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Introduction. This study investigates parameter extraction methods for solar cell analytical models, which are crucial for accurate 
photovoltaic (PV) system design and performance. Problem. Traditional single-diode models, while widely used, often lack precision, 
leading to inefficiencies in parameter extraction essential for reliable PV systems. Goal. The work aims to improve the Teaching-Learning-
Based Optimization (TLBO) algorithm to enhance the accuracy of parameter extraction in PV models. Methodology. We adopt an 
enhanced single-diode model, integrating modifications into the TLBO algorithm, including dynamic teaching factor adjustment, refined 
partner selection, and targeted local searches with the fmincon function. Comparative analysis with experimental data from four PV 
systems validates the model’s accuracy. Results. The enhanced TLBO algorithm achieves superior convergence and reliability in 
parameter extraction, as evidenced by 500 independent runs. Originality. Key contributions include methodological improvements such as 
dynamic adjustment of the teaching factor and a new approach to partner selection, which significantly optimizes the algorithm’s 
performance. Practical value. This research provides a robust framework for solar cell parameter extraction, offering practical benefits 
for PV system designers and researchers in improving model accuracy and efficiency. References 35, table 1, figures 15. 
Key words: photovoltaic system, teaching-learning-based optimization, Newton-Raphson method, parameter optimization. 
 

Вступ. У цьому дослідженні вивчаються методи отримання параметрів для аналітичних моделей сонячних елементів, які 
мають вирішальне значення для точного проєктування фотоелектричних (PV) систем і їх продуктивності. Проблема. 
Традиційні моделі з одним діодом, хоч і широко використовуються, часто не достатньо точні, що призводить до 
неефективності вилучення параметрів, необхідного для надійних PV систем. Мета. Робота спрямована на покращення 
алгоритму оптимізації на основі навчання (TLBO) для підвищення точності вилучення параметрів у PV моделях. Методологія. 
Ми приймаємо вдосконалену модель з одним діодом, інтегруючи модифікації до алгоритму TLBO, включаючи динамічне 
коригування коефіцієнта навчання, уточнений вибір партнера та цільовий локальний пошук з функцією fmincon. Порівняльний 
аналіз з експериментальними даними із чотирьох PV систем підтверджує точність моделі. Результати. Удосконалений 
алгоритм TLBO досягає значної збіжності та надійності при вилученні параметрів, про що свідчать 500 незалежних запусків. 
Оригінальність. Основні вклади включають методологічні удосконалення, такі як динамічне коригування коефіцієнта 
навчання та новий підхід до вибору партнера, що значно оптимізує продуктивність алгоритму. Практична цінність. Це 
дослідження забезпечує надійну основу для отримання параметрів сонячних елементів, пропонуючи практичні переваги для 
розробників та дослідників PV систем у плані підвищення точності та ефективності моделей. Бібл. 35, табл. 1, рис. 15. 
Ключові слова: фотоелектрична система, оптимізація на основі викладання-навчання, метод Ньютона-Рафсона, 
оптимізація параметрів. 
 

1. Introduction. Optimizing solar cell parameters 
across varying operating conditions is crucial for generating 
the voltage current curve of photovoltaic (PV) systems and 
accurately estimating their power output. The accuracy of 
these parameters is essential for the effective analysis of PV 
systems, and the choice of parameter extraction method is 
fundamental to addressing this challenge. Over the years, a 
range of techniques have been utilized for extracting 
parameters from solar cells, which can be broadly classified 
into three types. The first one is analytical methods, which are 
appreciated for their simplicity and computational speed but 
may suffer from precision issues because of specific 
presumptions. Notably, reference [1] gives a detailed analysis 
of the extraction of solar PV system parameters through the 
application of optimization techniques based on one- and 
two-diode models. The second one includes deterministic 
methods, which necessitate differentiability and convexity 
and can be sensitive to initial conditions. Examples of such 
methods include intrinsic proprieties of solar cells [2], the 
Newton approach [3], the Newton-Raphson method [4], and 
the nonlinear algorithm method [5]. The third, metaheuristic 
methods have emerged as viable options for parameter 
extraction in PV models, aiming to overcome the limitations 
of previous approaches. These techniques don’t require strict 
conditions and are simple to use.  

Current research on metaheuristic algorithms have 
demonstrated their value in improving accuracy in a 
number of engineering domains, including microarray 
data-based cancer classification [6], picture segmentation 
[7], and identification of faces [8]. Current researches on 
PV model parameters have been estimated using a variety 
of metaheuristic techniques. Obviously, these include 
techniques such as the improved algorithm, namely 

Genetic Algorithm based on Non-Uniform Mutation 
(GAMNU) [9], Particle Swarm Optimization (PSO) and 
Newton–Raphson method [10], nonlinear least squares 
fitting algorithm [11], and the supply-demand-based 
optimization algorithm [12]. Other approaches, like 
chaotic optimization approach [13], adaptive differential 
evolution [14], symbiotic organic search [15], and 
Improved Shuffled Complex Evolution algorithm (ISCE) 
[16] have also been employed. Moreover, an Enhanced 
Hybrid JAYA and Rao-1 algorithm, called (EHRJAYA) 
[17], as well as the integration novel hybrid Algorithm 
based on Rat Swarm optimization with Pattern Search 
(hARS-PS) [18], have shown significant effectiveness. 
Similarly, the Improved Gaining-Sharing Knowledge 
(IGSK) algorithm [19] has also demonstrated success. 
Other techniques, including chaos game optimization 
algorithm for estimating the unknown parameters of the 
three-diode PV model [20], Self-adaptive Ensemble-based 
Differential Evolution (SEDE) algorithm [21], bio-
inspired algorithm called sooty tern optimization 
algorithm [22], and hybridized interior search algorithm 
[23] have been successfully implemented. Further 
methods include an enhanced Spherical Evolution 
algorithm (SE) based on a novel Dynamic Sine-Cosine 
mechanism (DSCSE) [24], combined analytical and 
numerical approaches [25], and newer algorithms like the 
gorilla troops optimization [26]. The robust approach 
based on Stochastic Fractal Search (SFS) optimization 
algorithm is introduced to estimate accurate and reliable 
values of solar PV parameters for its precise modeling 
[27] and Supply-Demand Optimization (SDO) algorithm 
[28] are also part of this diverse toolkit. 
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Recent studies have explored advanced optimization 
techniques to improve solar PV systems, including 
opposition-based on PSO algorithm for Maximum Power 
Point Tracking (MPPT) [30]. Moreover, a plant-
propagation-inspired method for partial shading conditions 
[31], and a beta-based MPPT controller for efficient power 
tracking [32]. Other studies have focused on improving 
power quality with modular inverter structures [33]. 
Furthermore, authors [34] proposed work enhances system 
performance by using hysteresis modulation with a Z-
source inverter and improves power quality through the 
inclusion of a shunt active harmonic filter, and designing 
optimal energy grids with dynamic programming and PSO 
[35]. These studies offer valuable insights into optimizing 
solar PV systems and can complement the enhancement of 
Teaching-Learning-Based Optimization (TLBO) 
algorithms for solar cell parameter extraction. 

In this paper our motivation and contributions, it is 
as follows, we introduce an enhanced version of the 
TLBO metaheuristic method. This enhancement includes 
various modifications aimed at improving the TLBO’s 
performance. The key advancements in this work center 
around several innovative modifications to the standard 
TLBO algorithm, significantly enhancing its performance. 
One of the primary improvements is the dynamic 
adjustment of the Teaching Factor (TF), which evolves 
with each generation, allowing the algorithm to better 
adapt and converge efficiently over time. Additionally, 
we introduce a new partner selection strategy, designed to 
improve solution diversity and ensure a more thorough 
exploration of the search space. An optional mutation step 
is also incorporated to reduce the likelihood of premature 
convergence by introducing variability at critical stages of 
the search. Finally, we embed a local search mechanism 
using the fmincon function, which refines solutions and 
drives the algorithm toward more precise global optima. 
These enhancements collectively represent a substantial 
contribution to the efficiency, accuracy, and robustness of 
the TLBO algorithm in solving complex optimization 
problems. Furthermore, we propose an improvement to 
the SDM by expressing the conventional diode model as 
two composite functions. To extract the unknown 
parameters from the modified model, particularly we 
employ the TLBO method. To validate our novel 
approach, we compare the results obtained using our 
proposed model with other recent results and well-
established works in the literature that employ the 
classical model and new metaheuristic algorithms. 

2. Methods analysis. This section analyzes the 
mathematical framework of the electrical model for both 
the SDM and the PV model of a PV system, depicted in 
Fig. 1, 2, respectively. We also propose a new variant, the 
Modified Single-Diode Model (MSDM). 

The mathematical SDM gives an analytical current 
output Ian, which is expressed as: 

RshDphan IIII  ,                    (1) 

where Ian is the SDM output analytical current; Iph is the 
photogenerated current; ID is the diode current; IRsh is the 
shunt resistor current. 

Equations (2), (3) define the diode current ID and the 
shunt resistor current IRsh: 
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where VLex is the output voltage; Isd is the saturation current; 
Iex is the experimental current data; Rs is the series resistance; 
Rsh is the shunt resistance; n is the diode ideality factor; Vt is 
the thermal voltage of the diode; k is the Boltzmann constant; 
q is the electron charge; T is the cell temperature. 

 
Fig. 1. Equivalent circuit of SDM model 

 
Fig. 2. Equivalent circuit of PV model 

 

According to (1), (2) the 5 unknown parameters to 
be determined in the SDM are: Iph, Isd, n, Rs and Rsh. The 
goal of our contribution is to ensure that the analytical 
current Ian closely matches the experimental current Iex. 

Obviously, the experimental current data of a solar 
mathematical PV module is given as: 
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where Np, Ns are the number of cells in parallel and series, 
and as the solar cells are largely connected in series, for 
this reason we assume that Np = 1. The resultant output 
current of the PV module will be presented as: 
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2.1. Modified Single-Diode Model (MSDM). The 
previously derived equations including (1), (2) form the 
basis for the MSDM. By applying these equations, the 
following expression is obtained: 
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The output current is represented by the term Iout, 
which was first introduced in (7) and is further described 
in (8). Typically, the analytical current Ian is calculated 
from the experimental values of VLex and Iex. The 
proposed modification involves calculating Ian using Iout, 
which is determined by (7). This modification enhances 
the convergence of the TLBO estimation algorithm and 
minimizes the Root Means Square Error (RMSE): 
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Finally, (8) defines the MSDM. According to (7), (8) 
the parameters that must be determined for the MSDM 
include Iph, Isd, n, Rs and Rsh. Note that, an objective 
function is using based on experimental values, by 
comparing the analytical current values with the 
experimental values that minimizes the RMSE. The goal 
is to minimize the objective function F with respect to the 
parameter set. In theory, F should be zero when the 
parameters are precisely determined [3]: 
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where X = [Iph, Isd, Rs, Rsh, n] is the vector of unknown 
parameters; N is the number of data points; [lb, ub] are the 
lower and upper bounds on parameter vector X. 

2.2. Teaching-learning-based optimization 
(TLBO). The TLBO algorithm, developed authors in 
[29], draws inspiration from the educational process, 
modeling the interactions and influence between teachers 
and students within a classroom to optimize solutions. 
The operation of TLBO is based on two phases, the 
«Teaching Phase» and the «Learning Phase». The 
operation of the two phases is explained below. 

Initialization phase. The TLBO algorithm begins 
with the initialization of a population of solutions 
(learners). Each learner represents a potential solution to 
the optimization problem, the population size is denoted 
by Npop, and the problem dimension is denoted by D, 
learners are initialized randomly within the predefined 
lower (lb) and upper (ub) bounds of the problem [28]. 

Teaching phase. During the teaching phase, the 
algorithm attempts to improve the quality of solutions 
based on the knowledge of the best solution (Teacher). The 
best solution in the population is considered the Teacher, 
the mean (Mean) of the population in each dimension is 
calculated, each learner’s solution is updated as: 

])[,1(rand MeanTFTeacherDpopNewSol staticii  , (12) 
where TFstatic is the static teaching factor, typically set to 1 
or 2; rand(1, D) is a vector of random numbers in [0, 1]: 

)1 ,1 ],2,1[ ( randstaticTF .                 (13) 
Solutions are bounded within the [lb, ub] limits. 

Learning phase. It allows learners to learn from 
each other. Each learner i is updated by interacting with 
another randomly chosen learner j. If learner j has a better 
performance, learner i attempts to learn: 
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where obj(i), obj(j) are the objective values of the 
solutions of learners i and j, respectively; solutions are 
bounded within the the [lb, ub] limits. 

Iterative process phase. The teaching and learning 
phases are repeated for a predefined number of generations 
or until a convergence criterion is met, the best solution at 
the end of the iterations is considered the optimal solution. 
The standard TLBO algorithm is an effective method for 
solving optimization problems by mimicking the teaching 
and learning process in a classroom setting. Its simplicity 
and lack of hyper-parameters make it a robust choice for 
various applications. 

2.3. Modified TLBO using dynamic teaching 
factor. In this work we will examine the modifications 
made to the standard TLBO algorithm that can improve 
the estimation of PV model parameters. 

Dynamic teaching factor. One of the main features 
of our improvement is the dynamic adjustment of the TF 
based on the current generation number. This adaptation 
enables TLBO to more effectively adjust to the changing 
landscape of optimization over successive generations, 
hence optimizing the search for optimal solutions. The 
following equation characterizes this factor: 
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where TFcurrent is the teaching factor for the current 
generation; TFdynamic is the actual student position of the 
dynamic teaching factor. 

Different partner selection procedure. An 
alternative partner selection approach was introduced by 
the algorithm’s improved version. This change aims to 
diversify potential partners, which may help prevent the 
algorithm from stagnating in local optimal: 
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2.4. Improved TLBO using dynamic factor with 
mutation rate. In the first case, this method is based on 
mutation facultative step. However, this mutation makes 
it possible to introduce diversity into the individual 
population, which may be essential for exploring new 
areas of the research domain. The facultative mutation 
gives the algorithm additional flexibility to adapt to 
different kinds of problems.  

Note that each student makes mutation with 
probability Pm. Using a function rand, we apply the 
mutation rate as follows: 

When Pm > rand 
randlbubMutNewSolSolMut rateii ][  ;    (17) 

When Pm < rand 

ii NewSolSolMut  ,                     (18) 
where SolMuti is the solution mutation; Mutrate is the 
mutation rate, which is the factor determining the 
mutation magnitude. 
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In a second case, we aim to optimize the TLBO 
algorithm obliviously, we combined the previews 
modification using local search based on MATLAB 
function denoted fmincon. The updated version includes a 
local search step that uses the fmincon function. This step 
enables the candidate solutions to be refined using more 
sophisticated local search techniques. This could have a 
major impact on raising the caliber of solutions produced 
by the evolutionary algorithm. 

The following representation of the local search step 
equation is as follows: 

 ,sConstraint,,fmincon solution

solution

CurrentF

Optimized




        (19) 

where F is the objective function given by (9); 
Currentsolution is the solution mutation given by (17); 
Constraints [lb, ub] for each parameter. However, the 
solution that has been optimized with the help of the 
fmincon function is denoted by the term «Optimized 
Solution» in this equation. The function fmincon takes 
into account the function to minimize, the initial solution, 
and all requirements that must be met. It conducts local 
research to find an improved solution within the 
constraints of the available data. This step allows the 
quality of the solutions generated by the evolutionary 
algorithm to be improved by affining them through local 
optimization (Fig. 3). 

1  : function: Improved TLBO  
2  : initialTF = 5 % Initial value of TF 
3  : for each generation gen = 1 to T do 
4  :  Calculate TF = initialTF / (1 + gen) 
5  :  Find [best_obj, best_idx] = min(obj) (minimum objective value and its index) 
6  :  best_student = pop(best_idx, :) (select best solution) 
7  :  for each population member i = 1: NPop do 
8  :   Calculate teach_factor = rand * (best_student - mean(pop)) 
9  :   Generate NewSol = pop(i, :) + rand(1, D) .* teach_factor 
10  :   Bound the solution: NewSol = max(min(ub, NewSol), lb) 
11  :   Evaluate NewSolObj = FITNESSFCN(NewSol) 
12  :   if (NewSolObj < obj(i)) then 
13  :    Update population: pop(i, :) = NewSol 
14  :    Update objective value: obj(i) = NewSolObj 
15  :   end if 
16  :  end for 
17  :  for each population member i = 1:NPop do 
18  :   Select partner_idx = randi([1, NPop]) 
19  :   While partner_idx == I do 
20  :    Re-select partner_idx = randi([1, NPop]) 
21  :   end while 
22  :   if (obj(i) < obj(partner_idx)) then 
23  :    Generate NewSol = pop(i, :) + rand(1, D) .* (pop(i, :) - pop(partner_idx, :)) 
24  :   else: 
25  :    Generate NewSol = pop(i, :) + rand(1, D) .* (pop(partner_idx, :) - pop(i, :)) 
26  :  end if 
27  :   Bound the solution: NewSol = max(min(ub, NewSol), lb) 
28  :   Evaluate NewSolObj = FITNESSFCN(NewSol) 
29  :   if (NewSolObj < obj(i)) then 
30  :    Update population: pop(i, :) = NewSol 
31  :    Update objective value: obj(i) = NewSolObj 
32  :   end if 
33  :  end for 
34  : for each population member i = 1: NPop do 
35  :   if (rand() < 0.05) then % Adjust mutation probability as needed 
36  :    Generate mutation_factor = rand(1, D) .* (ub - lb) (random mutation) 
37  :   Generate NewSol = pop(i, :) + mutation_factor 
38  :   Bound the solution: NewSol = max(min(ub, NewSol), lb) 
39  :    Evaluate NewSolObj = FITNESSFCN(NewSol) 
40  :    if (NewSolObj < obj(i)) then 
41  :     Update population: pop(i, :) = NewSol 
42  :     Update objective value: obj(i) = NewSolObj 
43  :    end if 
44  :   end if 
45  :  end for 
46  :  Store best objective value for each generation: [BestFVALIter(gen), ~] = min(obj) 
47  : end for 
48  : At the end of all generations: 
49  : Find the best solution: [~, ind] = min(obj) 
50  : X = pop(ind, :) (best individual) 
51  : FVAL = obj(ind) (best objective value) 
52  : Set optimization options: options = optimset('Display', 'off') 
53  : Refine solution using fmincon : [X, FVAL] = conf min  (FITNESSFCN, X, lb, ub, options) 

54  : Store final best objective value: [BestFVALIter(end), ~] = min(FITNESSFCN(X)) 
55  : end function 

Fig. 3. Improved TLBO algorithm 
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3. Simulation results and discussion. In this study, 
we delve into the analysis of parameters derived from the 
TLBO algorithm. The study compares the traditional 
SDM for PV systems with an enhanced model using the 
TLBO algorithm. The data set for this analysis comprises 
a variety of PV devices, including the RTC solar cell from 
France, the Photowatt-PWP201, STM 6-40/36, and STP6-
120/36 PV panels. The performance evaluation is carried 
out using the RMSE as a benchmark to compare the 
results from the traditional model and the enhanced model 
that employs the TLBO algorithm. 

Additionally, an assessment of the suggested model 
and the TLBO algorithm in comparison to a number of 
accepted techniques, which presented in [17], [19], [23], 
[24] and SDO [28] are some of these. 

To obtain more comprehensive information on solar 
cell parameter extraction and to illustrate the validity of the 
new method we carried out several simulation results. 
Obviously, we execute 30 separate runs to determine the 
robustness of our suggested model. The TLBO algorithm 
uses 30 runs, and each run has 500 iterations. The lower limit 
values (lb) of the 5 characteristic parameters Iph(A), Isd(µA), 
n, Rs(Ω) and Rsh(Ω) are the same (0, 0, 1, 0, 0) for the 4 PV 
devices. The upper limit values (ub) of the 5 parameters are 
respectively (1, 1, 2, 0.5, 100) for the RTC France cell, 
(2, 5, 2, 1, 2000) for the PWP201, (5, 3, 2, 1, 2000) for 
STM 6-40/36 and (10, 3, 2, 1, 2000) for STP6-120/36. 

3.1. Comparison between the classic SDM and the 
MSDM. In this study, the simulation results considered 
for 4 PV devices are analyzed and the modified model is 
compared with the traditional SDM. However, to find the 
unknown parameters of the PV systems, the TLBO 
method is employed. Obviously, for this comparative 
analysis we perform 30 independent runs presented in 
Fig. 4–7. The optimal run is selected based on 2 
evaluation criteria. The first criterion is the real-time 
absolute error, denoted as Iex – Ian, where the 
experimentally measured current is Iex, and the 
analytically computed current is Ian. RMSE’s decimal 
logarithm serves as the basis for the second criterion. The 
absolute errors for the suggested and classical models 
Iex – Ian between the calculated and experimental current 
values are shown in Fig. 4–7. Obviously, Fig. 4 shows the 
absolute error for the STM6-40/36 panel, the performance 
of both models is comparable, though the proposed model 
exhibits a slight advantage. The absolute inaccuracy for 
the STP6-120/36 module is shown in Fig. 5, where the 
proposed model’s error ranges from 0 to 0.05, while the 
inaccuracy of the conventional model varies from 0 to 
0.15, highlighting the enhanced functionality of the 
suggested model. Figure 6 shows the absolute error for 
the RTC France solar cell, where the proposed model 
exhibits better convergence towards zero, indicating 
improved accuracy over the classical model. Additionally, 
Fig. 7 illustrates the absolute error for the Photowatt-
PWP201 module, where the proposed model also 
achieves more stable and precise results. A thorough 
comparison of absolute errors between different PV 
systems is shown in Fig. 4–7, which also emphasizes how 
much better the suggested model is at precision and 
convergence than the conventional model. 
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Fig. 7. The absolute error of classical and proposed model 

for the solar panel Photowatt-PWP201 
 

Figures 8–11 show the evolution of the decimal log 
of the RMSE for the 4 PV devices. In comparison to the 
classical model, the suggested model exhibits better 
convergence over the course of the simulation, as 
presented in Fig. 8–11. In the initial iterations, the 
classical model demonstrates better convergence, as 
indicated by the RMSE evolution for the STM6-40/36 
panel shown in Fig. 8. Still, the suggested model performs 
better at convergence starting with iteration 300. A 
detailed examination of the convergence behavior for 
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both models during the simulation results are shown in 
Fig. 8–11, which show that the suggested model 
outperforms the traditional model in terms of convergence 
and accuracy, especially in the later phases. 
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Fig. 8. The decimal log of the best RMSE for the solar panel 

STM6-40/36 
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Fig. 9. The decimal log of the best RMSE for the solar panel 

STP6-120/36 
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Fig. 10. The decimal log of the best RMSE for the solar cell RTC France 
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Fig. 11. The decimal log of the best RMSE for the solar panel 

Photowatt-PWP201 
 

3.2. Statistical analysis and comparison of 
parameter estimation algorithms. To evaluate the 
robustness of the proposed model, we conduct several 
iterations corresponding to the tables of values from the 
available measurements. This section compares the 
robustness of the classical model against the modified 
model. The robustness curves for the suggested model, 
which is based on the TLBO method, and the classical 
model, over 30 different runs, are shown in Fig. 12–15. In 
terms of forecasting the behavior of the 4 PV devices, the 
analysis of Fig. 12–15 makes it abundantly evident that 

the suggested model routinely outperforms the traditional 
models. The evaluation relies on RMSE, a metric that 
reflects model accuracy, with lower RMSE values 
signifying better performance. For each of the four PV 
devices, the suggested model continuously outperforms 
the conventional models in terms of RMSE values 
throughout the course of 30 independent runs. This 
implies that the predicted values of the proposed model 
are consistently closer to the actual values of the PV 
devices than those of the classical models. 
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Fig. 12. The different RMSEs for the 30 iterations for the solar 

cell RTC France 

0 5 10 15 20 25 30
1.5

2

2.5

3

3.5

4

4.5

5
10-3

Proposed model
Classic model

 RMSE

Iteration  
Fig. 13. The different RMSEs for the 30 iterations for the solar 

panel Photowatt-PWP201 

RMSE

Iteration  
Fig. 14. The different RMSEs for the 30 iterations for the solar 

panel STM 6-40/36 

 RMSE

Iteration  
Fig. 15. The different RMSEs for the 30 iterations for the solar 

panel STP6-120/36 
 

Table 1 presents a performance comparison between 
the proposed method and other recent works in the 
literature. This table shows the estimated parameters and 
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RMSE values for the proposed model and other classic 
models. The proposed model’s RMSE is better than that of 
classic models across all studied PV systems. This indicates 

that the proposed model demonstrates higher precision or 
predictive performance compared to the classic model used 
in the other works for the analyzed PV systems. 

Table 1 
Comparing the proposed model with traditional algorithms 

Solar cell RTC France 
Algorithm Iph, A Isd, A n Rs, Ω Rsh, Ω RMSE 

Improved - TLBO 0,76079 3,1194510–7 1,47737 0,03621 52,35576 7,8961110–4 
GAMNU [9] 0,76077 3,2559510–7 1,4821 0,03634 53,89686 9,861810–4 

ISCE [16] 0,76078 3,2302110–7 1,48118 0,03638 53,71853 9,8602210–4 
EHRJAYA [17] 0,76078 3,2302110–7 1,48118 0.03638 53,71853 9,8602210–4 
hARS‐PS [18] 0,7608 3,2310–7 1,481 0,0364 53,714 9,8410–4 

IGSK [19] 0,76078 3,2310–7 1,48118 0,03638 53,71853 9,8602210–4 
SEDE [21] 0,76078 3,2302110–7 1,48118 0,03638 53,71852 9,8602210–4 

DSCSE [24] 0,76078 3,2302110–7 1,48118 0,03638 53,7185 9,8602210–4 
SFS[27] 0,7609 3,16710–7 1,47918 0,03648 53,2805 7,93110–4 

Solar panel Photowatt-PWP201 
Algorithm Iph, A Isd, A n Rs, Ω Rsh, Ω RMSE 

Improved - TLBO 1,03235 1,7980210–6 1,34714 0,03571 19,65356 1,7256910–3 
GAMNU [9] 1,03077 3,0162310–6 48,09755 1,21912 906,27545 2,3824210–3 

ISCE [16] 1,03051 3,4822610–6 48,64284 1,20127 981,98228 2,4250810–3 
EHRJAYA [17] 1,03051 3,4822610–6 48,64283 1,20127 981,98222 2,4250710–3 
hARS‐PS [18] 1,0305 3,482210–6 48,6428 1,20120 981,9823 2,4210–3 

IGSK [19] 1,03051 3,482310–6 48,64283 1,20127 981,9823 2,4250710–3 
SEDE [21] 1,03051 3,4822610–6 48,64284 1,20127 981,98223 2,4250710–3 

DSCSE [24] 1,03051 3,4822610–6 48,6428 1,20127 981,982 2,4250710–3 
SDO[28] 1,03051 3,4810–6 1,35119 0,03337 27,27729 2,42510–3 

Solar panel STM6-40/36 
Algorithm Iph, A Isd, A n Rs, Ω Rsh, Ω RMSE 

Improved - TLBO 3,47128 1,1918110–6 1,19871 0,0157 27,38766 1,5828810–3 
ISCE [16] 1,6639 1,7386610–6 1,5203 0.00427 15,92829 1,7298110–3 

EHRJAYA [17] 1,6639 1,7386610–6 1,5203 0.00427 15,92829 1,7298110–3 
hARS‐PS [18] 1,0305 3,482210–6 48,6428 1,2012 981,9823 2,4210–3 

IGSK [19] 1,6639 1,738710–6 1,5203 0,00427 15,92829 1,7298110–3 
SDO[28] 1,66391 1,7410–6 1,5203 0,00427 15,92829 1,7310–3 

Solar panel STP6-120/36 
Algorithm Iph, A Isd, A n Rs, Ω Rsh, Ω RMSE 

Improved - TLBO 7,47482 1,4640710–6 1,23924 0,005 14,70737 1,2971310–2 
GAMNU [9] 7,469 2,73910–6 45,84837 0,16269 1468,618 1,673510–2 

ISCE [16] 7,47253 2,33510–6 1,2601 0,00459 22,21991 1,6600610–2 
EHRJAYA [17] 7,47253 2,33510–6 1,2601 0,00446 222,19907 1,6610–2 

IGSK [19] 7,47253 2,33510–6 1,2601 0,00459 22,21989 1,6610–2 
SFS[27] 7,4757 3,0110–6 1,2816 0,16 827,5815 1,5910–2 
SDO[28] 7,47253 2,3310–6 1,2601 0,0046 22,21991 1,660110–2 

 

4. Conclusions. This research underscores the 
significance of precise solar cell modeling to ensure that 
PV systems are designed effectively. It highlights that in 
order to improve modeling precision, precise parameter 
estimate is essential for simple models. In this work, we 
suggest improving the single-diode model analytically to 
improve its performance. This improvement incorporates 
the optimization of unknown parameters and performance 
evaluation of the model through the application of the 
TLBO algorithm. When compared to other well-known 
studies in the field, our findings show that the suggested 
model outperforms the traditional approach in terms of 
accuracy and dependability. The application of the TLBO 
algorithm enables the proposed model to yield more precise 
and robust results, demonstrating higher rates of 
convergence. Looking ahead, our future research will 
explore the use of other metaheuristic algorithms for 
parameter extraction from single, double and triple diode 
models. This investigation could offer additional insights 
and further refine the modeling process. The MPPT issue, 
which is crucial for maximizing solar power output, will 
also be covered in our research. To further develop the field 

of solar cell modeling and PV system design, our future 
research plan includes investigating alternate metaheuristic 
algorithms and tackling the MPPT problem. 
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