and resolve the problem of chattering 
encountered in FOSMC that affects the actuators, by 

shifting the control law discontinuity, to the higher order 
derivatives of the sliding variable. 

As perspectives, we can propose to enhance the 
performances of the system (such as the response time 
and the precision) by developing an integral SOSMC 
controller for this category of systems. Also, it will be 
more significant, if we resolve the problem considering 
unstructured uncertainties and perturbations. 
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