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Artificial neural network and discrete wavelet transform for inter-turn short circuit and
broken rotor bars faults diagnosis under various operating conditions

Introduction. This work presents a methodology for detecting inter-turn short circuit (ITSC) and broken rotor bars (BRB) fault in variable
speed induction machine controlled by field oriented control. If any of these faults are not detected at an early stage, it may cause an
unexpected shutdown of the industrial processes and significant financial losses. Purpose. For these reasons, it is important to develop a new
diagnostic system to detect in a precautionary way the ITSC and BRB at various load condition. We propose the application of discrete
wavelet transform to overcome the limitation of traditional technique for no-stationary signals. The novelty of the work consists in developing
a diagnosis system that combines the advantages of both the discrete wavelet transform (DWT) and artificial neural network (ANN) to identify
and diagnose defects, related to both ITSC and BRB faults. Methods. The suggested method involves analyzing the electromagnetic torque
signal using DWT to calculate the stored energy at each level of decomposition. Then, this energy is applied to train neural network classifier.
The accuracy of ANN based on DWT, was improved by testing different orthogonal wavelet functions on simulated signal. The selection
process identified 5 pertinent wavelet energies, concluding that, Daubechies44 (db44) is the best suitable mother wavelet function for
effectively detecting and classifying failures in machines. Results. We applied numerical simulations by MATLAB/Simulink sofiware to
demonstrate the validity of the suggested techniques in a closed loop induction motor drive. The obtained results prove that this method can
identify and classify these types of faults under various loads of the machine. References 31, table 1, figures 9.

Key words: diagnesis, short circuit, broken bars, induction motor, discrete wavelet transform, artificial neural network,
indirect field oriented control.

Bcemyn. Y yiii po6omi npedcmagnena memooonois 6UA61eHHA MidHc8Uumxo8o2o kopomxkozo 3amuxanta (ITSC) ma necnpasnocmi cmpudicHis
pomopa (BRB) 6 acunxponHux mauunax 3 pezynv08aHol0 WeUOKICHIIO, KepoBaHUX NONEOPIENMOBAHUM KepysanHaM. fkuo Oyov-aka 3 yux
HecnpagHocmell He 6yOe UAGIEHA HA PaHHill cmadii, ye Modce npuzsecmu 00 HeCnoOi8aHOi 3yNUHKU BUPOOHUYUX NPOYECI8 Ma 3HAUHUX
@inancosux smpam. Mema. 3 yux npuuun adciuso po3podumu Hogy diazHocmuuHy cucmemy 0is npoginakmuunozco susenennsa ITSC ma
BRB 3a pisnux ymose nasanmagicenns. Mu npononyemo sacmocyeamu Ouckpemue eeligiem nepemeopents, wjod nooonamu 00meiceHHs.
mpaouyitinoi mexuixu 0ns necmayionapnux cuenanie. Hosusna pooomu nonazac 6 po3pooyi cucmemu 0iaeHOCMuKU, Wo NoEOHYE 8 codi AK
nepegaeu Ouckpemtozo eeiieiem nepemeoperus (DWT), max i wmyunoi Hetiponroi mepeosici (ANN) ona eusenenus ma OiacHOCHMUKU
Oepexmis, nogsizanux sk 3 wnecnpasnocmsamu ITSC, max i 3 BRB. Memoou. Ilpononosanuii memooO GKIOHAE AHAMI3 CUSHATLY
ENIeKMPOMACHIMHO20 MOMEHMY, Wjo Kpymumb, 3 gukopucmannsim DWT Onst po3paxyHKy 3anaceHol enepeii Ha KOJHCHOMY PIGHI PO3KIAOAHHS.
Tomim ys enepeis 3acmocogyemvcs Ha HaguanHsa Kuacughikamopa wuevponnoi mepedci. Tounicmv ANN, 3acnosanoi na DWT, 6yna
nioguena 3a paxyHoK MeCcmy8anHs PisHUX OPMOSOHATbHUX 8elignem (YHKYI Ha cueHam, wo modemoemvcs. Y npoyeci 6iobopy 0y10
BUHAYEHO N’aAMb 6IONOGIOHUX eHepeill gellgnema, i 0V10 3poOneHo 6ucrosok, wjo Daubechies44 (db44) € maibinbw nioxooaworo
MAMeEPUHCLKOIO Getienem yHKYIEIo epekmusHo2o suasnents i kiacugikayii iomos y mawunax. Pesynomamu. Mu 3acmocysanu uucenste
MOOEMOBAHHS 34 OONOMO2010 npoepamHoeo 3abe3neyenns MATLAB/Simulink, wob npodemoncmpysamu egpexmusHicmy 3anpONOHOBAHUX
Memooi npUB0Oy ACUHXPOHHO20 08USYHA 13 3AMKHYMUM KOHmypom. Ompumani pesyibmamu 008005mb, Wo yeil Memoo 00360€ GUAGUMU
ma xaacug)ixysamu 0aui 8uou HecnpagHocmell npu pisHux HasanmagiceHHsax mawuny. bion. 31, tabm. 1, puc. 9.

Knrouoei crnosa: piarHocTHKA, KOPOTKE 3aMUKAHHS, 00PHB CTPUKHIB, ACHHXPOHHUI IBUTYH, JUCKPETHE BelBJIeT NepeTBOPEHHS,
LITY4YHA HeliPOHHA Mepeska, HellpsiMe M0JICOPiCHTOBaHe KepyBaHHs.

Introduction. The squirrel cage induction motor (IM)
by its robustness, simplicity and relatively low cost, plays a
most significant role in applications requiring high power in
industrial applications, particularly for constant or variable
speed applications. Despite these great benefits, various
stresses may occur, during operating conditions. For these
reasons, early recognition of abnormalities is important to
identify any faults at an incipient stage can help to avoid
catastrophic failure and global damage. Literature has reports
that electrical faults are principal causes [1-3], inter-turn
short circuit (ITSC) have a significant share with
approximately 30 % to 40 % and broken rotor bars (BRB)
which represent 5-10 % of all the IM faults. These faults are
caused by several forms of stress such as thermal, electrical,
mechanical and environmental.

Several publications have focused on stator winding
defects. In [2] a mathematical model of an IM based on
coupled magnetic circuit theory is presented. This model
allows detection of short circuit (SC) faults in stator
winding and predicts it before it grows and damages the
machine completely. In [3], a thermal model analysis of
IM relies on finite elements method used to identify how
ITSC faults of different severity affect the temperature of
the IM. However, this method needs times after starting
the motor to estimate the failure severity. Another useful

technique was proposed in [4], combines the genetic
algorithm and simulated annealing method to identify
ITSC in IM during load current variations. In [5] Least
Squares Support Vector Machine technique is proposed
for fault detection and classification of the short circuit in
the stator phases of an IM using information provided by
the stator current. Moreover In [6], the estimations of
rotor and stator resistances parameters based on Model
Reference Adaptive System technique. Work [7] proposes
axial stray flux based on analysis of flux signals collected
by sensor. The pattern obtained from two-phase quantities
is observed to be circular in nature for healthy case and
elliptical nature for stator malfunctions. However, it is
costly and challenging to install a sensor on the inside of
the machine. Also in [8], an off line signal processing
techniques called the Fortescue transform is applied to
obtain the zero sequence of the current and the Fast
Fourier Transform (FFT) is applied to detect the
occurrence of the ITSC from the current and voltage
signals of synchronous reluctance motor. Other work [9]
use the three-phase stator voltages of IM as inputs, and by
using the short-time least square Prony’s method, to
extract phases and magnitudes of the fundamental
harmonics to calculate indicator called zero voltage factor
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that allows a rapid ITSC fault detection. However, this
method is susceptible to load variation and the presence
of unbalanced supply voltage. In [10], the residuals
current between the estimated currents provided by the
Extended Kalman Filter and the actual ones using FFT
and Short-Time Fourier transform approaches are used for
ITSC fault diagnosis and identification. The Artificial
Neural Network (ANN) and Discrete Wavelet Transform
(DWT) are proposed in [11], for ITSC fault diagnosis of
IM. Three parameters (energy, Kurtosis and singular
values) of DWT technique are computed under load
variation and used as the input for the ANN classifier,
using a single wavelet function db40. In [12], continuous
and discrete wavelet methods are applied to study the
stator current, at the start-up to identify BRB fault. But
the limitation is that it is not always feasible to frequently
restart the motor to capture starting current. The detection
of BRB faults are detected by DWT based on harmonics
characteristic, using vibration signal decomposition and
ANN is presented in [13].The detection and classification
of BRB fault in the IM, based a combination of the DWT,
the slip and the ANN algorithm to solve the problem of
low load has been discussed in [14]. Similarly, in [15, 16]
the multiple signal processing tools using Hilbert
Transform and ANN, are proposed for BRB fault
diagnosis. In [17] suggests a hybrid combining a new
electrical-time synchronous-averaging, DWT and fuzzy
logic techniques was employed for dealing with the early
identification of an incipient defect occurring at the rotor
bar and classification of the severity of this defect.
Problem definition. Generally, diagnostic methods
used for open-loop machine operation are not efficient
when the control structure becomes more complex,
particularly, in closed-loop drives. It’s necessary to
employ different analysis to interpret the acquired signals
for the detection process. The FFT approach is widely
applied and proven to be effective for stationary signals.
However, this approach is not efficient and has limitations
for non-stationary signals. In this context, to ameliorate
the diagnosis procedure taking into account different
faults of IM, a combination of DWT and ANN technique
becomes our main focus to resolve these drawbacks for
processing non-stationary, low load and over load.
However, different types of the wavelet function can be
used for early fault detection based electromechanical
signal decomposition in closed loop operation. The
comparison between the proposed methodology and the
previously used methods is made based on the faults
severity, operating mode, different load torques, and fault
diagnosis methods. The work [18] focuses on the analysis
of BRB faults in open-loop asynchronous machines
powered by electrical network. The study utilized a single
db40 wavelet function, and the acquisition of three
current sensors for phases (/,, I, I.), the calculated energy
of three-phase (E7,, E7, E+.), are employed as input of
ANN to determine the faulty phases (ay, by, ¢;). However
this work deals with the diagnosis of both short circuit
faults and BRB at speeds, with a reference speed set to
100 rad/s controlled by Indirect Field Oriented Control
(IFOC) technique. Various wavelet functions are used to
compare the best suitable function such as BiorSplines,
ReverseBior, Symlet, Coiflet, and Daubechies are used
for diagnosis. Only one acquisition signal is used, which

is the torque signal to differentiate between stator and
rotor faults. The energy calculation of the electromagnetic
torque signal involves selecting the pertinent energy,
resulting 5 energies (E|, E,, Es, E;, Eg), after that these
energies are used as input of ANN. The wavelet function
db44 was found to be the best function to identify these
faults. The application of this work is used in the first step
to determine which fault occurs ITSC or BRB after that
we use the method from [18], to locate the faulty phases.
This study presents an effectiveness percentage of 98 %,
taking into account both different severity levels of short
circuited turns, 1, 2 and 3 BRB with different mechanical
load levels (ranging from 1 to 7 N-m), in contrast to other
works reviewed in [19-21], which analyze levels of fault
and different operating conditions or different levels of
fault and a constant load operating condition in open loop
machine. Whereas, works [22-24] introduced a signal
transformation and several nonlinear indices is required,
along with an expert to interpret the obtained results.
Other works [25-27] have good accuracy in diagnosing
the highly incipient faults based fuzzy logic method but
using number of fuzzy rules causes significant
computation time, which is always longer

The goal of the paper is to identify ITSC and BRB
fault when the IM operates in a closed-loop drive to
preserve high performance. The used method for the fault
detection combines DWT and ANN method to provide
intelligent methodology for the diagnosis system.

Subject of investigations. This approach used DWT
of electromechanical torque signal at steady state to
compute the stored energy at each level of decomposition.
Then, this energy is applied as input for the Neural Network
(NN) classifier. Many test of orthogonal wavelet function
are evaluated with ANN to find the best classification and
lowest Root Mean Square Error (RMSE), and justified that
db44 is the best suited mother wavelet function to detect and
identify different severity for both the ITSC and BRB faults
under various loads operation of IM.

IM mathematical model. An accurate model
including a fault is needed to test fault diagnosis strategies
in IM. The equivalent circuit diagram of the IM, in the
reference frame (d-q) is considered, taking into account
ITSC and BRB fault. Additionally, the following non-
linear system equations are developed to validate IM
performance [18]:

X(£)= A(w)X (2) + Bu(0); o
Y(t)=CX(¢)+ Du(t),
where
Us” i
. d d
X:[lds lgs Par ¢qr]Ta” :{U Y:| aY:|:l. S:|-
qs qs
The expression of equivalent rotor resistance is:
[24 2 3Nb
R, =R,.-1+——K(6y)R,; ==n, n= <. 2
eq r l+a (0); a 377 n Nb ()
cos(y)? cos(8y ) sin(6,
K(g()) — ( O) ( 0) 2( 0) , (3)
cos(8,)sin(by) sin(6,)

where Nj, Ny, R,, R., are the total number of bars in the
rotor, the number of BRB, the rotor resistance and the
equivalent resistance of rotor, respectively; 6, is the initial
phase of the rotor.
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By adding the mechanical equation to the system
equation, we obtain the complete model of the machine taking
account the ITSC and BRB in the Park coordinate system. The
mechanical speed  is the solution of the equation:

78,1y fro, @)
and the electromagnetic torque in the Park coordinate
system is given by the expression:

T, = p(iqs¢dr - ids¢qr) > (5)
where T, is the electromagnetic torque; 7; is the load
torque; J is inertia moment; f, is friction coefficient.

Indirect field oriented control. The most significant
aspect of field oriented control of the IM is transformation
that converts a three-phase system into 2 components,
which used to generate both the magnetizing flux and the
electromagnetic torque [16, 24]. This transformation
simplifies the structure of IM similar that of a DC machine
as shown in Fig. 1. It implies that the 2 stator current
components would be aligned as input references: the flux
component (aligned with the d coordinate) and the torque
component (aligned with the ¢ coordinate).
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Fig. 1. Block diagram of the diagnosis system
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The IFOC technique is known for its simplicity of
implementation and high effectiveness what makes it
widely used in industry applications. The flux component
is aligned in the direction of rotor flux ¢, to achieve field
orientation along the rotor flux direction:

bir =0 Sy =0, V=0, V, =0. (6)

The advantage of using a reference linked to the rotating
field frame is to have constant magnitudes. The control is
then made easier by relying on the variables of direct axis
current iy, and the quadrature axis current i,. The magnitudes
of flux ¢. and torque 7, are independent controlled is assumed
as [16, 24]. The calculated rotor flux, given by:

¢r: Lsm Iids , (7)
l+s—L
"
where L,, Ly, are the rotor and mutual inductance; s is the
Laplace transform. The slip frequency is expressed by:

Lsmiqs (8)
Tr¢r ’

where T, = L,/ R, is the rotor time constant.
The equation of the electromagnetic torque can be
given by:

W=

pPL i D ..
T- sm*qs¥r :Klqs , ©)
Lr

where p is the number poles pairs; ¢, is the rotor flux.
Therefore, the relation with DC motor is clearly
demonstrated by holding the flux constant.

The two components magnetizing flux ¢ and
electromagnetic torque 7, can independently controlled by
acting on each variable separately, establishing the high
performance of a DC machine. The simulation results of
IFOC control IM drive in cases of healthy and faulty motors
demonstrated through simulation in MATLAB/Simulink.

Figures 2-4 show the dynamic performance of speed,
stator current and electromagnetic torque in healthy and
when a fault appears in stator or rotor bars fault with
reference speed set to 100 rad/s. After reaching the set
value of motor speed, the step change of load torque
(from 1 to 7 N-m) at the moment 7 = 0.6 s. It is evident
that, the actual speed accurately follows the reference
speed in healthy and faulty state, which be explain by the
fact that the PI speed controller minimize the effects of
ITSC and BRB faults on the speed (Fig. 2).

Figure 3 depicts the stator currents that are sinusoidal
and have the same amplitude. But in the occurrence of the
fault, there will be an imbalance at the level of the stator
currents which increase in term of amplitude.

Similarly, we observe the influence of ITSC and
BRB in the electromagnetic torque. During a fault
condition, motor suffers from oscillations. The amplitude
of these oscillations increases when the severity of fault
increases (Fig. 4).
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Fig. 2. Actual speed at full load
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Fig. 3. Evolution of stator currents under full load
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Fig. 4. Electromagnetic torque at full load
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Discrete Wavelet Transform (DWT). The wavelet
transform is an effective method for acquiring time-
frequency information in both stationary and non-stationary
signal processing, with the intention to solve the limitations
of Fourier transform. This signal processing tool,
characterized by robust time and frequency localization, is
divided into Continuous Wavelet Transforms (CWT) and
DWT. Adopting a mother wavelet ¥(¢), the CWT of a
function x(#) can be expressed as:

1 o #*(1—T
CWT(a,7)=—— j x(Ow [—jdt (10)
Jd =, “

where y(7)" is the complex conjugates form; 7 is the time
parameter; a is the scale factor; M is the energy

normalization.

The translation and the expansion transform the
signal into another timescale. The high-frequency
components correspond to the smallest scales [28, 29].

A more computationally efficient form of the CWT
which gives optimal accuracy at low frequency and non-
stationary state is the DWT given by [20, 22]:

+00 7. J
DI, ) =—— [xaw (k-2
J7 2/

The DWT decompose a given signal into its
constituent level (scales), each one representing that part
of the original signal occurring at particular time and
frequency band. DWT is performed by a sequential
operation using a high-pass filters H (details) and through
a series of low-pass filters L (approximations).

The original signals x(¢) is divided into 2 parts high
frequency part, and low frequency part used to
decompose and reconstruct a signal (Fig. 5) [18-20].

-J
sz:zzy/(z—f 1=k (11)

HPF —I:_l;l, DI I—__\i If \:

x(1) { . i i HPF —i» lz_i, D2 i :
LPF T’ lz _” : : “-PF+ lz_!,, D3

i : LPF -{-. lz..t'” ! :
I\__JI i\___ ! LPF tiz_j’ 43

Level2 Level3

Fig. 5. DWT decomposition process of the signal at level 3

The low frequency part called approximations (4;)
contains the low-frequency information of the original
signal belong to [0, £;-2Y*V]. The high-frequency part
called detail (D)) contain high frequency information
included in the interval [£;-27 ", £,-27]. Practically, the
DWT decomposition at level N of signal x(¢), giving rise
to one approximation coefficient vector Ay and N detail
coefficient vectors D; are expressed by [29, 30]:

N
xX(t)=Ay(0)+ Y D;(t).
j=1
It can be shown that the approximation and detail
coefficients can be recursively calculated by:

(12)

+00
Ajy = \/Ez L{nld;y, 2p+ns

- )
Dy =2 H[nld; ) 2.

The effectiveness of DWT relies on the careful choice
of the wavelet function. Different types of mother wavelets
exist, such as: Meyer, Coiflets, Symlets and Daubechies.

Preliminary step before selecting the wavelet
function involves judiciously choosing the number of
levels in order to cover the whole range of frequencies
approximation and detail, given by the relationship:

Ss <, (14)

2N+1
where f, is the fundamental frequency of the signal,
fo = 22 Hz; f; is the sampling frequency, f; = 10 kHz;
N is the number of decomposition levels.

Wavelet energy. The consumed energy at each level
of decomposition is calculated, to identify and validate
the frequency bands containing the defect frequency for
both faulty and healthy cases under different load
conditions. For this purpose, the energy linked to each D;
detail signal of the torque signal is expressed as follow:

n
E;= ZDzj,k(n) ,
k=1
where j is the decomposition level (je[l, N]); E; is the
detail energy; D;, is the magnitude of the coefficient in
corresponding level j; n is the DWT decomposition time.
The energy extracted from the torque signal through
wavelet transformation, using db44 under different load
and faults severity. The number of decomposition levels
N depends on the sampling frequency f; of the signal were
performed up to the 10™ level of the decomposition. By
computing associated coefficient at each decomposition
levels of the torque signal. The results of detail energy D;
for various instances of shorted turns and broken 1 bar
and 2 bars under different loads are depicted in Fig. 6.

(15)

Fig. 6. The comparison of total energy

Artificial Neural Networks are complex intelligent
structures  inspired by Dbiological neurons, have
demonstrated remarkable performances to  solve
analytically challenging problems and the automation of
the monitoring process. The most frequently used NN for
classification purposes is feed forward multilayer
perceptron NN, known for its simple structure making it
easily implementable. Hence, it was chosen for the
developing of the monitoring process. The training function
used was Levenberg—Marquardt trained by back
propagation algorithm and training results are used to attain
the minimum Mean Square Errors (MSE) [28, 29].
Typically, an ANN consists of an input layer, hidden layers
and an output layer, where each layer connected to other
layer, with weights assigned to the connections. The
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activation function used for the hidden layer is tangent
sigmoid «tansig», while the activation function for the
output layer is Logsigmoid «logsig» [30, 31].

The inputs are the pertinent wavelet energy value
and outputs are the fault class of IM, respectively.

The training performance and parameters related to
the training algorithm are illustrated in Fig. 7. After 85
epochs, a low training MSE of 2.3561-10"" is achieved,
indicating suitability for accurately classifying the test set.

Neural Network

Layer Layer
Input Output
5 3
10 3
Algorithms
Training: Levenberg-Marquardt (trainim)
Performance: Mean Squared Error  (mse)
Calculations: MATLAB
Progress
Epoch: 0 85 iterations 30000
Time: 0:00:01
Performance: 0.449 2.36e-11 1.00e-10
Gradient: 156 1.00e-10
Mu: 0.00100 1.00e-15 1.00e+10
Validation Checks: 0 0 6
" Best Training Performance is 2.3561e-11 at epoch 85
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Fig. 7. Neural network performance

Preparation of training data. The NN is trained
using a dataset comprising input and output sets. The
number of input units in the ANN corresponds to the fault
indicators, while the output units are determined by the
number of faulty states. The inputs represent the pertinent
stored energy calculated from the torque signal, which
found the best value are 5 energies (E1, E,, Es, E7, Eg) and
the outputs signify the fault classes: healthy case, short
circuit and BRB fault. For an optimal compromise between
complexity and accuracy, one hidden layer with 10 neurons
is chosen. Input data are gathered through simulations
under various loading conditions and fault severities,
ranging from no load to full load. The NN is exposed to
examples under 7 load torques (1-7 N-m), representing
different operating conditions, including healthy states
(7 samples), faults with an even number of shorted turns
(2, 4, 6, 8, 10), and faults with single and 2 BRB. This
results in a total of 56 cases ((7 healthy) + (7x5 shorted

turns with different loads and severities) + (7x2 BRB with
different loads)), as shown in Fig. 8. Consequently, the
dimension of the training vector inputs for the NN is 5x56.

The target data required for supervised learning in
the NN are defined accordingly:

T1=[1; 0; 0] — healthy case;

T2 =[0; 1; 0] — short circuit fault;

T3 =1[0;0; 1]— BRB.
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Fig. 8. Training and classification errors of the NN

F.Training error broken rotor bars

Simulation results. The NN ability to generalize is
assessed through its performance on the testing dataset.
To evaluate classification effectiveness, 2 distinct datasets
are compiled, representing both healthy and faulty cases.
Various tests are conducted to determine the optimal
structure and outcomes. The results indicate that the
selected ANN model has achieved significant success in
detecting and classifying these faults.

The dataset is divided into 2 parts, with 1 set applied
for training while another for testing. An effective NN is
expected to perform well on both training and testing
data, showcasing its generalization capacity. The testing
process involves a dataset separate from the one used for
training, providing an assessment of the network’s ability
to generalize to new, unseen data.

Figure 9 depicts the test data set of the system under
different operating cases of IM: healthy case (7 samples),
fault of shorted turns (1, 3, 5, 7, 9), and fault for 1 and 2
BRB, are obtained under 7 load torques (0.5, 1.5, 2.5, 3.5,
4.5,5.5and 6.5 N-m).
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Fig. 9. Test and classification errors of the NN

As a result, the total number of combinations of load
variation, shorted turn and BRB was 143 ((7 healthy) +
(7%5 load of different severities of ITSC) + (7x5 different
load of ITSC) + (7x5 different load and severities of
ITSC) + (7x2 different load of BRB) + (7x2 different
load + 3 BRB)).

The test output of the NN (T1, T2, T3) is accurately
equal to (1, 0, 0), (0, 1, 0), and (0, 0, 1). The NN test
outputs and classification errors for faults of ITSC and
BRB, respectively is shown in Fig. 9. The test output of
NN from (Fig. 9,a,b) is accurately identical to (1, 0, 0) in
healthy state and classification error is very low. The NN
output in (Fig. 9,c,d) give the output (0, 1, 0), with
minimal amount of testing error in short circuit faults. As
a result, the ITSC can be accurately located by the NN.
According to (Fig. 9,e,f), the NN accurately gives the
outputs (0, 0, 1) for the BRB indicating the occurrence of
small errors. Therefore, we can observe that the NN can
accurately identify the ITSC and BRB faults.

Table 1 shows a comparison of the performance of a
simulated model. In this study, the accuracy of ANN is
evaluated using the RMSE with the expression given by:

RMSE = (16)

where x; and x;" represent respectively the measured and
desired outputs; m is the total number of input sets.

The test data are simulated under various wavelet
functions, using BiorSplines (bior6.8), ReverseBior
(rbior6.8), Symlet (syms8), Coiflet (coif5) and Daubechies
(db44) wavelet families. The input of NN are chosen by
selecting the pertinent energy, we found 5 energies (£}, E»,
E¢, E;7, Ey) identified as the most effective. Subsequently,
the best classification and the minimum classification error
are achieved using Daubechies44 (db44) which found
better than any other wavelet transform. The achieved
results clearly demonstrate that the db44 of the
electromechanical torque signal can used as an effective
indicator for stator and rotor condition monitoring.

Table 1
Performance of different wavelets functions
with 5 energies (£, E,, Eg, E7, E5)

Wavelet mother bior6.8 | rbior 6.8 | sym8 | coif5 | db44
ANN-RMSE (test) |0.0235| 0.0164 |0.0339]0.0308|0.0011
Classification 97.24 | 98.16 | 96.32 | 97.24 | 98.62
accuracy, %

Conclusions. This paper introduces a precise method
for diagnosing inter-turn short circuit (ITSC) and broken
rotor bars (BRB) in variable speed drives using discrete
wavelet transform (DWT) and artificial neural network
(ANN). The proposed approach involves analyzing the
electromechanical torque signal of a squirrel cage induction
motor (IM) through DWT. This analysis computes the
stored energy at each level of decomposition, which then
serves as input for an ANN classifier.

The proposed technique has been applied for fault
detection under various loads, instances of ITSC, and
different occurrences of BRB in the IM. The results
obtained are highly significant, demonstrating the ability to
automatically detect and locate faults related to BRB and
ITSC. The best result is achieved through the application of
5 pertinent energies, particularly using db44. According to
the test results, DWT and ANN prove to be a powerful
method for diagnosis, offering a means to automatically
identify faults under variable load conditions. Future
research could further develop this work to determine the
specific number of short circuits and BRB, enabling
continuous and real-time monitoring.
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