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Global maximum power point tracking method for photovoltaic systems
using Takagi-Sugeno fuzzy models and ANFIS approach

Introduction. A new global maximum power point tracking (GMPPT) control strategy for a solar photovoltaic (PV) system, based on
the combination of Takagi-Sugeno (T-S) fuzzy models and an ANFIS, is presented. The novelty of this paper lies in the integration of
T-S fuzzy models and the ANFIS approach to develop an efficient GMPPT controller for a PV system operating under partial
shading conditions. Purpose. The new GMPPT control strategy aims to extract maximum power from the PV system under varying
weather conditions or partial shading. Methods. An ANFIS algorithm is used to determine the maximum voltage, which corresponds
to the actual maximum power point, based on PV voltage and current. Next, the nonlinear model of the PV system is employed to
design the T-S fuzzy controller. A reference model is then derived based on the maximum voltage. Finally, a tracking controller is
developed using the reference model and the T-S fuzzy controller. The stability of the overall system is evaluated using Lyapunov’s
method and is represented through linear matrix inequalities expressions. The results clearly demonstrate the advantages of the
proposed GMPPT-based fuzzy control strategy, showcasing its high performance in effectively reducing oscillations in various
steady states of the PV system, ensuring minimal overshoot and a faster response time. In addition, a comparative analysis of the
proposed GMPPT controller against conventional algorithms, such as Incremental Conductance, Perturb & Observe and Particle
Swarm Optimization, shows that it offers a fast dynamic response in finding the maximum power with significantly less oscillation
around the maximum power point. References 20, tables 3, figures 14.
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Bcemyn. IIpeocmasiena nosa enobanvna cmpameeis giocmedcents mouku maxcumanvioi nomyowcnocmi (GMPPT) ona conaunoi
¢omoenexmpuunoi (PV) cucmemu, 3achosana na xomobinayii neuimxux mooeneu Taxaei-Cyeeno (T-S) i ANFIS. Hoeusna cmammi
nonseae 6 inmeepayii Heuimxux mooeneti T-S i nioxody ANFIS ons pospobxu egpexkmusnozo konmponepa GMPPT ons PV cucmemu, wo
npayioe 8 ymosax yacmkoeo2o 3aminenns. Mema. Hosea cmpamezis konmponio GMPPT cnpamoeana Ha OmpumManHsa MaKxcumMaibHOi
nomyscnocmi  6i0 PV cucmemu 3a 3MIHHUX NO200HUX YMO8 abo uacmkogozo saminenns. Memoou. Aneopumm ANFIS
BUKOPUCTNOBYEMBCS OISl BUSHAUEHHS MAKCUMATLHOT Hanpyau, AKa 8I0N06ioae hakmuuHiil mouyi MaKCUManibHoOi ROMYICHOCHI, HA OCHOBI
PV nanpyeu ma cmpymy. /lani neniniiina mooens PV cucmemu euxopucmogyemvcs 01 po3pooku Hewimxozo kouwmponepa T-S. [lomim
HA OCHOBI MAKCUMATLHOI HANpyeu 6UB0OUMbC emanonHa modens. Hapewmi, konmponep cmedicentsi po3pobieHo 3 6UKOPUCTIAHHAM
emanonnoi modeni ma newimkozo koumpoiaepa T-S. Cmitikicms cucmemu 8 yiiomy oYiHIOEMbCA 3a 00NOMO2010 Memoody JIanynoea i
npeocmasnsiemvcs y uenAol JIHIHUX MampuyHux HepieHocmel. Pe3ynomamu uimko OemoHcmpyiomb nepeeacu 3anponoHO8aHOT
cmpamezii Heuimkoeo xepygsanms Ha ochosi GMPPT, oemoncmpyiouu it 6ucoky npoOyKmMugHicmv wjo0o eQheKmueHo20 3MeHUIeHHS!
KoAUuBans y pisnux cmanux cmanax PV cucmemu, 3abesneuyiouu minimanshe nepepeyniogants ma weuowiui yac eiocyxky. Kpim moeo,
nopienaAneHul ananiz npononosanozo koumponrepa GMPPT i3 3euuaiinumu ancopummamu, makumu sk Incremental Conductance,
Perturb and Observe ma Particle Swarm Optimization, noxasye, wjo 6in NponoHye weUoKy OUHAMIUHY Pearyito Yy NOULYKY MAKCUMATbHOT
NOMYHCHOCMI 31 3HAUHO MEHWUMU KOTUBAHHAMU HABKONIO MOYKU MAKCUMATbHOT nomyxcrocmi. biom. 20, Tabn. 3, puc. 14.

Kniouosi cnosa: poroesieKTpHYHA CHCTEMA, BilCTeKeHHS TOUKH MAKCUMAJIBHOI MOTYKHOCTI, HeuiTka Mojesab Takari-Cyreno,
JiHifiHi MaTpUYHi HepiBHOCTI.

Introduction. Fossil energy has several drawbacks,
such as environmental pollution, climate change
contributions, and resource depletion. In contrast, renewable
energy, like solar and wind power, offers advantages like
reduced environmental impact, sustainability, and the
potential for job creation and innovation in clean energy
technologies. Photovoltaic (PV) solar energy offers
compelling advantages. It is a clean and sustainable source
with zero emissions, reducing environmental impact.
Moreover, solar modules are durable, low-maintenance, and
cost-effective over their long lifespan. Scalability makes PV
systems versatile for diverse applications, from homes to
large-scale projects. Abundant sunlight in many regions
promotes energy independence, diminishing reliance on
finite resources. Ongoing technological advancements
further enhance efficiency and affordability, making PV
solar an increasingly attractive and accessible choice for
renewable energy [1, 2].

The PV system consists of solar modules that
transform sunlight into DC electricity and a DC-DC
converter, which plays a pivotal role by facilitating the
efficient power transfer from the solar modules to the load.
Its primary function is to match the varying voltage levels
between the PV module and the load or storage system [3].
In essence, it optimizes power extraction from the solar

modules by maintaining the output voltage at the maximum
power point V,,, a task typically controlled by the
Maximum Power Point Tracking (MPPT) algorithm [4, 5].

Many conventional MPPTs methods have been
proposed in the literature, these include Perturb and
Observe (P&O) [6, 7], Incremental Conductance (InCond)
[8, 9] and Hill Climbing [10]. However, each method has
its application challenges and inherent disadvantages. For
instance, P&O is susceptible to oscillations around the
maximum power point and may result in power losses,
especially under rapidly changing irradiance conditions.
InCond, while more efficient, can exhibit sensitivity to
noise and instability. Hill Climbing methods may struggle
in partially shaded conditions and exhibit slow
convergence to the optimal operating point.

Additionally, these conventional MPPT approaches
may not fully exploit the potential of PV systems under
dynamic environmental conditions. As a result, exploring
advanced and adaptive MPPT techniques becomes crucial
to overcoming these limitations and improving overall
performance [11]. On the other hand, shading introduces
multiple peaks and wvalleys in the power-voltage
characteristic, leading to inaccurate MPPT operation.
These conventional methods may experience slow
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convergence and oscillations and may even be trapped in
local maximum power points, resulting in sub-optimal
energy harvesting. To address these limitations, advanced
MPPT techniques, often incorporating intelligent
algorithms and adaptive strategies, are increasingly
explored to enhance performance in partial shading
conditions [12].

Over the past few years, numerous fuzzy MPPT
controllers have been suggested, leveraging Takagi-
Sugeno (T-S) fuzzy models [13, 14]. The fundamental
concept behind T-S fuzzy models is to represent a process
by aggregating linear models, facilitating the construction
of fuzzy controllers using a technique called parallel-
distributed compensation (PDC) [15]. Determination of
fuzzy controller gains is dependent on the stability
conditions of the augmented T-S fuzzy system, which can
be readily formulated as linear matrix inequalities and
efficiently solved through convex optimization
techniques. In [16] the InCond algorithm is utilized to
ascertain the reference voltage. Subsequently, it is
combined with a T-S MPPT-based fuzzy controller. Other
studies, such as [17], calculated the reference voltage
employing a T-S reference model incorporating, as inputs
measurements of temperature and irradiation. An
alternative approach involves, an MPP searching
algorithm, which evaluates the changing levels of
irradiation and temperature. This algorithm instantly
calculates the partial power derivative which respect to
the PV cell current and generates the reference state
required for tracking with a PDC controller.

Purpose. This work aims to design a Global
Maximum Power Point Tracking (GMPPT) controller
using the adaptive ANFIS technique to accurately track
the global maximum power point in the presence of
partial shading. ANFIS uses PV current and PV voltage
as inputs to generate the maximum voltage. Subsequently,
a T-S fuzzy -controller ensures maximum energy
transmission, enhancing the PV system’s efficiency. The
efficacy of the proposed T-S fuzzy method is assessed
through the total-cross-tied configuration, partial shading
as well as under sudden solar irradiance changes.

PV system modeling. As seen in Fig. 1, the PV
system under consideration is made up of a PV panel, a
DC/DC boost converter, and a DC load.

PV Modulei DC-DC Boost converter 1 DC Load
b
RL L D E 1
c e et <
[ U GE : RS Vo
PWM — ' T

Fig. 1. PV system

PV system parameters applied in this study are as
follows:

e [ and V denote, respectively, the PV output current
and voltage;

e i;, iy, Vo and u denote, respectively, the converter’s
self-inductance current, load current, load voltage and
duty cycle;

e C, G, L, R;, R, and v, denote, respectively, the
input capacitor, output capacitor, boost inductance,

resistance of self-inductance, resistance characterizing the
loss through the electronic switch (MOSFT) and diode’s
forward voltage.

PV panel model. According to the electrical circuit
of PV panel (Fig. 2), the PV current can be described by
[17,18]:

q(V+IRS)j_1j_V+IRS O

I=n,1,,—n,1I.|ex
P’ ph ’”( p( AKT R,

where /; is the cell saturation current in the dark; 7, is the
light-generated current; R, and R are the shunt and the
cell series resistances respectively; ¢, k, T, n,, A are,
respectively, the electron charge, Boltzmann constant
(1.38:10 % J/K), cell temperature, number of parallel solar
cells and the ideal factor.
Rs |
( /\/\/\/\/

g N § Rsh v

Fig. 2. Electrical equivalent model of PV module

Equation (2) describes the light-generated current
I, which is dependent on cell temperature 7" and sun
irradiation G:

]ph = G(ISC + KI(T_ Tr))s (2)
where I, is the cell short-circuit current at 7= 25 °C and
G=1 kW/mz; K, T,, G are, respectively, the cell’s short-
circuit current temperature coefficient, cell’s reference
temperature and solar irradiation.

Conversely, the saturation current is dependent on
cell temperature according to the following expression:

g [T e (11 5
s=sl ) P T\ T

where E, is the band-gap energy of the semiconductor used
in the cell; 7, is the reverse saturation current given by:

I :# (4)

rs >
Ve
exp| 17ec |1
n kAT
where V. is the open-circuit voltage.
The considered PV panel is simulated using the
MATLAB/Simulink model illustrated in Fig. 3 with the

values provided in Table 1. The PV panel is composed of
36 cells, as shown in Fig. 4.

]
Continuous

PV Panel with 36 Cellules

Fig. 3. Simulink model of PV panel
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Fig. 4. Simulink model of PV panel cells

Table 1
PV panel parameters
Parameter Value

Ideal factor of PV cell 4, V 1.1
Shunt resistance R, Q 360
Cells connected in series 7, 36
Number of module in parallel n, 1
Series resistance R,, Q 0.18
Temperature reference 7, K 298
Irradiation reference G, W/m?> 100
Nominal short-circuit current [, A 3.8
Open-circuit voltage V,., V 21.6
P-V characteristic (Fig. 5) shows the significant

impact of solar irradiation and cell temperature on the
fluctuation of the PV module’s maximum power Py,
which translates to an ideal PV output voltage
Vinax = Vimpp- On the other hand, when the PV module is
partially shaded, it gives rise to the occurrence of multiple
operating points on its P-V characteristic plot.

60-G=1000 Wim?, T=25 G Vg, o= 16.6476 Y,
P o, =59.3936 W
P,W \
50 ,
(G=800 W/m®, T=40 C 'R F-\B 9944 V
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40 \

G=600 W/m®, T=30 G |6 3771V,

3‘ 4877 W

,;-f—/

30!
v ~15.2074 V,

G=400 Wim®, Tseo/c’ L=21.4928 W
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= | \\\ Al
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Fig. 5. P-V characteristic of a PV module
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DC-DC boost converter model. The dynamic model
of DC-DC boost converter can be described as [17]:

: Ry, . 1 1—u .
ZLZ—TLZL-FzV—( I j(Vo-FVd—RmZL),

, (5
. . : (%)
V=i +—1.

G G

By using (5) and adding a new state, such as
U = uy, the PV system can be described as:

i) = f(x(0)+ Bult)+n(t), (6)

where

RL 1 1-u V0+Vd R lL
——=i;+—V -
oy’ (L j( L ”
1
x\t))= ——1 ;
1(+0) i
0
V0+Vd
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x=|V |, B=|0}, n=| ——I
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The considered boost converter parameters are given
in Table 2.

Table 2
Boost converter parameters
Parameter Value
Output capacitor Cy, uF 50
Input capacitor C,, uF 220
Resistance of self-inductance R;, Q 0.5
Resistance of IGBT characterizing R,,, Q 0.05
Load resistance R, Q 35
Inductor L, uH 180
Diode’s forward voltage v, V 1.9

Proposed GMPPT method. The purpose of this
study is to design a feedback controller using T-S fuzzy
models and ANFIS technique that permit to maximize the
output power of the PV Panel. The primary objective is to
ensure that the PV system states follow x = [zL vV upv]T
pre01sely a desired reference x; = [izs Vy upvd] regardless
of varying weather conditions and partial shading. The
initial stage involves designing a T-S fuzzy controller
using the nonlinear mathematical model of the PV
system. Subsequently, a desirable reference model and a
nonlinear tracking controller are determined using a
maximum voltage Vyax = Vi Which can be determined
using an ANFIS. Consequently, the control scheme
depicted in Fig. 6 is proposed.

PV Module | DC-DC converter

v
A T "ﬂ B

Cz|
- AN FIS Model 1At Ry
Controller generator
Learnlng

Fig .6. Control scheme of proposed GMPPT method

ANFIS design. The implementation of an ANFIS for
the prediction of the maximum voltage is illustrated in Fig 7.

Simulink/SimPower models of the PV module
operating in diverse climatic conditions and under various
partial shading, scenarios are employed to create the training
dataset for the ANFIS. These datasets encompass predictor
inputs and corresponding desired output values. The system

i Load

L

Electrical Engineering & Electromechanics, 2025, no. 2

33



involves two inputs, the PV voltage and PV current and a
single output representing the maximum PV voltage which
corresponds to the actual maximum power point. The
ANFIS network formulates fuzzy rules based on a provided
input-output  dataset, utilizing suitable membership
functions whose shape parameters are adjusted in the
learning phase. The training process employs a hybrid
learning method that integrates the least squares approach
with the back-propagation gradient descent algorithm.

[ PV Module modeling ]

Simulation of PV module unde
several shadlng scenarios

Training Data collection

rules

ANIS Network Model

\_/T\_/;/

[ Fuzzy input Data and fuzzy

Is
rror<=Max Error

New Mebership
Functions

i

Training Model

Is
rror<=Max Error

No New Mebership
Functions

Yes

v, TS Fuzzy PWM signal
"""" Controller+PWM
Learning Model +M
PV module | I DC-DC Boost Load

Converter

Fig. 7. ANFIS flowchart

Fuzzy modeling of the PV system. To design the
feedback T-S controller, the nonlinear system given by
(6) is converted into a T-S fuzzy model. This
transformation is achieved by considering the converter
inductance current i; and the load voltage ¥ as decision

variables. Consequently, the following state space
representation is produced:
()= Alig Vo (t)+ Bult)+n(e), (7)
where:
_R_L l VO+Vd_RmiL _V0+Vd
L L L 0 L
1 1
A=-— 0 0 ,B=|0n= —i
q | =g
0 0 0 0

Assuming that the output load voltage and the boost
inductance current are bounded as:

Vo<Vo<Vo, (8)
and using the nonlinearity transformation sector approach
[19], the mathematical model of the PV system (7) can be
given by a fuzzy models with » = 2" = 2° = 4 If-Then
rules, as follows: Rule i: If z;(¢) is F; and zy(¢) is F;. Then

i <ip <ip,

%(¢)= Apx(e)+ Bule)+ne) i = 1,...,7,

where z; = i; and z, = ¥V}, are the premise variables, F',
F,, F5, F») are the membership functions given by:

’L(t)_éL . )
Fylip) ===, Fali)=1-F,(i)
lL(t)_lL
Volt)-7, ®
Fy(g)==—~—=", Fyn(y)=1-Fy ()
Vol)-7,
The sub-matrices are deﬁned as:
_& 1 Vo +vg—RyiL [ R, 1 Votva—Ruip |
L L L L L L
4=l- o 0 4=l-L o 0 2
G G
0 0 0 0 0 0
R, 1V tv-Rig (R, 1 Vo+va—Rai,
L L L L L L
1 1
A=[-— 0 0 A= —— 0 0 ’
3 G Ay G
0 0 0 0 0 0
0
Bl Bz :B3—B4— 0

The overall output of the T-S fuzzy model can be
given by:
N Ax(e)+ Bu(e)+n(t),  (10)

Zh
Zw

where h

H Fy (zj ) for all

.
t>0, h{z)20 and Y hy(z)=
i=1
T-S fuzzy controller gains. The aim is to develop a
feedback fuzzy controller that can steer the state of the PV
system, denoted as x(f), to closely match a reference
model x,(f). Subsequently, the feedback tracking control
must adhere to the following conditions:
x(f) — x4(f) >0 as t —o0.

(11)

The derivative of the tracking error }’(t) can be

(1) = ()~ %4 (0) (12)
By substituting (10) in (12) and adding the term

ghxz)A,(x(t)—

B
i=1
Equation (13) can be written as:

Zh N5 ()+ B, (1)),

defined as:

x4(t)), equation (12) becomes:

(13)

(14)

where

3B na 0+ Bl 340 19

i=1
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T-S feedback controllers are developed to solve the
control problem as outlined below.

Controller rule i: If z;(¢) is Fy; and zy(¢) is F»; Then
(1) =KX (0).

The final output of the fuzzy controller is given as:
r
7,(6)==> Iy(z(e)K% (¢ (16)
j=1

By applying T-S control law (16) to model (14), the
closed-loop system is represented as:

= > S (e )i - ik )

i=1 j=1
By letting G; = (4, — BiK)), equation (17) can be

expressed as:
r r
=2 2 hilz(0)n (=067 ().
i=1 j=1
To compute the feedback controller gains K, the
subsequent theorem is taken into consideration [20].
Theorem: T-S fuzzy system described by (18) is
globally asymptotically stable if there exists a matrix
X >0, a diagonal matrix O, matrices M; and matrices Z;
with: Z; = Z;" and Z;; = Z," for i#j, such that:

xal + 4x-BM,-MmIBl +v, x0
ox
XA + 4.X + XA} + 4;X - BM ;- M| B]

(17

(18)

<0. (19)

(20)
—B;M;-M[B} +27;<0, i<j<r.
Zn 2 Ziy
Zyy Z Z
2o =750 1)
er ZZr er
The feedback controller gains can be extracted as:
Ki=MX". (22)
Controller law and reference model. The

controller law u(f) and the variables of the desired
reference model, represented by x,(f), can be determined
through the utilization of (1 5), which is restated as:

N
> hBi(ule)-1, Zh,A,xd n(e)+x4(). (23)
i=l
Noting that:

Alig V) Zh,A,, B= Zh (24)
Then, equation (23) can be rewntten as the

following compact form:
Blu—1,)==Alig.Vo)xg =1+ (25)
In matrix notation, the equation (25) can be given as:

Ry
-—— — «a
0 % L i -B .
0lu-z,)=—| —— 0 0w, |-|=i,, |+—|¥, |- 206)
( u) Cl d Cl pv dr d
1 0 0 o0k 0 Uq
where
_V0+Vd_RmiL ﬂ_V0+Vd
L ’ L

It is important to highlight that the optimal reference
and the nonlinear controller are calculated based on the
optimal voltage reference which corresponds to the
maximum voltage V; = V.. The second equation of (26)
implies:

ig(Vg)=i, —CVy. 27

From the initial equation in (26), it can be inferred
that:

”d(Vd):i[ﬁid _lVd +ﬁ+lzdj - @2¥
a\ L L

The nonlinear tracking control is derived from the
third equation in (26), as outlined below:

ulVy)=igWa)+7,. (29)

Figure 8 shows the configuration of the proposed
MPPT controller and its key components. The first block
is dedicated to the calculation of the maximum voltage
Viax- This computation involves a fuzzy inference system
that takes PV voltage V and PV current / measurements as
inputs. Next, V. is utilized by the desired reference
block to produce x; using (27) and (28). Following this,
the fuzzy controller generates the fuzzy control signal
utilizing (16), derived from the error e(r) between the
current and desired states. This generated signal is then
utilized by the nonlinear controller block, employing (29)
to produce the ultimate control signal. Further insights
into the fuzzy inference system block will be provided in
the subsequent section.

v v
e aFs ¢

fechnique |

% PV system

Fig. 8. Diagram of the control strategy

Desired
reference

e Nonlinear

controller

TS Fuzzy
controller
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Simulation results. To validate the proposed

method’s efficacy, simulation tests of the PV system were

conducted using the Simulink model (Fig. 9).

\'vv

[ =

'ANIS Algorithm

TS Fuzzy Controler

\'A\‘,\‘fl
a

PV Panel with 36 Cellules

Fig. 9. Simulink model of the proposed control method

The obtained T-S feedback gains are computed as:
=[155.0075 -0.6106 633.6307}

K, =[92.6114 —0.1194 570.2396}
K3 =[282.7187 —0.4403 616.0382}
K, =[103.4164 03952 577.9426)
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The maximum voltage, which corresponds to the
peak power corresponding to the peak power, is
calculated using an MPPT algorithm based on the ANFIS
algorithm (see Fig. 7). This algorithm relies on a database
constructed from the P-V characteristic, where fuzzy
membership functions model the PV voltage and PV
current. This method establishes a fuzzy relationship
between these parameters and the maximum voltage.

The initial simulation is conducted under diverse
conditions with variable solar radiance and temperature,
assuming temperatures and irradiation levels as illustrated
in Fig. 10,a and Fig. 10,b, respectively.

T,°C '
60 .

40t

500

L 1 t, S
0 5 10 15
Fig. 10. Temperature (@) and radiance (b) profiles for the first test

0

Figures 11,a,b display the responses of PV voltage
and PV power, respectively, while Fig. 11,c,d depict the
responses of the boost converter current and control
signal. Notably, the steady states align precisely, with the
desired trajectories, remaining unaffected by variations in
solar irradiation and cell temperature. This precision in
tracking optimal paths contributes significantly to the
enhanced extraction of available solar power and the
overall performance of the system.
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Fig. 11.Simulation results for various atmospheric conditions
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The second test involves maintaining a constant
temperature while varying irradiation levels as shown in
Fig. 12,a. The corresponding response of the output power
is depicted in Fig. 12,b. One can clearly see that the steady
states of the system exactly follow the optimal trajectories
and remain consistent despite in cell temperature and sun
irradiation. The precision with which the system stays on
the best courses is critical to optimizing solar energy use
and raising the overall system’s efficiency.

ok
1000 G, W/m
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4001
0 02 04 06 08 "°1
a) Irradiation profile
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3 1, _va
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4071,
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0 : 0. 0.02, . .
0 02 04 06 08 °°1
b) PV output power
Fig. 12. Simulation results for sudden change of atmospheric
conditions

The third test is conducted under partial shading
conditions for a PV panel consisting of 36 cells, with 4 cells
shaded, maintaining a constant temperature of 7= 25 °C and
solar irradiation of G = 1000 W/m?2 P-V characteristic
curve reveals 2 maximum power points: a local maximum
0f 29.91 W and a global maximum of 52.76 W (Fig. 13,a).
To assess its performance, the proposed fuzzy method is
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compared to conventional methods such as P&O,
IncCond, and Particle Swarm Optimization (PSO).
Figure 13,b presents the responses of the PV output
power under partial shading conditions.

___________________________ 52.66 W
P,W :
40t 5
20} I
0 1 1 L L
0 5 10 15 V.V 20
a) P-V characteristic
60 P, W
YRR LA
40
52.76 1 =519
20 29.91 /VV _'pnscgm
{ ——TS-ANFIS
0 s PMax
0 0,002 004
0 1 2 Ls 3
b) PV output power

Fig. 13. Simulation results for the third test

One can clearly see that the PSO as well as the
proposed methods can identify the global maximum amid
various local maxima and quickly stabilize at the
maximum global. However, the proposed controller
exhibits a rapid response time, efficiently locating and
maintaining the global maximum without oscillations.
Moreover, conventional methods such as P&O and
IncCond tend to stabilize at the minimum power.

The fourth test is conducted under partial shading
conditions for a PV panel consisting of 36 cells, with 8 cells
shaded, maintaining a constant temperature of 7= 25 °C and
solar irradiation of G = 1000 W/m? P-V characteristic
curve reveals 3 maximum power points, including 2 local
maxima of 37.86 W and 21.37 W, along with a global
maximum of 40.86 W (Fig. 14). Performance evaluation
involves a comparison of the proposed fuzzy method with
well-known methods such as P&O, IncCond and PSO.

-------------------- 40.86 W
5 10 15 "V 20
a) P-V characteristic
40 By :
Lo
| 40.86
| 37.86 =5
! p—
20 a0 8O feoa===smd 1 g5 14| PSO
| 20 o IncOond
% - Pmax
0 0 001,002 .
t
0 1 2 3
b) PV output power

Fig. 14. Simulation results for the fourth test

Simulation tests confirm that the developed MPPT-
based controller effectively guides the steady states to
closely match the optimal operating points, displaying
minimal oscillation. Conversely, the PV system responses
under the compared methods exhibit notable fluctuations
across different states.

Additionally, the performance of the proposed and
comparative methods is evaluated through many indexes
such as root mean square error, MPPT energetic
efficiency, and MPPT energetic error.

The root mean square error is defined as:

N

Z (va,i - Pmax,i)z
Eyms = =l N (30)
The static efficiency:
P
n:[ ’”J-loo. (31)
Vmax
The relative tracking error:
P
&= [iJ ~1. (32)
Vmax

The obtained indexes for the proposed and compared
methods are summarized in Table 3.

Table 3
Comparison of different MPPT methods
Index P&O InCond PSO Proposed
E, s 0.2891 0.2182 0.0575 0.0215
n 46.2568 46.8910 97.1906 98.1256
e 5.2918 5.3109 2.8094 1.0295
This  comparative  study  demonstrates the
effectiveness of the proposed control strategy in

overcoming the limitations associated in traditional
controllers. It is demonstrates also that the proposed
controller delivers a faster dynamic response, significantly
reduced oscillation around the maximum power point, and
overall superior performance.

Conclusions. This paper presents a highly effective
Takagi-Sugeno fuzzy controller for global maximum
power point tracking in PV conversion systems. This
controller demonstrates the capability to guide the PV
system in swiftly tracking a desired reference model with
minimal oscillations during rapid weather changes and
under partial shading conditions.

The desired reference model is determined by the
ANFIS algorithm based on the maximum voltage. Fuzzy
controller gains are computed according to specific
conditions shown in linear matrix inequalities and are
determined using optimization tools. Simulation results,
alongside comparisons to classic Incremental Conductance,
Perturb & Observe and Particle Swarm Optimization
algorithms, demonstrate the effectiveness of the proposed
fuzzy tracking control scheme in managing the PV system
across various operating conditions. Addressing practical
implementation and robustness concerns remains a focus
for future research endeavors.
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