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The method for design of electromagnetic hybrid active-passive shielding by overhead power 
lines magnetic field 
 
Aim. Development of the method for designing electromagnetic hybrid active-passive shield, consisting from active and multy-circuit 
passive parts, which is characterized by increased effectiveness of reducing the industrial frequency magnetic field created by two-
circuit overhead power lines in residential buildings. Methodology. The designing problem of electromagnetic hybrid active-passive 
shield including robust system of active shielding and multy-circuit passive shield of initial magnetic field comes down to a solution 
of the multy-criteria two-player zero-sum antagonistic game. The game payoff vector calculated based on the finite element 
calculations system COMSOL Muliphysics. The game solution calculated based on the particles multyswarm optimization 
algorithms. Results. During the design of the electromagnetic hybrid active-passive shield the coordinates of the spatial arrangement 
of 11 circuits passive shield and the coordinates of the spatial location of one compensation winding, as well as the current and 
phase in this winding of the active shielding system are calculated. The results of theoretical and experimental studies of hybrid 
active and multy-circuit passive shield by magnetic field in residential building from two-circuit power transmission line with a 
«Barrel» type arrangement of wires presented. Originality. For the first time the method for designing hybrid active and multy-
circuit passive shield, consisting from active and multy-circuit passive parts, which is characterized by increased effectiveness of 
reducing the magnetic field of industrial frequency created by two-circuit overhead power lines in residential buildings is developed. 
Practical value. Based on results of calculated study the shielding efficiency of the initial magnetic field what is confirmed by 
experimental studies determined that shielding factors whith only multy-circuit passive shield is more 1.2 units, whith only active 
shield is more 4 units and with electromagnetic hybrid active-passive shield is more 6.2 units. It is shown the possibility to reduce the 
level of magnetic field induction in residential building from two-circuit power transmission line with a «Barrel» type arrangement 
of wires by means of electromagnetic hybrid active shielding with single compensating winding and multy-circuit passive shielding 
with 11 circuit passive shield to 0.5 μT level safe for the population. References 51, figures 17. 
Key words: overhead power line, magnetic field, electromagnetic hybrid active-passive shield, computer simulation, 
experimental research. 
 
Мета. Розробка методу проектування електромагнітного гібридного активно-пасивного екрану, який складається з активної 
та багатоконтурної пасивної частин, та характеризується підвищеною ефективністю зниження магнітного поля 
промислової частоти, що генерується дволанцюговими повітряними лініями електропередачі в житлових будинках. 
Методологія. Задача проектування електромагнітного гібридного активно-пасивного екрану, яка включає розробку 
робастної системи активного екранування та багатоконтурного пасивного екрану вихідного магнітного поля, зводиться до 
вирішення багатокритеріальної антагоністичної гри двох гравців з нульовою сумою. Вектор виграшів гри розраховується з 
використанням кінцево-елементної системи обчислень COMSOL Muliphysics. Рішення гри розраховується на основі 
алгоритмів оптимізації мультироїв частинок. Результати. При проектуванні електромагнітного гібридного активно-
пасивного екрану були розраховані координати просторового розташування 11 контурів пасивного екрану і координати 
просторового розташування однієї компенсаційної обмотки, а також струм і фаза в цій обмотці системи активного 
екранування. Наведено результати теоретичних та експериментальних досліджень електромагнітного гібридного активно-
пасивного екрану магнітного поля в житловому будинку від дволанцюгової лінії електропередач із розташуванням проводів 
типу «бочка». Оригінальність. Вперше розроблено метод проектування електромагнітного гібридного активно-пасивного 
екрану, який складається з активної та багатоконтурної пасивної частин, та характеризується підвищеною ефективністю 
зниження рівня магнітного поля промислової частоти, яке генерується дволанцюговими повітряними лініями електропередачі 
в житлових будинках. Практична цінність. За результатами розрахункових досліджень ефективності екранування 
вихідного магнітного поля, які підтверджені експериментальними дослідженнями, встановлено, що коефіцієнт екранування 
тільки багатоконтурним пасивним екраном становить більше 1,2 одиниць, а тільки з активним екраном становить більше 
4 одиниць, і при використанні електромагнітного гібридного активно-пасивного екрану становить більше 6,2 одиниці. 
Показана можливість зниження рівня індукції магнітного поля в житловому будинку від дволанцюгової лінії електропередачі 
з розташуванням проводів типу «бочка» за допомогою гібридного активного екрану з однією компенсуючою обмоткою та 
багатоконтурного пасивного екрану з 11 контурами до безпечного для населення рівня в 0,5 μT. Бібл. 51, рис. 17. 
Ключові слова: повітряна лінія електропередачі, магнітне поле, електромагнітний гібридний активно-пасивний 
екран, комп’ютерне моделювання, експериментальні дослідження. 
 

Introduction. Overhead power lines are the main 
source of power frequency magnetic field (MF). The 
effect of prolonged exposure of people to a power 
frequency MF increase in the likelihood of cancer [1–3]. 
The standards for the power frequency MF being 
tightened for long-term safe residence of the population in 
residential buildings located near power lines. Decrease in 
the initial MF by a factor of 2–4 is required [4–7]. Active 
and passive shielding of the initial MF usually used for 
reduction of power frequency MF [4–10]. 

Active shielding requires the use of external power 
supplies to supply currents appropriate magnitude and 

phase to the reduction system opposite to the original MF 
to provide the desired reduction effect, and as such, is 
capable of providing a high reduction in the original MF 
[11–15]. However, this requires a complex suppression 
system; since in addition to the MF sensors, it is necessary 
to install expensive equipment, such as power supplies, and 
a monitoring system to continuously adjust the supplied 
current to achieve the required suppression. All this makes 
this solution much more expensive than passive methods. 

With passive shielding, MF weakening is achieved, 
since the mitigation system acts in response to the initial 
MF generated by the source according to Faraday’s law 
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and induces currents that generate a new MF that 
compensates for the original one [16–20]. To increase the 
shielding efficiency of the initial MF, multy-circuit passive 
shields are often used [21, 22]. Passive shield have a 
significantly lower shielding factor, so passive screens are 
often used as a complement to active screens [23–25]. 

The aim of the work is to develop the method for 
designing electromagnetic hybrid active-passive shield, 
consisting from active and multy-circuit passive parts, to 
improve the effectiveness of reduction of industrial 
frequency MF created by two-circuit overhead power 
lines in residential buildings. 

Problem statement. First, consider the design of the 
mathematical model of the initial MF generated by the 
power transmission line. We set the currents amplitude Ai 
and phases φi of power frequency ω of wires currents 
power lines. Then we set wires currents in power lines in 
a complex form 
    iii AI   tjt exp . (1) 

To assess the impact of the MF of power lines on the 
environment, most calculations were performed based on 
the Biot-Savart-Laplace law [6] for elementary current 
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where the vector Rl is directed from an elementary 
segment dll with a total current il(t) to the observation 
point Qi, µ0 is the vacuum magnetic permeability. 

Then the total MF vector is equal to: 
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This formula is widely used to calculate the MF of 
air power transmission lines instead of Maxwell’s system 
of equations. 

Let us introduce the vector δ of the uncertainty 
parameters of the problem of designing a combined 
shield, the components of which are inaccurate 
knowledge of the currents and phases in the wires of the 
power transmission line, as well as other parameters of 
the electromagnetic hybrid active-passive shield, which, 
firstly, are initially known inaccurately and, secondly, 
may change during the operation of the system [26–28]. 

Then the vector BL(Qi,δ,t) of the initial MF generated 
by all power lines wires BLi(Qi,δ,t) in point Qi of the 
shielding space calculated based Biot-Savart’s law [6] 

     tQtQ ii ,,,, δBδB lL . (4) 

Now, consider the design of the mathematical model of 
the MF generated by compensating windings of active 
shielding. We set the vector Xa of initial geometric values of 
the dimensions of the compensating windings of active 
shielding, as well as the currents amplitude Aai and phases φai 
in the compensating windings [29–33]. We set the currents 
in the compensating windings wires in a complex form 
    wiaiai AI   tjt exp . (5) 

Then the vector Ba(Qi,Xa,t) of the MF generated by 
all compensating windings wires of active shielding 
Bai(Qi,Xa,t) in point Qi of the shielding space can also 
calculated based Biot-Savart’s law [6] 

     tQtQ ii ,,,, aaiaa XBXB  (6) 

Then the vector BRa(Qi,Xa,δ,t) of the resulting MF 
generated by power lines and only windings of the active 
shielding system calculated as sum 
      tQtQtQ iii ,,,,,, aaLaRa XBδBδ,XB   (7) 

Now, consider the design of the mathematical model of 
the MF generated by multy-circuit passive shield [35–37]. 
Let us set the vector Xp of initial values of the geometric 
dimensions, thickness and material of the multy-circuit 
passive loop shield. Then, for the given vector 
BRa(Qi,Xa,δ,t) of the resulting MF generated by power 
lines and only windings of the active shielding system and 
for values of the vector Xp of geometric dimensions of the 
passive loop shield, the magnetic flux l(Xa,Xp,δ,t) 
calculated 

   
S

Stt d),(, δ,XBδ,X,XΦ aRapal . (8) 

The current IPl(Xa,Xp,δ,t) in a complex form induced 
in the passive loop shield determined from Ohm law in 
integral form and Faraday law [6]: 
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The active resistance Rl(Xp) and the self-inductance 
coefficient Ll(Xp) of the passive loop shield. 

Then for the calculated currents IPl(Xa,Xp,δ,t) in the 
passive loop screen [36–38] and their geometric 
dimensions given by the vector Xp, on the basis of Biot-
Savart’s law, the vector BR(Qi,Xa,δ,t) of the resulting MF 
calculated as sum the vector BL(Qi,δ,t) generated by 
overhead power transmission lines, the vector Ba(Qi,Xa,t) 
generated by all compensating windings wires of active 
shielding and the vector Bp(Qi,Xa,Xp,δ,t) generated by all 
loops of the passive shield at the point Qi, similarly (7) 
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Solution method. We introduce the vector X of the 
desired parameters of the problem of designing a 
combined shield, the components of which are the vector 
Xa values of the geometric dimensions of the 
compensation windings, as well as the currents Awi and 
phases φwi in the compensation windings, as well as the 
vector Xp of geometric dimensions, thickness and material 
of the passive loop shield [39, 40]. 

Then for the given initial values of the vector X of 
the desired parameters and the vector δ of the uncertainty 
parameters of the combined screen design problem, the 
value BR(X,δ,Pi) effective value of induction of the 
resulting MF BR(Qi,Xa,Xp,δ,t) at the point Qi of the 
shielding space calculated based on the finite element 
calculations system COMSOL Multiphysics. Then the 
problem of designing a passive screen is reduced to 
computing the solution of the vector game 
 ),,()( iPδXBδX,B RR  . (11) 

The components of the game payoff vector BR(X,δ,Pi) 
are the effective values of the induction of the resulting MF 
at all considered points Qi in the shielding space. 

In this vector game it is necessary to find the 
minimum of the game payoff vector (11) by the vector X, 
but the maximum of the same game payoff vector by the 
vector δ. 
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At the same time, naturally, it is necessary to take 
into account constraints [41] on the vector X desired 
parameters of a combined shield in the form of vector 
inequality and, possibly, vector equality 
     0,  XHGXG max . (12) 

Note that the components of the vector game (11) 
and vector constraints (12) are the nonlinear functions of 
the vector of the required parameters [42–45] and 
calculated based on the calculations system COMSOL 
Multiphysics. 

Solution algorithm. Let us consider an algorithm 
for solving on a computer the formulated multyobjective 
optimization problem (11) with constraints (12). To find a 
unique solution to the problem of multycriteria 
optimization from the Pareto set of optimal solutions, in 
addition to the vector optimization criterion (11) and 
constraints (12), it is also necessary to have information 
about the binary preference relations of local solutions 
relative to each other [46–48]. 

To find such a single optimal solution, it is first 
necessary to develop an algorithm for constructing the 
entire area of Pareto-optimal solutions. Then, based on the 
analysis of the entire set of possible optimal solutions to the 
original problem of multycriteria optimization, narrow the 
range of solutions under consideration and, consequently, 
reduce the complexity of the decision maker in choosing 
the only option for the optimal solution. 

A feature of the considered problem of finding a 
local minimum at one point in the space under 
consideration is multy-extremality, so that the considered 
area of possible solutions contains local minima and 
maxima. This is due to the fact that when minimizing the 
level of induction of the resulting MF in one current of 
the search space, the induction at another point increases 
due to undercompensation or overcompensation of the 
initial MF. Therefore, to solve the considered 
multycriteria problem, it is advisable to use the algorithms 
of stochastic multy-agent optimization [48–50]. 

Consider an algorithm for finding a set of Pareto-
optimal solutions to multyobjective non-linear 
programming problems based on stochastic multy-agent 
optimization – PSO algorithms based on the idea of a 
collective mind of a swarm of particles, based on 

algorithms for finding the globally optimal value  ty j
*  – 

gbest PSO found by all particles swarm, and the locally 
optimal value yij(t) – lbest PSO found by one swarm 
particle [48–50]. 

At present, the use of stochastic multy-agent 
optimization methods for solving multycriteria 
optimization problems causes certain difficulties, but this 
direction continues to be intensively developed using 
various heuristic techniques. Consider a stochastic multy-
agent optimization algorithm for solving the original 
multycriteria problem of nonlinear programming (11) 
with constraints (12) based on a set of swarms j of 
particles i, the number of which is equal to the number of 
components of the vector optimization criterion (11). 

In the simplest algorithm for calculating the optimal 
position xij(t) and speed υij(t) of the movement of particle i 
swarm j, the movement speeds υij(t)change according to 
linear laws. However, recently, to increase the speed of 

finding a global solution, special non-linear algorithms of 
stochastic multy-agent optimization have become 
widespread. One of such algorithms is an algorithm in 
which the Heaviside function H is used to switch the 
motion of a particle, respectively, from the local yij(t) to 

the global  ty j
*  optimum. Parameters of switching the 

cognitive p1j and social p2j components of the speed of 
particle movement in accordance with the local and global 
optimum; random numbers ε1j(t) and ε2j(t) determine the 
parameters of switching the movement of the particle 
according to the local and global optimum. If p1j < ε1j(t) 
and p2j < ε2j(t), then the speed of movement of particle i 
swarm j does not change at the step t and the particle 
moves in the same direction as in the previous 
optimization step. In this algorithm, the motion of particle 
i swarm j described by the following expressions 
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 (13) 

      11  tvtxtx ijijij , (14) 

where c1, c2 are positive constants that determine the 
weights of the cognitive and social components of the 
speed of particle movement; r1j(t), r2j(t) are random 
numbers from the range [0, 1], which determine the 
stochastic component of the particle’s speed. 

With the multycriteria optimization of the vector 
criterion (11), with the help of separate swarms, the 
optimization problems of scalar criteria, which are 
components, are solved. In order to find a global solution 
to the original multycriteria problem. 

In the process of searching for a global solution to the 
original multycriteria problem (11), individual swarms 
exchange information with each other in the course of 
searching for optimal solutions to local criteria. Information 
about the global optimum obtained by the particles of 
another swarm is used to calculate the speed of movement 
of the particles of the other swarm, which makes it possible 
to calculate all potential Pareto-optimal solutions. 

At each step t of the movement of particle i swarm j, 
the advantages functions yij(t) of local solutions obtained by 

all swarms *
jy  are used. The solution  tX j

*  obtained 

during the optimization of the objective function B(X(t),Pj) 

using the swarm j is better than the solution  tX k
*  

obtained during the optimization of the objective function 

B(X(t),Pk) using the swarm k, i.e.    tXtX kj
**  , if the 

condition is fulfilled 

      tXPBtXPB ki
mi

ji
mi

*

,1

*

,1
,max,max


 . (15) 

The global solution  tX k
*  obtained by the swarm k 

used as the global optimal solution  tX j
*  of the swarm j, 

which is better in relation to the global solution  tX k
*  of 

the swarm k on the basis of the preference relationship (15). 
The main idea of successively narrowing of Pareto-

optimal solutions area of trade-offs – all that cannot be 
chosen according to the available information about the 
preference are sequentially removed from the initial set of 



 

Electrical Engineering & Electromechanics, 2024, no. 4 25 

possible solutions based on information about the relative 
importance of local solutions. The deletion is carried out 
until a globally optimal solution is obtained [51]. 

Simulation results. Let us consider the results of the 
design of electromagnetic hybrid active-passive shielding 
by overhead power lines MF generated by a double-circuit 
power line in a residential building. During the design of 
the electromagnetic hybrid active-passive shield, the 
coordinates of the spatial arrangement of 11 circuits passive 
screens were calculated. In addition, the coordinates of the 
spatial location of one compensation winding, as well as 
the current and phase in this winding of the active shielding 
system, were calculated. 

Note that, unlike the works [21, 22], in this work the 
coordinates of the spatial arrangement of the contours of 
the multyloop passive screen calculated in the course of 
solving the multy-criteria two-player antagonistic 
game (10) with restrictions (11) and electromagnetic hybrid 
active-passive shield used to screen the initial MF. 

The layout of the power transmission line, the 
winding of the active screen and 11 circuits passive 
screen shown in Fig. 1. 

 
Fig. 1. The layout of the power transmission line, the winding of 

the active screen and 11 circuits of the passive screen 
 

Figure 2 shows the distribution of the calculated 
initial MF induction. Initial MF induction changes from 
2.2 μT to 1.4 μT. MF induction level in the central part of 
the shielding space is 1.75 μT. 

 
Fig. 2. The distribution of the calculated initial MF induction 

Figure 3 shows the distribution of the calculated 
resulting MF induction with only multy-circuit passive shield. 
The coordinates of the spatial arrangement of 11 multy-circuit 
passive screens were calculated during the design of the 
hybrid multy-circuits passive and active shielding. 

The resulting MF induction with only multy-circuit 
passive screen changes from 2 μT to 1.35 μT. The MF level 
in the central part of the shielding space is 1.35 μT. 

The calculated shielding factor maximum value of 
resulting MF whith only multy-circuit passive shield in 
the central part of the screening space is more 1.29 units. 

 
Fig. 3. The distribution of the calculated resulting MF 

induction with only multy-circuit passive shield 
 

Figure 4 shows the distribution of the calculated 
resulting MF induction with only active shield. 

 
Fig. 4. The distribution of the calculated resulting MF 

induction with only active shield 
 

The resulting MF induction with only active screen 
changes from 0.7 μT to 0.35 μT. The MF level in the 
central part of the shielding space is 0.35 μT. 

The calculated shielding factor maximum value of 
resulting MF with only active shield in the central part of 
the screening space is more then 5 units. 
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Figure 5 shows the distribution of the calculated 
resulting MF induction with electromagnetic hybrid 
active-passive shield. 

 
Fig. 5. The distribution of the calculated resulting MF 

induction with electromagnetic hybrid active-passive shield 
 

The resulting MF induction with electromagnetic hybrid 
active-passive shield changes from 0.7 μT to 0.19 μT. The 
MF level in the central part of the shielding space is 0.19 μT. 

The calculated shielding factor maximum value of 
resulting MF with only active shield in the central part of 
the screening space is more then 9.21 units. 

Thus, the use of electromagnetic hybrid active-
passive shield makes it possible to increase the screening 
factor of the active screen by 1.84 times. 

Note that the product of shielding factors with only a 
multy-circuit passive screen of 1.29 and a shielding factor 
with only an active screen of 5 gives a value of 6.45, 
while the shielding factor with a electromagnetic hybrid 
active-passive shield is 9.21. Thus, the simultaneous use 
of active and multy-circuit passive screens leads to an 
increase in the screening factor by 1.42 times. 

In addition, the use of electromagnetic hybrid active-
passive shield makes it possible to reduce the level of the 
initial MF in a much larger area of the screening space 
compared to using only the active screen. 

Results of experimental studies. Let us now 
consider the results of experimental studies of the 
electromagnetic hybrid active-passive shield. 

Figure 6 shows the compensation winding and 
multy-circuit passive shield of the experimental setup. 

Figure 7 shows multy-circuit passive shield and the 
control system of the experimental setup of multy-circuit 
passive and active shielding. 

Figure 8 shows the experimental distribution of the 
initial and resulting MF induction with only multy-circuit 
passive shield. 

Figure 9 shows the experimental shielding factor of 
resulting MF whith only multy-circuit passive shield. 

The experimental shielding factor maximum value 
of resulting MF whith only multy-circuit passive shield is 
more then 1.2 units. 

 
Fig. 6. The compensation winding and multy-circuit passive 

shield of the experimental setup 

 
Fig. 7. The multy-circuit passive shield and the control system of the 

experimental setup of multy-circuit passive and active shielding 

Bxz, T 

x, m z, m  
Fig. 8. The experimental distribution of the initial and resulting 

MF induction with only multy-circuit passive shield 

Kxz

x, m
z, m 

 
Fig. 9. The experimental shielding factor of resulting MF 

whith only multy-circuit passive shield 
 

Figure 10 shows the experimental spatio-temporal 
characteristic of the resulting MF with only multy-circuit 
passive shield. 
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Fig. 10. The experimental spatio-temporal characteristic of the 

resulting MF with only multy-circuit passive shield 
 

The experimental spatio-temporal characteristic of the 
resulting MF with only multy-circuit passive shield is about 
1.2 times less than the spatio-temporal characteristic of the 
initial MF. 

Figure 11 shows the experimental distribution of the 
initial and resulting MF induction with only active shield. 

Figure 12 shows the experimental shielding factor of 
resulting MF whith only active shield. 

The experimental shielding factor maximum value of 
resulting MF whith only active shield is more then 5 units. 
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Fig. 11. The experimental distribution of the initial and resulting 

MF induction with only active shield 
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Fig. 12. The experimental shielding factor of resulting MF whith 

only active shield 
 

Figure 13 shows the experimentally measured spatio-
temporal characteristic of the MF generated by only one 
compensating winding of the active shielding system. 

 
Fig. 13 Experimentally measured spatio-temporal characteristic 

of the MF generated by only one compensating winding 
of the active shielding system 

 

This characteristic is practically a straight line 
parallel to the major axis of the ellipse of the 
experimentally measured spatiotemporal characteristic of 
the initial MF. Note that with the help of such an active 
screening system, the large axis of the spatiotemporal 
characteristic of the initial MF compensated, which 
determines the high value of the screening factor. In this 
case, the experimentally measured spatio-temporal 
characteristic of the resulting MF is a small cloud due to 
the noise of measurements of the MF components. 

Figure 14 shows the experimental distribution of the 
initial and resulting MF induction with electromagnetic 
hybrid active-passive shield. 

Bxz, T 

z, m 

x, m  
Fig. 14. The experimental distribution of the initial and resulting 
MF induction with electromagnetic hybrid active-passive shield 

 

When using electromagnetic hybrid active-passive 
shield the level of the resulting MF is significantly lower 
in the entire shielding space than when using only the 
active shield. 

Figure 15 shows the experimental shielding factor of 
resulting MF with electromagnetic hybrid active-passive 
shield. 

The maximum value of the experimental shielding 
factor of the MF when using electromagnetic hybrid 
active-passive shield is more than 4.2 units. The main 
advantage of the hybrid multy-circuit passive and active 
shield is the significantly lower level of the resulting MF 
induction over the entire shielding space by a factor of 
two or more compared to the active shield. 

Consider one more setting of the active screening 
system when using a hybrid screen. Figure 16 shows the 
experimental distribution of the initial and resulting MF 
induction with electromagnetic hybrid active-passive 
shield for another setting of the active shielding system. 
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Fig. 15. The experimental shielding factor of resulting MF 

with electromagnetic hybrid active-passive shield 
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Fig. 16. The experimental distribution of the initial and resulting 
MF induction with electromagnetic hybrid active-passive shield 

for another setting of the active shielding system 
 

Figure 17 shows the experimental shielding factor of 
resulting MF with electromagnetic hybrid active-passive 
shield for another setting of the active shielding system. 
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Fig. 17. The experimental shielding factor of resulting MF 

with electromagnetic hybrid active-passive shield 
for another setting of the active shielding system 

 

For sush another setting of the active shielding system 
the maximum value of the experimental shielding factor of 
the MF when using electromagnetic hybrid active-passive 
shield is more 6.2 units, wich is more 1.47 times more than 
with the previously considered setting of the active 
shielding system. However, at the same time, at the edges of 
the shielding space, a significantly lower shielding 
efficiency is realized – more 1.7 times compared to the 
previously considered setting of the active shielding system. 

Conclusions. 
1. For the first time the method for designing 

electromagnetic hybrid active-passive shield, consisting from 
active and multy-circuit passive parts, which is characterized 
by increased effectiveness of reducing the industrial 
frequency magnetic field created by two-circuit overhead 
power lines in residential buildings was developed. 

2. The problem of design of electromagnetic hybrid 
active-passive shield solved based on the multy-criteria 
two-player antagonistic game. The game payoff vector 
calculated based on the calculations system COMSOL 
Muliphysics. The solution of this game calculated based 
on algorithms of multy-swarm multy-agent optimization 
from sat of Pareto-optimal solutions based on binary 
preferences relationship. 

3. The main advantage of using a electromagnetic 
hybrid active-passive shield, including an active and a 
multy-circuit passive part, is the possibility of reducing 
the level of the initial magnetic field induction in a 
significantly larger part of the shielding space compared 
to using only the active shield. 

4. During the design of electromagnetic hybrid active-
passive shield, the coordinates of the spatial arrangement 
of 11 circuit passive screens and the coordinates of the 
spatial location of one compensation winding, as well as 
the current and phase in this winding of the active 
shielding system were calculated. 

5. The results of the performed theoretical studies what 
is confirmed byexperimental studies have shown that the 
shielding factor for only multy-circuit passive shield 
consisting of 11 aluminum contours with a diameter of 
8 mm is about 1.2 units, for only active shield made in the 
form of a winding consisting of 20 turns is about 4 units 
and for electromagnetic hybrid active-passive shield, the 
shielding factor is more 6.2 units, what is confirmed by 
theoretical and experimental studies. 

6. The practical use of the developed electromagnetic 
hybrid active-passive shield will allow to reduce the level 
of the magnetic field in a residential building from a 
double-circuit power transmission line with a «barrel» 
type arrangement of wires to a safe level for the 
population of 0.5 μT. 
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