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Computer-economical optimization method for solving inverse problems of determining
electrophysical properties of objects in eddy current structroscopy

Introduction. The problems of determining the profiles of electrophysical material properties are among the inverse problems of
electrodynamics. In these studies, the focus is on the creation of a computer-economical method for reconstructing the profiles of electrical
conductivity and magnetic permeability of metal planar objects under testing. These parameters can include the information about the results
and quality of the production process or the effects of exposure to an aggressive environment. Registration of changes in electrophysical
properties by means of eddy current testing allows for prompt adoption of effective management decisions regarding controlled processes. The
simultaneous determination of these parameters because of non-contact indirect measurements of the electromotive force (EMF) by surface
eddy current probes over the surface object with the subsequent restoration of the parameter distributions along its thickness by numerical
methods is an urgent task. Objective. To create a computer-economical method for determining the electrophysical properties of objects by
means of surrogate optimization with the accumulation of additional apriori knowledge about them in neural network metamodels with
nonlinearly reduced dimensionality to improve the accuracy of simultaneous profile determination. Methodology. The method for determining
the electrophysical properties of objects is based on homogeneous designs of experiments, surrogate optimization with the accumulation of
apriori knowledge about them in metamodels with nonlinearly reduced dimensionality. Originality. Integration of multiple capabilities in the
surrogate model that combine the advantages of high-performance computing and optimization algorithms in the factor space reduced by the
Kernel PCA (Principal Component Analysis) method. The accumulated additional apriori knowledge about objects is incorporated into the
neural network metamodel. This makes it possible to implicitly identify complex patterns hidden in the data that are characteristic of the eddy
current measuring process and take them into account during reconstruction. Results. The reduction of the search space is a considerable
result. It was possible due to the nonlinear Kernel-PCA transformations with the analysis of the eigenvalues of the kernel matrix and the
restriction on the number of PCA principal components. The results confirmed the validity of a significant reduction in space without major
loss of information. Another indicator of the effectiveness of the method is a high precision of the created surrogate models. The accuracy of
the reduced dimensional metamodels was achieved by using a homogeneous computer design of experiment and deep learning networks. The
adequacy and informativeness of the constructed surrogate models have been proved by numerical indicators. The efficiency of the method is
demonstrated on model examples. References 36, table 5, figures 6.

Key words: inverse problems, optimization method, eddy current measurings, reconstruction, material electrophysical
properties, surrogate neural network models of reduced dimensionality, apriori information, global extremum.

Bemyn. Cepeo  obeprenux 3a0au  eneKmpoOUHaMIKU NeGHy YACmuny CKIA0aomo 3a0adi GU3HAYeHHsi npoginie  enekmpogizudHux
enacmugocmeti mamepianie. B yux Oocniodcennsax akyemmyemocs yéaza Ha CMEOPEHHi O0OYUCTIOBANbHO-EKOHOMHO20 Memooy
PEKOHCMPYKYIT npoghinie enekmpuyHoi npogioHocmi ma MacHimHoi NPOHUKHOCH Memanesux naackux 06 'ekmie konmpono. Lli napamempu
Modcymy Hecmu iHGOpMAYiio Wooo pe3yTbmamie ma AKOCMi GUPOOHUY020 npoyecy abo HACTIOKIG 6NauU8y HA 00 €Km acpecusHozo
cepedosuwa. Peecmpayis 3min  enexmpoghisuunux enracmusocmeii 3acobamu 8UXPOCPYMOBO20 KOHMPOMO O003B0NAE 30MICHIOBAMU
onepamushe NPULHAMMA eeKMUBHUX YAPABTIHCOKUX PilleHb W00 KOHMponbosanux npoyecie. OOHouacHe GU3HAYEHHSI 8KA3AHUX
napamempie y pesyibmami Oe3KOHMAKMHUX Henpamux eumiptosans enexmpopywitinoi cunu (EPC) naxnaonumu 8uxpocmpymosumu
nepemeoplosayamu Ha0 NoGepxHelo 00’ €Kmy i3 HACMYNHUM GIOHOGNEHHAM PO3NOOLIIE NAPAMEmpie 8300624C 1020 MOBWII YUCENbHUMU
memodamu € akmyanvhum 3as0anusm. Mema. CmeopenHs 06UUCTIOBANbHO-€KOHOMHO20 MEMOOY BUSHAUEHHS eNeKMPODIBULHUX
enacmugocmeli 00 'ckmig 3acobamu cypoeamuoi onmumizayii i3 HAKONUYEHHAM OO0OAMKOBUX ANPIOPHUX 3HAHL WO00 HUX Y
Helpomepedcesux Memamooeisix i3 HeHIHO-CKOPOYEHOI0 POIMIPHICMIO Ol NIOBUWEHHsL MOYHOCII OOHOYACHO20 GU3HAYEHHSI NPOQITNiG.
Memooonozia. Memoo 6usHayeHHa erekmpogizuuHux enacmusocmeti 00 €KmMi6 CMBOPIOEMbCA HA  OCHOBI OOHOPIOHUX NIAHI8
eKCNepUMEHMI8, CYpOoLamHOi OnmuMi3ayii i3 HAKONUYEHHAM ANPIOPHUX 3HAHL WOOO0 HUX Y MEmAamooensix i3 HeliHilUHO-CKOPOUEeHOIO
posmipuicmio. Opuzinansuicms. Inmezpayis y cypoeamuiil Mooeni KOMOTHOBAHUX MONCTUBOCEN, SIKI NOEOHYIOMb OOHOYACHO Nepesasu
BUCOKONPOOYKMUBHUX 0OYUCTeHb MA GUKOHAHHA ONMUMI3AYIIHUX ANCOPUMMIE y CKOpOUeHOMY 3a O0onomozoio memody Kernel PCA-
npocmopi  pakmopie. Bukonano inkopnopayiio aKymyms08aHux 000AmMKOSUX ANPIOPHUX 3HAHbL W00 00’cKmie y Helpomepedicesy
memamodens. Lle Oossonaec HesgHo eusnauamu CKIAOHI NPUXOBAHi 6 OAHUX 3AKOHOMIPHOCMI, KOMpI XapakmepHi O1s npoyecy
BUXPOCMPYMOBUX BUMIpIOBaHb, ma epaxyeamu ix nio uac pexoncmpykyii. Pesynomamu. Cymmesum pe3ynomamom € CKOpPOUEeHHs
npocmopy nowiyky. Lle eoanoca 3aeosxu ueninitinum nepemsopennam Kernel-PCA 3 ananizom enacnux 3uavenv soepHoi mampuyi i
0bOMediceHHAM Ha KinbKicmb 20106HUX kKomnotnenm PCA. Ompumani pesyismamu niomeepounu 00IpyHmMoBaHicmy iChomHoO20 CKOPOYEHHs
npocmopy be3 cymmeeoi empamu ingopmayii. Inumm nokasHUKoM egpekmusHocmi Memooy € UCOKA MOYHICIb CIMBOPEHUX CYPOLAMHUX
mooeneil. Tounocmi memamooeneil cKOpoueHoi po3MIPHOCHE 80ANOCS QOCASMU BUKOPUCTNAHHAM OOHOPIOHO20 KOMN I0OMEPHO20 NAAHY
eKCnepuUMeHmy ma mepesic 2uboKo20 HaguanHs. Hucnosumu NOKA3HUKAMU 0068e0eHi a0eK8amHicmy ma iHopmMamueHicms nooy008aHux
cypocammnux mooeneil. Ha modenvrux npukinadax npooeMoHcmposana egpekmueHicms memody. bion. 36, Tadmn. 5, puc. 6.

Kmiouoei  cnoséa: obepHeHi 3agadi, onTuMisamiiiHMii MeTol, BHXPOCTPYMOBI BUMIPIOBAHHSI, PEKOHCTPYKLifA, eJIeKTPoQi3uyHi
BJIACTHBOCTI MaTepiaily, CyporaTHi HeiipoMepe:keBi MoJ1eJli CKOPO4YeHOI Po3MipHOCTi, anpiopHa iHdopMais, I100AIbHUIT eKcTpeMyM.

Introduction. The inverse problems of determining
the material electrophysical properties of metal planar
testing objects (TO) make up a rather certain part among
the varieties of computational electromagnetism problems
[1-3]. This is due to their considerable practical
importance for industry, where they help solve different
problems related to production and technology. In
particular, these studies focus on the tasks of inverse
identification of the electrophysical properties of metal
planar test objects (TO). The typical parameters to be

measured indirectly are usually the electrical conductivity
(EC) and magnetic permeability (MP). In many cases,
they can provide information on the results and quality of
the production process or the effects of exposure to
aggressive environments on the TO. Registration of
changes in the electrophysical properties of the TO by
means of eddy current nondestructive testing allows for
the prompt adoption of effective management decisions
regarding  controlled  processes.  Therefore, the
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simultaneous determination of these parameters as a result
of noncontact measurements of the electromotive force
(EMF) by surface eddy current probes (ECP) over the
surface of the TO with the subsequent reconstruction of
the distributions of EC and MP (i.e., parameter profiles)
along its thickness by numerical methods is an urgent task
that needs to be solved.

The problem is not trivial, since it belongs to the
mathematically incorrectly posed ones [4], which are
characterized by instability of the solution in the presence
of noise and uncontrolled variations of the complex-
valued signal generated by the ECP. The peculiarity of
determining the profiles of the EC and MP is the
combination of measurement procedures and numerical
solution of the inverse problem on the space of the set of
complex numbers, each of which introduces a
corresponding specificity into their overall interaction.
Although some attempts to solve this problem have been
made, as, for example, in [5], they are not yet sufficiently
perfect and require further progress, including on the
basis of intelligent technologies.

The analysis of scientific publications on this topic
shows a deep interest in this issue.

A fairly thorough analytical review of current
research on the problem under consideration was made by
the authors in publication [6], where they reviewed
publications [7—16]. It summarizes the latest trends in the
development of approaches to determining the profiles of
electrophysical properties of TO materials and their
inherent shortcomings. In particular, we considered
optimization and data-driven methods [17] that use the
achievements of artificial intelligence techniques,
measurements at many fixed and swept-frequencies.

This group of papers also includes the article [13],
which proposes a method of inverse identification for the
experimental characterization of elastic-plastic contact in
indentation problems. The second group of publications
consists of studies [14-17], which differ from the
achievements of the previous one by the general concept
of building reverse identification procedures, which
constitutes a certain alternative to the identification
methods from the first group.

Thus, there is a clear trend towards the widespread
use of optimization and machine learning-based methods.

When using optimization methods, researchers are
focused on solving inverse problems by means of
gradient-free metaheuristic algorithms for finding a global
extremum, in particular Simulated Annealing, Harmony
Search, Genetic Algorithms (GA), Particle Swarm
Optimization (PSO), etc. and their hybrids, which
minimize each other’s weaknesses and add to the
development of their respective strengths, ensuring
efficient organization of research coverage of the
multidimensional search space. In addition, it is proposed
to replace resource-intensive target functions with their
high-performance surrogate models, which guarantee fast
and reliable computations when they are repeatedly
executed. It should also be noted that the method is quite
dependent on the dimensionality of the search space, i.e.,
the number of variables searched. This is due to the effect
of the «curse of dimensionality» and requires additional
special actions to reduce the dimensionality of the space.

Machine learning-based methods have their
advantages and disadvantages. They are more flexible,
provide better generalization capability even for data that
was not used during training, and have a greater potential
for processing complex data with significantly nonlinear
dependencies. These methods are robust to noise and
random variations in data during measurements, which
has a positive impact on their reliability. Researchers
consider various approaches to the implementation of
intelligent  technologies, including  deep-learning
algorithms of neural networks (artificial neural network —
ANN), transfer learning, various types of ANNs from
physics-informed neural networks (PINN) to generative
ones, in particular variational autoencoders (VAE).
However, machine learning methods often require a
significant amount of data for their implementation.

To summarize, it is worth noting that hybrid
optimization strategies that integrate all the advantages of
the analyzed methods, should be used for further research.
Thus, it is promising to use surrogate optimization with the
use of proxy models (metamodels, i.e., surrogate models)
of reduced dimensionality to determine the profiles of
electrophysical properties of TO materials, provided that
they are created on the basis of deep fully connected neural
networks. Furthermore, when analyzing existing studies,
the authors did not find any known approaches to
incorporating additional redundant knowledge about TO
into neural network metamodels, which would be useful to
be included directly in them. This makes it possible to
implicitly establish complex nonlinear patterns of signal
formation hidden in the data during experimental
measurements of the ECP, to expect a more clear reflection
of the physics of the eddy current testing process by the
metamodel and, accordingly, a higher identification
accuracy, since the degree of transparency increases with
the availability of apriori information.

The feasibility of the approach to solving the
problem proposed by the authors has already been proven
by their previous research [6], where they compared the
results of the corresponding calculations by the classical
method of surrogate optimization and an alternative
method using surrogate models of  reduced
dimensionality. However, this reduction was carried out
by linear PCA (Principal Component Analysis)
transformations, which led to a reduction in the
dimensionality of the metamodels by almost half.
However, the wuse of nonlinear Kermel PCA-
transformations for this purpose allows us to hope for
even more convincing results.

Thus, the aim of the paper is to develop a
computationally efficient method for determining the
electrophysical properties of planar metal objects by
means of surrogate optimization with the accumulation of
additional apriori knowledge about them in neural
network metamodels with a nonlinearly reduced
dimensionality to improve the accuracy of simultaneous
determination of electrical conductivity and magnetic
permeability profiles in eddy current measurements when
establishing their microstructural features.

Research methodology. The reconstruction of the
profiles of ECs and MPs is performed by an experimental
and numerical method, the sequence of stages of which
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largely coincides with those proposed in [1], but with
certain changes concerning the accumulation of a priori
information in the neural network metamodel.

The first stage involves a single measurement with
an surface ECP over a planar metal TO with the
registration of a sinusoidal EMF signal e,
mathematically represented by a complex number in the
exponential form of recording, i.e., with the fixation of its
amplitude and phase. This completes the experimental
part of the method, and all subsequent stages relate
exclusively to its numerical implementation.

At the next stage, the key basic and additional
parameters of the electrodynamic model that describes the
measurement process and reflects the result of the
interaction of the electromagnetic field with the
conductive medium of the TO are determined. Hence, the
main ones are the discretized profiles of the EC o4(z) and
MP uiz), i = 1, .., L, where L is the number of
conditional layers of the breakdown of the zone of
penetration of the electromagnetic field into the TO; and
additional useful ones are the frequency f of excitation of
the sensing electromagnetic field and the diameter 2-7 of
the pick-up coil of the ECP; while the lift-off distance is
an additional interference. It is possible to enter all these
parameters into the metamodel. The a priori information,
which is also accumulated in the metamodel, also
includes the laws of distribution of EC and MP. At this
stage, a computerized uniform design of experiment
(DOE) is also created with the mandatory input of the
main model parameters, but the incorporation of certain
additional parameters may take place depending on the
requirements for calculation accuracy. Their addition
increases the time and computing resources required to
form a training sample at the points of the generated
design. The accuracy of the approximation of the
multidimensional nonlinear response hypersurface by the
neural network metamodel depends on the properties of
the design. Therefore, the design should have high
homogeneity rates both in the entire search space and
especially in  two-dimensional projections. The
organization of a detailed study of the response surface
topography depends on the rational arrangement of the
design points [18]. Since it is not possible to visualize the
topography of the response hypersurface, it is advisable to
have a uniform arrangement of points in the search space.
The design is based on modified LP;-quasi-Sobol’s
sequences, the advantages and features of which are
described in detail in the authors’ publications [6, 19],
which illustrate the method of its creation in a unit
hyperspace, which provides low weighted symmetrized
centered discrepancy (WSCD). After scaling to the
specified dimensions of the design space, the design can
be used for modeling.

At the third stage, a high-cost electrodynamic model
of the eddy current testing process is used to generate a
training sample and to calculate the model value of the
EMF e,,,, of the probe at the design points.

So, here we will use the solution of the
corresponding forward problem of field theory, the
geometric model of which is shown in Fig. 1.

A cylindrical ECP excitation coil is placed above the
magnetic and conductive half-space associated with the

TO. It has a rectangular cross-section of finite
dimensions. The electromagnetic field is excited by a
sinusoidal current /, which varies with an angular
frequency w = 2-zf. The field is quasi-stationary, i.e.,
wave processes in the air are neglected. The bias currents
in the TO are ignored due to their negligible values
compared to the conduction currents. The excitation coil
is characterized by a homogeneous current density across
the cross-section iy and has a number of turns W. The TO
is considered to be conditionally multilayer, which makes
it possible to simplify the representation of continuous
distributions o(z) and u(z) by their piecewise constant
approximation analogs of L discrete samples. The laws of
distribution of the electrophysical properties of the TO are
assumed to be known and determined experimentally
[21]. The mathematical model was created under the
assumptions of linearity, isotropy, and homogeneity of the
environment. For further studies, due to its versatility and
ease of use for any number of conditional layers, we
chose the most popular analytical electrodynamic model
Uzal-Cheng-Dodd-Deeds  [21-24] in the matrix

formulation in the modified Theodoulidis form [25].
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Fig. 1. Geometric model of the forward problem [20]

o=a(z)

The magnetic vector potential in the lift-off below
the ECP excitation coil is formed by summing its two
components, namely, the primary potential A*) of the coil
itself in free space without the presence of the TO and the
secondary potential 4 created by eddy currents induced
in the object:

Ay = AV 4+ 4 (1)
The primary field of the excitation coil is calculated
according to the expression:

o0
46) = IJl(Kr)-Cs -e“dr, ©)
0
where
¢, = Hoio A mn) (e e )
2 P
I(xth):{xl Jolx)-2- ZJZmH(xl)}_
m=0

0
—{xz Jo(xp)-2- ZJ2m+l(x2)}’
m=0

=W -1-(r,-1)"(z,-2)", o =4m10" Hm is a
magnetic constant.

The secondary field is calculated according to the
solution of the boundary value problem in the form of a
second-order partial differential equation for the
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azimuthal component of the magnetic vector potential 4
in the cylindrical coordinate system, which is valid for
axially symmetric systems:

6A 14
ar r or r2 oz°

o, J =v-1 1; under the given
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The solution of the boundary value problem is
represented by the following expression for an arbitrary
number of conditional layers of the TO:
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where V is a matrix with elements V7, V>1; T() is a matrix
with elements 711(), T120, 7210, T220; Jo0s S10, Ju() are
cylindrical Bessel functions of the first kind of zero, first,
and m-th orders; (r, — ;) is the width of the cross-section
of the ECP excitation coil, m; (z; — z) is the height of the
cross-section of the ECP excitation coil, m.

Thus, the output signal of the surface ECP induced in
the pick-up coil can be calculated according to the formula:

NPy, (6)

where w,,., is the number of turns of the pick-up coil; P is
the observation point with coordinates (7, z) belonging to
the contour L, of the pick-up coil.

Thus, we finally obtain the EMF induced in the
pick-up coil of the probe with a radius r:

emud:_j'z'ﬂ-'r'w mes A()(P) (7)

The verification of calculations based on the «exact»
model was performed in the works of the authors [20, 26],
where the results of calculations using the created
software in the cases of two- and three-layer conditional
representation of the TO were compared with numerical
calculations by the finite element method and analytical
expressions obtained for these simple idealizations. In
addition, the verification was carried out by comparing
the results of experimental studies conducted in [27],
which recorded a sufficient level of accuracy.

5

e

mod —

=] O Wy

The next step of the framework is to reduce the
dimensionality of the search space. The purpose of these
transformations is to simplify the architecture of the
neural network surrogate model while simplifying it’s
training and increasing computational capacity and
improving the conditions for the optimization algorithm.
The reduction is performed by the Kernel PCA method
[28, 29] with standard nonlinear transformations using the
Gaussian kernel function. First, the data from the DOE
are projected into a space of much higher dimensionality
to obtain a kernel matrix, where linearly inseparable in the
original space, significantly nonlinear data have much
greater opportunities to determine independent variables
with little loss of information due to the use of linear
PCA. This ensures the transition to a significantly reduced
dimensional PCA space with its characteristic advantages.

The fifth step is to create a neural network surrogate
model. This is necessary because solving the inverse
problem using an optimization implementation requires a
computational model of the target function that can be used
repeatedly with different parameter profiles. In this sense,
model (7) creates a bottleneck in optimization, since the
calculation of the non-proprietary integral of the first kind,
integrals of special functions, and cumbersome
combinations of special functions require quite significant
expenditures of machine resources. On the other hand, a
neural network metamodel also allows accumulating apriori
information about the TO in advance. The metamodel is
created using deep ANN techniques. The peculiarities of
this stage include the need to use a CVNN (complex-valued
neural network). However, in these studies, we used
SCVNN (splitable complex-valued neural networks) instead
of CVNN, i.e., a network split into two classical real-valued
networks. They were constructed separately for the real and
imaginary parts of the ECP output signal, and not for its
amplitude and phase, which is essential, with subsequent
combination into a common complex output. At the same
time, the ANN inputs were really significant and subject to
scaling. It is important for this stage to verify the adequacy
and informativeness of the created metamodels according to
the relevant statistical criteria and indicators.

After the necessary experimental measurements are
performed and computational models are prepared, it is
important to implement a productive strategy for the
optimization process in the reduced search space. At this
stage, a stochastic metaheuristic hybrid particle swarm
global optimization algorithm PSO with evolutionary
swarm composition formation, which is a low-level
hybridization with the genetic algorithm GA, was used to
find the extremum of the target function. The hybrid has
proven its effectiveness in solving many practical
problems, for example, in [31-33]. To reconstruct the
profiles, the target function was compiled on the basis of
the least squares method, which was minimized by
comparing the simulated ECP signal with its experimental
measured value when varying the EC and MP profiles:

F(G’”’f"'): ( ( mes) Re( metamod ))2 +

+ (Im(emes)_ Im(emetamod ))2 — min,
where o, u are the corresponding vectors of
electrophysical properties of the TO that determine the
desired profiles; €,ciumoq 15 the EMF probe was calculated
by the surrogate model.

., (8
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The final stage of the framework involves projecting
the found profiles of the electrophysical parameters of the
TO from the reduced space to the original one. The inverse
transformation is performed by an iterative process [31],
which embodies the corresponding reproduction and is
possible when using the Gaussian kernel function.

Numerical experiments. Let us demonstrate the
main stages of the proposed methodology through
numerical experiments. These experiments do not require
any measurements of the ECP. Therefore, the first stage
will be implemented with synthesized data, which will be
obtained later at the stage of creating a surrogate model.

At the second stage to apply the electrodynamic model,
we consider its parameters to be set: discretized profiles of
the EC o4(z) and MP ufz), i = 1, ... , L, where L = 60;
fIZkHZ,r1:32mm,r2:50mm,21: 1 mm, z, = 18mm,
I1=1A, W=100,r=25mm, z=1 mm, w,,; = 50.

Since the modeling was limited to only two main
factors, a combination of LP-sequences &, & was used to
implement a homogeneous quasi-design of the experiment.
The creation of discretized profiles based on this design will
be presented later. The number of samples was N = 2820.
The homogeneity of DOE in a unit square is demonstrated in
Fig. 2,b a bivariate histogram and Voronoi diagram. Only a
limited number of points, namely 256, are shown for the
convenience of visualizing the DOE homogeneity in
Fig. 2,b. The quality of this design is estimated by the
numerical index WSCD =3.157 11 DO’ .

i

0,9
0.8
0,7
0,6

No of obs
£

0 oTele i
70,0 0,1 02 03 04 05 06 0,7 0.8 09 1.0

a & b
Fig. 2. Design of the unit square experiment on the
LP,-quasi Sobol’s sequences &, &:
a — bivariate histogram; b — Voronoi diagram

Later on, the scaling was used to move to the
dimensions of real space. Let us dwell on this in more detail.
The zone of penetration of the electromagnetic field inside
the TO is determined by the parameter D = 3-10~* m. Before
the microstructure changes, the TO is characterized by
constant values of EC 0, and MP u.,. When the TO is
exposed to any of the electrophysical factors (temperature,
deformation, etc.), the values of the EC and MP change to
the maximum on the surface to oy, and ug,; remaining
unchanged at some depth of the zone. Due to the influence of
uncontrollable physical factors, we assume that the values of
Ogurand s can vary within some apriori defined limits, for
example, within +15 %. In this case, the profiles are
characterized by the values of EC oy, = 2:10° S/m,
o= 9.2-10° S/m and MP — 4., = 10, 1,7 = 29.78, within
which they vary in accordance with the established patterns
determined previously.

Table 1 shows the numerical values of the
electrophysical properties u,and oy, on the surface of the
TO at the DOE points (Fig. 2,b) projected by scaling into
the real factor space. Then, taking into account the specified
limits, the ranges of change in the EC parameters on the
surface of the TO will be 7.82-10° < Oy < 10.1-10° S/m,
and the MP will be 24.531 < p,, < 35.028, with 0,4, and
Udeqp eing unchanged at the depth of the field penetration
zone for any profiles.

During the modeling, we consider the laws of
distribution of the electrophysical properties of the TO to
be known and previously determined [21], namely, the EC
is «exponential», the MP is «gaussiany». Then, within the
specified boundary limits of changes in electrophysical
properties in the real design space (Table 1), we calculated
the distributions of EC and MP for all DOE samples with
discretization into a specified number of conditional As a
result, we obtained a data set in the full factor space of size
Nx2L, i.e., the dimension of the factor space is 120, which
is quite significant layers.

Table 1
Scaled design of the experiment
Design of experiment samples
Parameters T T3 [..] 2817 | 2818 | 2819 [ 2820
amf><106, S/m| 9.2 | 9.89 | 8.51 |...|7.952756|8.642756[1.002276|9.677756
Hsurf 29.78|27.155|32.405|...| 29.813 | 27.188 | 32.438 | 25.876
Some of the obtained profiles are shown in Fig. 3, 2™
and their numerical values are given in Table 2 to present all N —— profile 1, i
the laws of distribution of the EC and MP, which are - ‘s\\ — profile o, -
inherent in changes in the field penetration zone. o % = profile pagg .
The third stage involves the calculations of the RN T Prot Oasig -
model value of the EMF e,,,q of the probe, which are also A X\:\\\ \\ B
included in Table 2, at the points of the formed design T R VEAY s =
using a high-cost electrodynamic model [7]. 20 \:}\ \i‘ \.‘\\ ¢
At the fourth stage, the Kernel PCA method was 1 \\33\ \;{\‘\\\ e
used to reduce the dimensionality of the search space. To ” NG TN
implement it, a number of mathematical transformations \“E':i;".j\ﬁ\ ar6
were performed: first, the transition from the original “ T %
feature space to the auxiliary high-dimensional one was 2 e 6

performed by projecting the DOE from dimension D to
dimension N using a Gaussian kernel [31]. As a result, the
kernel similarity matrix K of dimension NxN is obtained.
Secondly, we apply the centering operation [31] to the
kernel matrix and obtain the Gram matrix.

14 7 18 13 16 18 %3 95 A8 37 3d
1 4 7 10 13 16 19 22 25 28 31 3¢ 37 4

nunber of conditional hver

Fig. 3. Some profiles of MP and EC in the field penetration zone
in the TO
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Table 2

Array of initial data in the full factor space 2820x120

' osm 8%593125;)1 83198'6626;331 21)(;‘21514’158 21)%22(?3 —0.737 | -1.427
G i 75 5 T
2818 Rt 54798068 pnosiaaavaseso] 742 | 147
2819 o Ssregoloasa  issertaiazes] 07| 1419
P 922;.8865726 82951872722 211(}359523 21)%;)17539 —0.748 | -1.386

Third, we performed a standard linear PCA on the
Gram matrix data, which assumes a singular value
decomposition of the SVD [6]. Eventually, we have
matrices of eigenvectors and a diagonal matrix containing
eigenvalues, or rather singular numbers whose squares are
eigenvalues. The ranking of the eigenvalues in the direction
of reduction 4; > A, > ... > Ay = 0, which determines the

eigenvectors for the reduced space, is shown in Fig. 4.
700 T

B G|
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263,7
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100
[ / [44.,69] 1
== @
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Fig. 4. Diagram of eigenvalues of the matrix

We select the first M eigenvectors under the condition
M<D. Consequently, the first 15 eigenvectors whose
singular values are greater than one, have been chosen. The
reduced eigenvector matrix of dimension NxM is obtained,
the elements of which g;; are shown in Table 3.

Thus, the dimensionality reduction is carried out by
projecting the original data onto the 15 selected principal
components.

Table 3
Reduced design matrix for creating a metamodel
with dimension 2820x15
Samples - Elemi:zt}ts ofa reduce((i1 glan matrix -
g g g g
1 —0.0128 | 8.0135 |...|0.000046289 | 0.000075681
2 —14.5184 | 0.8005 |...| —0.0091929 | —0.0018594
3 14.5202 |—0.0864|...| 0.0088841 | 0.0016829
4 15.1605 |-4.2985] ... 0.0308 0.0079691
5 —8.9933 | 5.429 0.0348 —0.0182
2817 | 17.1196 |-7.4162|...| -0.0212 —0.0326
2818 | 12.6383 | 2.9075 —0.0146 0.003627
2819 |-15.7642| -2.18 —0.0274 |-0.00028853
2820 |-10.3193] 3.5479 0.0234 0.0203

The next step is to create neural network surrogate
models [18, 19] based on deep ANNSs, for which the outputs
of each of the two networks are the real and imaginary parts
of the probe signal, respectively, and the inputs are samples
of the reduced eigenvector matrix (Table 3). The division of
samples was performed according to the ratio: 80 % for NN
training, 9.5 % for testing and cross-validation. The data
from one percent of the samples were not used in training,
but later some of them were used as synthesized data to
verify the reliability of the solution to the inverse profile
reconstruction problem.

Thus, two neural networks were obtained, each of
which is characterized by an architecture of four hidden
layers Re-MLP-14-9-9-7-1 and Im-MLP-15-13-10-9-1. In
each hidden layer, the activation function of the
hyperbolic tangent was used, and in the output layer, the
linear one. The validity of the obtained metamodels was
assessed visually by histograms of residuals, normal
probability plots of residuals, scatter plots, and box plots.
In addition, their numerical validity is confirmed by the
small values of the error MAPE,,.;umoq» Yo (Mean Absolute
Percentage Error). Figure 5 shows the values of these
errors for both metamodels separately for the training,
cross-validation, and test samples.
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Flg 5. Statistical assessment of the quality of metamodels
by MAPE indicators:
a) Re-MLP-14-9-9-7-1; b) Im-MLP-15-13-10-9-1

The final step of this stage is to check the adequacy and
informativeness of the created metamodels according to
Fisher’s criterion at a significance level of 5 % [19, 32]. Both
of the created metamodels are adequate, since the estimated
model values of the Fisher’s criterion for them significantly
exceed its critical value. Thus, the Re-MLP-14-9-9-7-1

metamodel has a Fisher’s index value of ng.’gém =1.5-10°,

and the critical value of this criterion with a significance
level of & = 5 % and the number of degrees of freedom

ve = 2804, vy, = 15 is Fleble

0.05.15:2804 = 1.67 , which complies
with the adequacy terms. For the metamodel Im-MLP-15-
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13-10-9-1, the condition of adequacy according to this

criterion is also met, since Fie5gps =2.39-10°. The

coefficient of determination for both metamodels is
R?=0.98, which indicates their high informativeness.

Consequently, computational models can be
involved in the optimization process in a reduced search
space, due to which the next stage is implemented. To
verify the reliability of the solution to the inverse problem
of profile reconstruction, the synthesized data reserved at
the stage of building the metamodel were used. Table 4
shows three examples for testing.

Due to their properties, it is advisable to use
metaheuristic  algorithms for optimization [33-36].
Therefore, the inverse problem for the three test samples was
solved by means of a stochastic metaheuristic hybrid global
optimization algorithm [6, 30]. The target function is
minimized by comparing the theoretical and synthesized
signals of the ECP (Table 4). In other words, a series of starts
of the optimization algorithm was carried out and solution
vectors were obtained in the reduced space, the results of
which were averaged. In essence, the application of the
multistart technique improved the accuracy of the solution.

Table 4

Test samples for verification of the procedure for determining the profiles of electrophysical property of TO

Test Conditional layers ECP signals
samples 1 2 59 60 | Re(epes) [ Im(€pnes)
e Tossoes7 [o1d7s25 ] [a130s15 ai0s0a] 0748 | 07482
2 g S/ Tonoso ostaom " o150 ai3s5es] 075! | 072
o S/ So7an6 [seios76 ] Taioa7as Taoaoss] ©72 | 0726

The final stage is the projection of the found profiles
of the electrophysical properties of the OC into the
original space using the iterative inverse transformation of
Kernel PCA. Thus, we have an actual solution to the
inverse problem of finding electrophysical properties in
the original space. The accuracy of this solution is
assessed by the values of the absolute error in determining
the components of the vectors of the desired parameters,
given the known solution vectors ptest and o, (Table 4).
Table 5 shows the values of these errors for the EC and
MP profiles for each conditional layer, respectively, for
three test cases.

Table 5
Values of absolute errors of profile reconstruction

Conditional layers
Test samples I > 3 59 50
| A, 107 [ 9.09 [-9.05 | -8.98 —0.0543 | —0.0449
A, —2789 | 2653 | —2524 | ...| —153.47 | —145.98
) A,c107° 1-6.559] —6.53 |-6.482]...] —0.0379 [ —0.0312
A, —1938 |—1844 | 1754 -106.79 | —-101.59
3 A,s107 [—11.45]-11.4 [-11.31]...] —0.0662 | —0.0546
A, —3441 |-3273| 3113 |...|-189.295 | -180.055

Figure 6 contains a graphical representation of the
relative errors and, additionally, values of the error MAPE,
% reconstruction of each of the corresponding profiles.

0,028
3’83‘2‘ —— rofile 0,026 0,038 RE e
X POy 0,024 —1 |profile p profile p
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Fig. 6. Graphs of relative error distributions for EC and MP profiles: @ — test 1; b —test2; ¢ —test3

Discussions and conclusions. The most interesting
result of the numerical experiments is the reduction of the
search space by more than 85 %, which allowed us to
move from the dimension of the primary space of 120 to
the reduced one with dimension 15. It was possible due to
nonlinear transformations using the Kernel PCA and the
Gaussian kernel function with the analysis of the
eigenvalues of the resulting Gram matrix and the
limitation on the number of principal components of the
linear PCA when its eigenvalues are less than one. This
allowed for much more cost-effective implementation of
surrogate models and optimization in a significantly
reduced search space. The results confirmed the validity

of such a significant reduction in space without a
substantial loss of information.

Another indicator proving the effectiveness of the
proposed method is the high accuracy of the created
surrogate models, which is estimated by the errors
MAPE pumos and is 0318107 and 1.65:10° %,
respectively. This accuracy of the reduced-dimensional
metamodels was achieved through the use of homogeneous
computer DOE and deep learning networks. The adequacy
and informativeness of the constructed surrogate models
have been proved by numerical indicators.

Verification of the method for reconstructing the
electrophysical properties of the testing object was carried
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out on synthetically generated data (test samples) that are
known in advance. As a result of the study, it was found
that the errors MAPE of profile reconstruction for the test
cases in comparison with theoretical solutions do not
exceed 0.05 %, i.e., much better than the solution of the
problem in the full-factor and PCA spaces, where the
maximum errors reached 5.53 % and 0.96 %, respectively.
In addition, it should be noted that this error contains a
number of essential components: first, the error of
reduction of the primary space, second, the error of
approximation using surrogate models based on neural
networks, third, the error of solving the inverse problem by
the global optimization algorithm, and the error of
projecting the found profiles of the electrophysical
properties of the TO into the primary space.

Thus, the proposed computer-economical method for
determining the electrophysical properties of planar metal
objects by means of surrogate optimization with the
accumulation of additional apriori knowledge about them
in neural network metamodels with nonlinearly reduced
dimensionality has demonstrated its effectiveness and
ability to sufficiently accurately solve the problem of
simultaneous determination of the profiles of electrical
conductivity and magnetic permeability in eddy current
measurements. It can be used to assess the quality of
various technological processes, or the effects of
uncontrolled exposure to aggressive media on the TO
during their monitoring.
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