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Improved grey wolf optimizer for optimal reactive power dispatch with integration of wind
and solar energy

The aim of this paper is to present a new improved grey wolf optimizer (IGWO) to solve the optimal reactive power dispatch (ORPD)
problem with and without penetration of renewable energy resources (RERs). It is a nonlinear multivariable problem of optimization, with
multiconstraints. The purpose is to minimize real power losses and improve the voltage profile of a given electric system by adjusting control
variables, such as generator voltages, tap ratios of a transformer, switching VAr sources, without violating technical constraints that are
presented as equalities and inequalities. Methodology. Metaheuristics are stochastic algorithms that can be applied to solve a wide variety
of optimization problems without needing specific problem structure information. The penetration of RERs into electric power networks has
been increased considerably to reduce the dependence of conventional energy resources, reducing the generation cost and greenhouse
emissions. It is essential to include these sources in power flow studies. The wind and photovoltaic based systems are the most applied
technologies in electrical systems compared to other technologies of RERs. Moreover, grey wolf optimizer (GWO) is a powerful
metaheuristic algorithm that can be used to solve optimization problems. It is inspired from the social hierarchy and hunting behavior of
grey wolves in the wild. The novelty. This paper presents an IGWO to solve the ORPD problem in presence of RERs. Methods. The IGWO
based on enhancing the exploitation phase of the conventional GWO. The robustness of the method is tested on the IEEE 30 bus test system.
For the control variables, a mixed representation (continuous/discrete), is proposed. The obtained results demonstrate the effectiveness of
the introduced improvement and ability of the proposed algorithm for finding better solutions compared to other presented methods.
References 40, tables 3, figures 9.

Key words: optimal reactive power dispatch, renewable energy resources, wind energy, solar energy, improved grey wolf
optimizer.

Memoto cmammi € npedcmasnents H08020 NOKpaweno2o onmumizamopa cipoeo eoska (IGWO) ons supiwennsa 3a0a4i ONMUMATLHOZO
posnodiny peakmusnoi nomysicnocmi (ORPD) i3 3acmocysannsam gionosmoganux Odxcepen ewnepeii (RERs) ma 6e3 nux. Lle ueniniiine
bazamosumiphe 3a60aHHs onmumizayii 3 bezniuyio obmedicenb. Mema nonsieae ¢ momy, wob MiHIMI3Y8AMU PeaibHi 6mpanu NOMYHCHOCHI |
nokpawumu npogine Hanpyau 3a0anoi eneKmpusHoi CUCeMu WIIAXOM pe2yio8anHs 3MIHHUX KepyIouux, makux ;K Hanpyeu 2eHepamopad,
Koeghiyicnmu giozanysicenv mpancgopmamopa, nepemukanis 0xcepern peakmugHoi NOMyHCHOCHI, He NOPYULYIouU MeXHIYHUX 0OMedicetb,
AKi npeocmasneHi y euenadi pienocmell i Hepienocmeti. Memooonozia. Memaespucmuxa — ye cmoxacmuyHi ancopummi, sKi MOXNCHA
3acmocogyeamu O GUPIUEHHSI WUPOKO20 Chekmpa 3a0ay onmumizayii 6e3 HeobXionocmi KoHKpemHoi ingopmayii npo cmpykmypy
npoonemu. Ilponuxnenns RER 6 enexmpomepedici 3HAUHO 3pOCia 3a0Jisi 3HUNCEHHS 3ANEHCHOCHIL 6I0 MPAOUYIUHUX Odcepel eHepeil,
SHUDICEHHsL 8apmocmi 2eHepayii ma 6uKudié NapHUKOsUX 2asie. Brpail eaccnueo exmouumu yi Odcepena 00 OOCHONCEHH NOMOKIE
nomyacrocmi. Cucmemu Ha OCHOGI 8impy ma POMOereKMpUuKY € HabIbUL 3ACMOCO8YBAHUMU MEXHONOLIAMU 8 eNeKMPUYHUX CUCeMAX
nopienano 3 inwumu mexnonoeismu RERs. Binvw moeo, onmumizamop cipoeo eoska (GWO) — ye nomyowcnuii memaespucmudHuil
aneopumm, SAKUL MOJMCHA GUKOPUCMO8Y8amu Ol pO36 A3aHHA onmumizayii 3a0au. Bin Hamxwennuil coyianvHoio iepapxiero ma
MUCTUBCHKOIO NOEOIHKOIO Cipux 806Ki8 y duxiti npupooi. Hoeusna. V yiti cmammi npeocmasneno IGWO ona eupiwenns npoonemu ORPD
npu nasignocmi RERs. Memoou. IGWO, 3acnoeéanuii na nokpawenni gaszu excnayamayii 3suuaiinoeo GWO. Haoiinicme memooy
nepesipena na mecmosiu cucmemi wunu IEEE 30. /[na kepyrouux 3MIHHUX 3anPONOHOBAHO 3MiulaHe YselieHHs (be3nepepere/Ouckpemne).
Ompumani pezynvmamu OeMOHCMPYIONb epeKMUSHICIb 66e0eH020 NOKPAWeHHs MA 30amHiCMb  3aNPONOHOBAHO20  ANOPUMMY
3HaxoOumu Kpawji pivients nopieHano 3 inuwumu memooamu. biom. 40, tadmn. 3, puc. 9.

Knrouoei cnosa: onTHMalbHUI PO3NOALT PEAKTHBHOI NOTYKHOCTI, BilHOBJIIOBAaHI /JKepesia eHeprii, eHepriag BiTpPy, COHSIYHA
eHeprisi, nokpauieHunii onTumizarop ciporo BoBka.

Introduction. The development of an optimal
solution for the operation and management of electrical
networks was initiated in 1958 by L.K. Kirchmayer [1],
with the goal of minimizing the operational cost of
supplying electrical energy to a given load. Thus, the
problem evolved into a dispatch problem. At that time,
significant progress had been made in the ordinary power
flow, and the use of computers showed promising
potential. Consequently, analysts tried to incorporate this
success into the field of optimal power flow (OPF). In
1962, J. Carpentier introduced for the first time the OPF
problem [2], which was further developed by H. Dommel
and W. Tinney [3]. Since then, the OPF has generated
significant interest among researchers focused on power
system operation and planning.

The optimal reactive power dispatch (ORPD)
problem is a specific case of the OPF problem and has an
increasingly important role in enhancing the reliability,
security, and economic efficiency of power systems [4, 5].
It is a multi-constraints nonlinear multivariable problem of
optimization that aims to get the best profile of the voltage
and reduction of power losses by adjusting a set of control
variable values including the voltages of generator, shunt
VAR reactive compensators and the tap changing of the

transformers.  Meanwhile,  optimization  constraints
generator reactive power capabilities, voltages of load bus
and power balance must be satisfied.

In the past few decades, numerous optimization
techniques have been studied to solve this kind of
problems after using some simplifications and special
treatments [6, 7]: gradient-based approach, linear
programming, interior point, quadratic programming and
non-linear programming. However, all these techniques
have some of difficulties to solve the intricated problem
of ORPD such as:

e trapping into the local minima;
premature convergence;
the algorithmic complexity;
large iteration number;
sensitivity to an initial search point;
¢ limited modeling capabilities (in handling nonlinear,
discontinuous functions and constraints, etc.).

With the advancement of soft computing during the
last years, these problems can be overcome by the
introduction of many new stochastic search methods
developed for global optimization problems.
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Metaheuristics are stochastic algorithms for solving a
wide range of problems for which there is no known
effective conventional methods. These techniques are often
inspired from biology (evolutionary algorithms [8—13],
differential evolution [14-18]), physics (simulated
annealing [19, 20], Archimedes optimization algorithm
[21]) and ethnology (ant colony optimization [22], particle
swarm optimization (PSO) [23, 24], honey bee mating
optimization [25], firefly algorithm [26], grey wolf
optimizer (GWO) [27-30]). In order to improve the
performance of optimization algorithms, some authors have
proposed hybrid algorithms [31-34].

Nowadays, the contribution of renewable energy
resources (RERs) in electric power system is intensively
considered [35-40]. This integration leads to reducing
greenhouse emissions, generation fuel cost, and enhancing the
system operation. The most applied technologies for RERs are
the wind and photovoltaic (PV) energy generation systems.

On the other side, GWO is a powerful metaheuristic
method that has few parameters to be set, and it is easy to
use it for solving ORPD problem.

The aim of this paper is to present a new improved
grey wolf optimizer (IGWO) to solve ORPD problem
with and without penetration of RERs. The IGWO is used
to increase the diversity of solutions and resist premature
convergence. The proposed algorithm is tested on the
IEEE 30 bus test system.

Problem formulation. Minimization problems with
constraints are generally expressed in the following form:

Minimize: f(x),
Subject to: ;(x)=0, i=0,..,m; (1)

g;(x)<0, j=0,...n

where m is the number of equality constraints; n is the
number of inequality constraints; f{ix) is the objective
function; h(x) is the equality constraint; gj(x) is the
inequality constraint;

The number of variables is equal to the dimension of
the vector x.

The main objectives of the ORPD are to reduce
transmission losses and improve the voltage profile in a
power system. The total losses are represented as:

J6)=p= 3 Baoe= S gylV2+V2 =200, 0086, 2)
keNp keNg
where £ is the branch between buses i and j; N; is the set
of branch numbers; Py, is the active power loss of
branch k; g; is the conductance of the branch existing
between the buses i and j; V;, V; are the voltage profiles at
bus i and j respectively; 6; is the phase angle of voltage
between buses i and ;.
The objective function f{x) is constrained by a number
of equality constraints (real and reactive power balance at
each node) which are associated with the load flow:

—-Pi— ZV (Gl-j cos6’l-j +Bj siné’,-j):O,ieNO, 3)

JEN;
le' —le' _I/l' ZV/(G’/ sin 9,1 _Blj COSHU): 0, ie NPQ 5 (4)
JEN;
Inequality constraints of control variables are given as:
T min ST; S Tpmax> 1€ Ny (5)
Qgi min = Qgi = Qgi max> € Ncap > (6)
zmmSV<Vzmax’ iENPV' (7)

Inequality constraints of state variables are written as:
V: < V <V ie N PO 5 (8)

i min = I max»

Qgi min = Qgi = Qgi max> L€ NPV > ©)
where P,; is the generated active power at bus i; Q,; is the
generated reactive power at bus i; P is the active power
load at bus i; Oy is the reactive power load at bus i; Gj is
the transfer conductance between buses i and j; B is the
transfer susceptance between buses 7 and j; N, is the set of
the bus numbers adjacent to bus i including bus #; N is the
set of the bus numbers except the swing bus; Np is the set
of PQ bus (load bus) numbers; Npy is the set of PV bus
(generator bus) numbers containing swing bus; T; is the tap-
setting of the transformer i; Ny is the set containing the
numbers of tap-setting transformer branches; N, is the set
of bus numbers containing shunt compensator banks.

Control variables, including generator bus voltage,
transformer tap settings, and switchable shunt capacitor
banks, are inherently constrained. Meanwhile, load bus
voltages and reactive power generation are state variables;
with their limitations incorporated into the objective function
as quadratic penalty terms, forming a penalty function:

minF(x)=p+ Y Ay (;=V"™)?+
ieNpg

+ DA, Qg 0™’

ieNpy,

(10)

This new formulation of the objective function is
constrained by the equality constraints (3) — (4) and
inequality constraints of control variables (5) — (7). The
coefficients /1Vi and ’1Qg,~ serve as penalty factors:

) Vimin if Vi <Vimin 5
Vihm =Vimax 1f Vi>Vimax s (11)
Vi if Vimin <Vi <V max’
Ogimin 1f Oyi < Ogimin’
O =1Qgimax if Qg >Ogimaxs  (12)
Ogi 1f Ogimin < Qi < Ogimax-

Mathematical modelling of RERs.

1) Model of wind power. A wind turbine generates
power output according to the wind speed it encounters.
The relationship between output power and wind speed
(v,) 1s expressed as [36, 37]:

0 for v, <vy,;, andvy, 5, <V,
Vi, — Vi, i
w ™ Yw,in .
Pwt(vw): B, | ————| for wanV <Vwr> (13)
Vw,r ~Vw,in
B wr for Vw,r < w < vw,out >

where P,, is the rated power generated by the wind
turbine while v, ;,, vy, and v, ..y, denote the cut-in, rated,
and cut-out wind speed, respectively.

The active and reactive generated powers of the
wind farm are depicted as [37]:

Nyii Oup = (14)

where P,, , O, are the active and reactive power
respectively generated by the wind farm; N,, is the
number of the wind turbines connected in a wind farm;
cos g is the power factor.

Pf

Py =Py l-cosg ,

24

Electrical Engineering & Electromechanics, 2025, no. 1



2) Model of solar power. The output of the solar PV
units also fluctuates due to daily and seasonally variation
in solar irradiation, which causes a change in the power
system. The solar irradiance G, to energy conversion is
given by following relationship with maximum output
power limited to the PV unit rated power P,

2
PS,G—S for 0<Gy<R.;
Gsta " Re

PS,[ Os J for Gy=R.,
Gsta

where P, is the equivalent rated power output of the PV
generator; R, is the certain irradiance point set as 120
W/m?; G, is the solar irradiation in standard environment,
set as 1000 W/m”.

3) Effect of the wind and solar powers in ORPD.
Wind and solar power significantly influence the dispatch
solution of the ORPD problem. The integrated
mathematical formulation of ORPD, which includes wind
farms and PV systems, is presented in (16). It’s important
to note that this equation describes a balanced power flow
in the system, taking into account RERs:

P+ By + B, =By +V; S W,(Gycost + By sindy )
JeN; 16
Oyi+ Oy +0, = Qui+V; V(G sindy — By 005911)( )
JeN;

Today, PV inverters operate with a very small
amount of reactive power, resulting in a power factor that
is very close to the unit. As a result, PV installations only
inject active power into the grid.

Grey wolf optimizer. GWO is a metaheuristic
optimization method that mimics the social hierarchy and
hunting mechanism of grey wolves. This algorithm was first
introduced in [27]. Wolves are classified into 4 main groups:

e Alpha (@) — the leader of the pack;

e Beta (f) — the second in command;

e Delta () — the third in command;

¢ the remaining wolves are considered Omegas ().

The positions of the wolves are updated based on the
positions of the 3 best wolves (Alpha, Beta and Delta).
The GWO search algorithm begins with a group of search
agents, also known as design solutions (X).

The reproduction process involves the following 3 main
operators: social hierarchy, encircling prey and hunting.

1) Social hierarchy. The social hierarchy of grey
wolves classifies them into 4 groups based on their
objective function values. The groups are Alpha () for
the best, Beta (f) for the second best, and Delta () for the
third best, while the remaining wolves are assigned to the
Omega (w) group.

2) Encircling prey. The process of encircling prey by
grey wolves for hunting can be mathematically defined as:

2 (Gy)= (15)

D=|C-x,(0)-x()| ; (17)
X(e+1)=x,(t)-4-D, (18)

where:
A=2-a-n-a; (19)
C=2-1, (20)

where ¢ is the current iteration; 4, C are the coefficient
vectors; X, is the position vector of the prey; X is the

position vector of a grey wolf; 7|, r, are the uniform random
vectors whose elements are generated randomly within the
range [0, 1] [27]. The magnitude of A4 is allowed to be large
initially to encourage exploration and it is gradually reduced
to get good exploitation in later iterations.
The components of a are linearly decreased from 2 to 0
throughout the optimization process. It can be formulated as:
a=2-—— AL N
maximum number of iterations

3) Hunting. In the hunting phase, the positions of the
grey wolves Alpha (X,), Beta (Xp) and Delta (Xy), as
defined in the social hierarchy play a crucial role. These
3 agents collectively influence a new search at iteration ¢,
which is referred to as the hunting operator as:

D, =| G- X, (t)-Xx() | (22)
Dy =| Gy x5(0)-x1(0)]; (23)
Ds=|C3-Xs(t)-X()]; (24)
X, =X, (t)-4-Dy; (25)
Xy = Xp()- 4y Dy: (26)
X3 =Xg5(t)- 4Dy . (27)

A new grey wolf position, or the next generation,
can then be determined as:
X 1+ X ot X 3

3 .

Once all new agents or design solutions are
generated, the function evaluations of these agents are
carried out. The process is repeated until a termination
condition is met. A pseudo-code for the GWO algorithm
applied to ORPD is illustrated in Fig. 1.

X(t+1)= (28)

Initial system data, Number of search agent, Number
of iterations,

Initialize the grey wolf population X; within the limits
of their control variables.

Initialize a, 4, C.

Evaluate the fitness of each search agent (run
Newton—Raphson load flow)

Determine:

X, = the best search agent

Xz = the second best search agent

X5 = the third best search agent

while (1<max number of iterations)

for each search agent

Update the position of the current search agent by
equation (28) (within their limits of control variables)
end for

Update a, 4, C.

Calculate the fitness of all search agents (using
Newton—Raphson load flow)

Update X, Xp, X5

t=t+1

end while

return X,,.

Fig. 1. Pseudo code of the GWO algorithm for ORPD

Improved grey wolf optimizer. In this work, the
reproduction process of the original GWO is modified.
Rather than averaging the positions of X}, X; and Xj; as with
(28), the reproduced solution X(#+ + 1) has 2 possible
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choices to be modified as shown in (29). Those choices
have equal probability to take place. The modification of
this step is expected to provide better population diversity.

% if p<0.5;
X(t+1)= [R5 0 (29)
B — pz205,

where pe[0, 1] is the uniform random number generated a
new for each agent.

Simulation and results.

1) Data of the studied network. In this section, we
evaluate the IGWO algorithm for solving the ORPD
problem with and without integration of RERs: wind and
solar energy. This assessment utilizes the IEEE 30-bus test
system, which includes 30 buses, 41 branches, 6
generators, 4 tap-setting transformers, and 9 VAR
switching sources. Bus 1 is the swing bus, while buses 2, 5,
8, 11, and 13 are designated as PV buses. The possible
locations for reactive power installations are buses 10, 12,
15, 17, 20, 21, 23, 24, and 29. The tap-setting transformers
are located on branches (6-9), (6—10), (4—12) and (28-27).
System data is referenced from sources [17, 24]. The used
base of power is Sz = 100 MVA.

2) Load flow calculation. At the beginning, the load
flow calculation is done without consideration of the
powers of RERs. The Newton—Raphson method results,
shown in Table 1, indicate a total transmission loss of
5.8223 MW. Voltages exceeding the acceptable limits are
observed at buses V9 — Va7, Va9 and V3. It is crucial to
adjust the control variables to minimize transmission
losses and enhance the voltage profile in the network. It
should be noted that constraints for control and state
variables are shown in Table 2, 3 respectively.

Table 1
Load flow results

] Voltage Load Generation
R | V.pu 6,° | Pupu|Qspu| Pypu | Ogpu
1 | 1.0500 0 0 0 0.9922 | -0.0153
2 11.0400 | —1.7623 | 0.217 | 0.127 | 0.8000 | 0.1564
3 [1.0279 | -3.9323 | 0.024 | 0.012 0 0
4 11.0222 | —4.6963 | 0.076 | 0.016 0 0
5 | 1.0100 | —6.4824 | 0.942 | 0.190 | 0.5000 | 0.1641
6 | 1.0166 | —5.4355 0 0 0 0
7 11.0059 | —6.3969 | 0.228 | 0.109 0 0
8 [ 1.0100 | -5.6272 | 0.300 | 0.300 | 0.2000 | 0.1354
9 109755 | -7.0162 0 0 0 0
10 ] 0.9547 | —9.1959 | 0.058 | 0.020 0 0
11]1.0500 | —4.6886 0 0 0.2000 | 0.3800
12 1 09976 | —8.7884 | 0.112 | 0.075 0 0
13 ] 1.0500 | —7.2567 0 0 0.2000 | 0.3954
141 0.9773 | —9.7952 | 0.062 | 0.016 0 0
151 0.9680 | —9.7932 | 0.082 | 0.025 0 0
16 | 0.9718 | —9.2538 | 0.035 | 0.018 0 0
17 1 0.9540 | —9.4522 | 0.090 | 0.058 0 0
18] 0.9501 | —10.3964 | 0.032 | 0.009 0 0
191 0.9429 | —10.5331 | 0.095 | 0.034 0 0
20 | 0.9450 | —10.2636 | 0.022 | 0.007 0 0
21109408 | —9.7516 | 0.175 | 0.112 0 0
22 109413 | -9.7419 0 0 0 0
231 0.9467 | —-10.1714 | 0.032 | 0.016 0 0
241 0.9274 | —-10.2804 | 0.087 | 0.067 0 0
251 0.9204 | —-10.3073 0 0 0 0
26 | 0.9008 | —10.8220 | 0.035 | 0.023 0 0
27 1 0.9257 | -10.0102 0 0 0 0
28 | 1.0116 | —5.8711 0 0 0 0
291 0.9035 | -11.5199 | 0.024 | 0.009 0 0
30(0.8907 | —12.6115 | 0.106 | 0.019 0 0
Total real losses: 5.8223 MW
Table 2

Control variables and losses obtained from execution of GWO and IGWO with and without integration of RERs, CPVEIHBMO [25]
and PSOGWO [34]

Control . .. GWO IGWO GWO IGWO
variables Min | Max |Initial without RERs | without RERs| with RERs with RERs CPVEIHBMO [25]|  PSOGWO [34]
Vi, pu 095 | 1.1 | 1.05 1.0701 1.0714 1.0638 1.0624 1.0254 0.9615
V2, pu 095 | 1.1 | 1.04 1.0615 1.0616 1.0605 1.0578 1.0352 1.0020
Vs, pu 095 | 1.1 | 1.01 1.0378 1.0389 1.0444 1.0407 1.0563 0.9437
Vs, pu 095 | 1.1 | 1.01 1.0390 1.0394 1.0442 1.0429 1.0273 0.9623
Vi1, pu 095 1.1 | 1.05 1.0939 1.0799 1.0807 1.0640 1.0287 0.9476
V13, pu 095 | 1.1 | 1.05 1.0378 1.0599 1.0401 1.0630 1.0756 1.0464
T6-9 09 | 1.1 |1.078 0.9813 1.0375 0.9875 1.0188 0.9983 0.9746
T6-10 09 | 1.1 |1.069 1.0875 0.9313 1.0438 0.9063 0.9748 1.0105
T4-12 09 | 1.1 [1.032 1.0063 0.9875 0.9938 1.0000 0.9726 0.9776
T28-27 0.9 1.1 [1.068 1.0063 0.9688 0.9813 0.9750 1.0817 0.9392
QOgel0, pU 0 0.05 0 0.0160 0.0250 0.0250 0.0135 0.0482 0.0040
QOge12, pu 0 0.05 0 0.0260 0.0295 0.0025 0.0465 0.0483 0.0580
Ogets, pu 0 |005] O 0.0255 0.0370 0.0490 0.0280 0.0476 0.0342
Qec17, U 0 [005] O 0.0500 0.0370 0.0215 0.0150 0.0485 0.0272
QOge20, pU 0 0.05 0 0.0475 0.0200 0.0005 0.0115 0.0498 0.0016
QOge21, pU 0 0.05 0 0.0215 0.0285 0.0385 0.0350 0.0499 0.0720
Oee23, pU 0 0.05 0 0.0035 0.0035 0.0035 0.0110 0.0489 0.0347
QOge24, PU 0 |005] O 0.0475 0.0460 0.0490 0.0330 0.0499 0.0111
Qgc29, PU 0 [005] O 0.0425 0.0185 0.0105 0.0365 0.0499 0.0157
otal e 58223|  4.9496 49015 2.5374 2.5193 5.3243 5.0903
osses, MW

3) Treatment of control variables, initiation and
evaluation steps. Each potential solution (search agent) is
represented by a vector X that includes the values of
control parameters such as generator voltages Vg,

transformer taps 7; and the reactive power of switchable
shunt capacitors Q,;. This vector is expressed as:

Xz[V Vg [T Ty, |Oger ...Qchwp] (30)

8 ngV
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Generator voltages are treated as continuous
variables, whereas transformer taps and reactive power
settings are considered discrete. During the initialization
phase of both the GWO and IGWO approaches, initial
solutions are generated using uniform random variables:

Xi:Ximin+rnd'(Ximax_Ximin)n (1)

where 0 <7nd <1 is the random value.
To handle discrete variables, we adjust the variable
value using the following formulation:

X; = X; min + NX; - AX; (32)

where N is the set of the total number of buses; NX; is the
integer number represents the variation number of the
variable X;; AX; is the step size of the variable X;.

In this paper, each transformer has 32 discrete settings,
while each of the nine shunt compensator banks offers 100
possible configurations. To evaluate any solution, the fitness
function value is determined by running a load-flow
analysis using the Newton—Raphson method.

i min

Table 3
Dependent variables obtained from execution of GWO and IGWO with and without integration of RERs
Dependent Min Max Initial GWO IGWO GWO IGWO
variables, pu without RERs | without RERs with RERs with RERs
V3 0.95 1.05 1.0279 1.0495 1.0498 1.0500 1.0500
Va 0.95 1.05 1.0222 1.0441 1.0441 1.0463 1.0465
Vs 0.95 1.05 1.0166 1.0408 1.0403 1.0454 1.0430
Vs 0.95 1.05 1.0059 1.0319 1.0320 1.0473 1.0443
Vy 0.95 1.05 0.9755 1.0499 1.0408 1.0491 1.0448
Vio 0.95 1.05 0.9547 1.0221 1.0413 1.0282 1.0467
Vi 0.95 1.05 0.9976 1.0286 1.0497 1.0339 1.0499
Via 0.95 1.05 0.9773 1.0164 1.0378 1.0231 1.0389
Vis 0.95 1.05 0.9680 1.0143 1.0357 1.0234 1.0389
Vie 0.95 1.05 0.9718 1.0202 1.0402 1.0249 1.0419
Viz 0.95 1.05 0.9540 1.0190 1.0377 1.0231 1.0408
Vis 0.95 1.05 0.9501 1.0081 1.0269 1.0194 1.0368
Vio 0.95 1.05 0.9429 1.0076 1.0249 1.0201 1.0386
Vao 0.95 1.05 0.9450 1.0129 1.0292 1.0213 1.0403
Vo 0.95 1.05 0.9408 1.0115 1.0315 1.0189 1.0368
Va 0.95 1.05 0.9413 1.0121 1.0322 1.0196 1.0373
Va3 0.95 1.05 0.9467 1.0064 1.0280 1.0156 1.0320
Va4 0.95 1.05 0.9274 1.0035 1.0252 1.0127 1.0283
Vas 0.95 1.05 0.9204 1.0079 1.0327 1.0195 1.0352
Vae 0.95 1.05 0.9008 0.9900 1.0152 1.0018 1.0178
Vay 0.95 1.05 0.9257 1.0194 1.0458 1.0324 1.0480
Vag 0.95 1.05 1.0116 1.0378 1.0360 1.0407 1.0397
V29 0.95 1.05 0.9035 1.0120 1.0318 1.0159 1.0392
V3o 0.95 1.05 0.8907 0.9952 1.0184 1.0032 1.0236
Qe 0.2 0.25 —0.0153 -0.0447 —0.0158 —0.0521 —0.0360
On —0.2 1 0.1564 0.1286 0.1055 0.0974 0.0589
Ogs —0.15 0.8 0.1640 0.2084 0.2218 0.1786 0.1678
Ogs —0.15 0.6 0.1353 0.2618 0.2951 0.2877 0.3155
Qa1 —0.1 0.5 0.3800 0.2350 0.2067 0.1678 0.1017
Qa3 —0.15 0.6 0.3954 0.0710 0.0797 0.0488 0.1016

4) System without integration of RERs.
4.1) Application of GWO. The GWO results are
presented in Table 2, 3. The obtained results are based on:
e grey wolf population size: 100;
e maximum number of iterations: 500.
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Objective function

0.048
0

Iteration
Fig. 2. Convergence of the objective function using GWO
without RERs

The optimization led to a significant reduction in
total real losses, improving by 14.98 % from 5.8223 MW
(initial case of load flow calculation) to 4.9496 MW. The
voltage profile has been enhanced, and all constraints
have been respected. The convergence characteristics of
the algorithm are illustrated in Fig. 2, 3.
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4.2) Application of IGWO. The IGWO without
integration of RERs results are given in Table 2, 3 and
Fig. 4, 5. Hence, we can clearly perceive the superiority
of IGWO over GWO, where all the constraints are also
respected and the losses are moved from 4.9496 MW to
4.9015 MW, with a minimization in total active losses of
15.81 % compared to the initial load flow case.
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Fig. 5. Convergence of active losses using IGWO without RERs

5) System with integration of RERs. In this paper,
RERs are added on buses 7 and 19. Wind speed and solar
radiation data are taken from [35]. In bus 7, there is a wind
farm, which consists of 30 wind turbines with a rated
power of 3 MW for each one. The wind turbine cut-in, cut-
out, and the rated speeds respectively are: v,,,;, = 3 m/s;
Viour = 25 m/s; v, = 16 m/s. The annual average wind
speed from the location of this wind farm is taken as
7.536 m/s, which leads to an overall power output of 31.41
MW according to (13) and (14). In this work a power factor
of 0.95 is considered for this wind farm.

The solar power plant is added on bus 19, where the PV
array output power P, is assumed to be 30 MW, R, is set as
120 W/m” and the annual average radiation from this location
is taken as G, = 471.76 W/m’. Using (15) the total power
generation for this plant in this location is 14.153 MW. Unity
power factor is considered for the solar farm.

5.1) Application of GWO. The -convergence
characteristics of the GWO algorithm with integration of
RERs are shown in Fig. 6, 7. The simulation results are
resumed in Table 2, 3. The penetration of RERs has reduced
the active power loss in the system largely to 2.5374 MW,
with a minimization of 56.41 % compared to the initial load
flow case. All the constraints are respected again.
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Fig. 6. Convergence of the objective function using GWO
with RERs
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Fig. 7. Convergence of active losses using GWO with RERs

5.2) Application of IGWO. The IGWO results are
presented in Table 2, 3, with addition of convergence
characteristics in Fig. 8, 9. Power losses have continued to
decrease. One can clearly perceive an important
improvement of 56.73 % in total real losses, ranging also
from 5.8223 MW in the case of load flow calculation to
2.5193 MW in our current case. The voltage profile has

been improved and all the constraints have been respected.
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Fig. 8. Convergence of the objective function using IGWO
with RERs

Table 2 presents a comparison of our applied
algorithms with results obtained from:

o the new multi-objective strategy (Case IV) based on
the Chaotic Parallel Vector Evaluated Interactive Honey
Bee Mating Optimization (CPVEIHBMO) technique, as
described in [25];

o the hybrid GWO-PSO optimization technique (Case I)
discussed in [34].

The comparison highlights the effectiveness and
superiority of the IGWO approach.
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Fig. 9. Convergence of active losses using IGWO with RERs

Conclusions. The ORPD problem is a nonlinear
multivariable optimization problem with both equality
and inequality constrains. To solve this problem, the
paper has proposed GWO and a new IGWO with and
without incorporating of wind and solar energy systems.

In this work, the modification in the reproduction
process step of IGWO is expected to provide better
population diversity.

To make the ORPD problem more practical, control
variables are represented in a mixed format, combining
continuous and discrete values. Specifically, generator
voltages are treated as continuous, while reactive power
installations and transformer taps are considered discrete.
The robustness of the proposed methods is evaluated
using the standard IEEE 30-bus test system. The results
demonstrate that IGWO offers notable advantages over
GWO. The results also show that the introduction of
RERs into the network, combined with control variable
adjustments through the algorithm, leads to a more
significant reduction in active power loss and voltage
deviation compared to scenarios without RERs.
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