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Photovoltaic system faults detection using fractional multiresolution signal decomposition

Introduction. In this paper, we present an innovative methodology based on fractional wavelets for detecting defects in photovoltaic
systems. Photovoltaic solar systems play a key role in the transition to a low-carbon economy, but they are susceptible to various
defects such as microcracks, wiring faults, and hotspots. Early detection of these anomalies is crucial to prevent energy losses and
extend the lifespan of installations. Novelty of the proposed work resides in its pioneering nature, leveraging a family of fractional
wavelets, with a specific emphasis on fractional Haar wavelets. This approach enhances sensitivity in anomaly detection, introducing
a fresh and promising perspective to enhance the reliability of photovoltaic installations. Purpose of this study is to develop a defect
detection methodology in photovoltaic systems using fractional wavelets. We aim to improve detection sensitivity with a specific
focus on low-amplitude defects such as microcracks. Method. Our innovative methodology is structured around two phases. Firstly,
we undertake a crucial step of filtering photovoltaic signals using fractional Haar wavelets. This preliminary phase is of paramount
importance, aiming to rid signals of unwanted noise and prepare the ground for more precise defect detection. The second phase of
our approach focuses on the effective detection of anomalies. We leverage the multiresolution properties of fractional wavelets,
particularly emphasizing fractional Haar wavelets. This step achieves increased sensitivity, especially in the detection of low-
amplitude defects. Results. By evaluating the performance of our method and comparing it with techniques based on classical
wavelets, our results highlight significant superiority in the accurate detection of microcracks, wiring faults, and hotspots. These
substantial advances position our approach as a promising solution to enhance the reliability and efficiency of photovoltaic
installations. Practical value. These advancements open new perspectives for preventive maintenance of photovoltaic installations,
contributing to strengthening the sustainability and energy efficiency of solar systems. This methodology offers a promising solution
to optimize the performance of photovoltaic installations and ensure their long-term reliability. References 21, tables 3, figures 10.
Keywords: fault detection, photovoltaic systems, microcracks, wiring defects, hot spots, preventive maintenance,
multiresolution analysis, fractional wavelets.

Bemyn. V' cmammi mu npedcmagisiemo iHHoBayitiny Memooonoeilo, 3acHo8any Ha Opobosux eelienemax O GUAGTEHHs 0epeKmie y
gomoenexmpuunux cucmemax. DomoeneKmpuuHi cOHAYHI cucmemu 6i0iepaiomb KIO408Y poab Y Nhepexodi 00 HU3bKosyzieyesoi
EKOHOMIKU, alle 60HU CXUTbHI 00 DI3HUX OeqheKkmis, maxux sK MIKpOMPIWUHU, HeCNpPasHOCmi NpoooKu ma 2apsui mouku. Panne
BUABGNECHHSL YUX AHOMATIL MAE GUPIUUATIbHE 3HAYUEHHS! OISl 3aN0DIAHHsL 6MPAMam eHepeli ma nPOO0BICEHHS MEPMIHY CILYHCOU YCMAHOBOK.
Hogusna 3anpononosanoi pobomu nonseac y it HOGAMOPCoKOMY Xapakmepi, 6 AKitl GUKOPUCHIOBYEMbCS CIMELiCBo OpobO6UX GellGnemis 3
ocobausum ynopom Ha opob6osi eetignemu Xaapa. Lleii nioxio niosuwgye yymaugicms 6UAGIEHH AHOMANIN, GIOKPUBAIOUU HO8Y CYMMEBY
nepcnexmusy 05 RiO8UWeHHs. HAOIIHOCMI homoeneKmpusHux ycmanoeox. Memorw 0ociiodrcents € po3pooKa Memooonoaii Us6IeHHs
Oepexmis y ghomoenekmpuunux cucmemax 3 GUKOPUCIMAHHAM Opobosux eetienemis. Mu npaznemo noxpawumu 4ymuusicme UAGNEHHS,
npudinsiouu ocoonusy ysazy Oegpexmam manoi amnaimyou, makum Ak mikpompiwunu. Memoo. Hawa innosayiiina memooonocis
cknadacmocs i3 06ox emanig. Ilo-nepue, Mmu poodumo SUpiUATLHULL KPOK w000 @hinempayii (omoenrekmpuyHux CueHauie 3
suKopucmanHam opobosux eelignemie Xaapa. Lleii nonepedniii eman mae nepuiopsione 3HAYeHHsl, OCKLIbKU 1020 Mema - no3oasumu
CUCHANU BI0 HeDadCaHo2o wymy ma niocomysamu IpYHm OJis OLbld MOYHO20 GUAGTEHHS Oegpekmis. J[pyeuil eman HAuio2o nioxooy
CNPAMOBAHO HA epeKmueHe SUABNEHHS aHOMAnil. Mu BUKOPUCMOBYEMO G1ACIUBOCINT MHOMCUHU PO30LTbHOT 30amHOCmi Opo6o6Ux
getignemis, NpuoiIAIOYY 0coonU8y yeazy opobosum setieiemam Xaapa. Ha yvomy emani docsieacmoca nioguena uymaugicmn, 0coOIu60 y
pasi euasnenHs Oeghexmie manoi amniaimyou. Pesynomamu. Oyiniorouu epexmusHicms HAWO020 Memody ma NOPIGHIoYU 11020 3
Memooamy, 3ACHOBAHUMU HA KIACUYHUX 6ellenemax, Hawii pe3yiemamu NiOKpecniooms 3HAYHy nepesazy y MOYHOMY BUAGIEHHI
MIKpOmMpiwun, HecnpagHocmell NposoOKU ma eapauux mouok. L[i cymmesi Oocsiehenus pooOnsme Hawi nioxio 0aeamoooiysiouum
plwennam ona nioguwents Haodiinocmi ma egexmusnocmi gomoenexmpuunux ycmanogox. Ilpaxmuuna winnicms. L]i Oocsenenns
6IOKpUBAIOMb HOGI NepcneKmusu Osi NPOPINAKMUUHO20 00CIY206Y8aAHHA (OMOENEKMPUYHUX YCIMAHOBOK, CHPUSIONY NIOBUUEHHIO
CMILIKOCME MA eHeP2oeheKMUEHOCmE CoHsaunux cucmem. L{s memoodonoeis npononye 6acamoobiysioue piwientss O ONMuM3ayii
NPOOYKMUSHOCMI (POMOeNeKMPUUHUX YCMAHOB0K ma 3abe3neyentst iXnboi 00620cmporosoi nadiunocmi. biom. 21, Tabdm. 3, puc. 10.
Kniouosi cnosa: BHUsSIBIIeHHs1 HecHIPABHOCTeil, ()OTOeJIeKTPHYHI CHCTeMH, MIKPOTPIilllMHHU, Ae(eKTH NPOBOIKH, rapsiii TOYKH,
npogisakTuka, MHOKMHHMIA aHAJI3, APOOOBI BeiiBiIeTH.

Introduction. Photovoltaic (PV) solar energy plays
a crucial role in the transition to a low-carbon economy.
However, the efficiency and reliability of PV systems are
susceptible to various defects, such as microcracks, hot
spots, and wiring faults. Early detection of these
anomalies is essential to prevent energy losses and extend
the useful life of PV installations.

In response to this complex challenge, the scientific
community has developed a range of sophisticated
methodologies. Among these highly relevant and frequently
utilized approaches in this field, the method based on
Independent Component Analysis stands out [1, 2]. The
latter distinguishes itself by its ability to provide
remarkable spatial resolution in detecting microcracks.
Significantly, defect detection based on Support Vector
Machines offers another valuable perspective for
identifying various anomalies in PV installations [3, 4]. In

parallel, artificial intelligence plays a crucial role in the
field of defect diagnosis, where the utilization of
Convolutional Neural Networks has yielded promising
results for defect detection in PV systems [5, 6]. The
approach based on Deep Neural Networks has also
garnered increasing interest for its potential in defect
detection in PV modules [7]. Furthermore, methods based
on wavelet transforms have proven effective in detecting
defects by analyzing the frequency variations of PV
signals, offering a robust and sensitive approach to
anomaly detection [8, 9]. Finally, recent studies [10-13]
have successfully combined neural networks with
Discrete Wavelet Transform (DWT) for defect diagnosis
in PV systems. This innovative approach has
demonstrated great effectiveness in defect detection and
precise localization.
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However, despite the undeniable advantages of these
methods, limitations persist, especially in terms of
sensitivity to the subtlest signal variations. It is precisely
at this stage that fractional wavelets come into play,
offering an alternative approach capable of overcoming
these challenges.

The purpose of the paper is to present an
innovative approach based on fractional wavelets aimed
at enhancing fault detection in PV systems. Fractional
wavelets provide a multiresolution representation and can
be adapted to capture features at different scales in signals
with remarkable precision. This capability stems from the
flexibility, selectivity, and high accuracy of the filters
comprising fractional wavelets. En incorporating these
properties into fault diagnosis, our aim is to enhance the
level of sensitivity and precision in detecting anomalies,
be they microcracks in solar cells, wiring defects, or hot
spots. Moreover, this approach allows for a more accurate
localization of faults, thereby facilitating their
intervention and repair. This promising methodology
paves the way for a new generation of diagnostic
techniques for PV installations, offering significant
advantages in terms of reliability and operational
efficiency.

Fractional wavelets. Fractional wavelets represent a
powerful extension of the well-established tool of
wavelets, providing increased flexibility in the
multiresolution decomposition of signals. Unlike classical
wavelets, fractional wavelets enable the capture of
features at different scales with unparalleled precision.
This capability stems from the fractional nature of the
wavelet filters, which can be tailored to extract crucial
information from PV signals, be it microcracks in solar
cells, wiring defects, or hot spots.

Over the past few decades, the emergence of
fractional wavelets in both continuous and discrete forms
has marked a significant conceptual advance. This
development has merged the power of classical wavelet
transform with the properties of fractional Fourier
transform [14]. This synergy has led to a new
formulation, simplifying the construction significantly
while ensuring increased accuracy. Particularly in the
continuous domain, the integration of fractional derivative
concepts within mathematical functions has greatly
facilitated operations. Examples include generating
wavelets from the Gaussian function and its fractional
derivatives, as well as using the spline function with
fractional degrees [15]. Quincunx wavelets have also been
generalized to non-integer orders with a construction
based on fractional Quincunx filters, which are generated
through the diamond McClellan transform [16].

However, the definition of the discrete fractional
wavelet transform has been a gap in scientific literature.
To address this deficiency, a robust definition has been
developed by discretizing the continuous version.
Furthermore, the creation of discrete fractional wavelet
bases has materialized through the generalization of the
composing filters, leveraging fractional delay [17].
Indeed, from an architectural standpoint, the DWT
manifests as a set of iterative filters, conferring upon it a
multiresolution characteristic. This paves the way for the
utilization of fractional-order filters in the realization of

fractional wavelets, thus providing an innovative and
accurate approach [18, 19].

The construction typically begins with the selection
of a low-pass digital filter, enjoying the property of
orthogonality; it is then generalized using fractional
operators, ensuring the preservation of required
orthogonality, compactness, and regularity properties. The
high-pass filter can be derived from the low-pass filter
through a simple modulation, thereby allowing, through
the cascade algorithm [20], the deduction of the
associated scaling function and wavelet function.

Our study focuses on the application of fractional
Haar wavelets [18]. These types of wavelets stand out for
their intriguing characteristics and properties. Thanks to
the flexibility of the associated filters and their
exceptional selectivity, they demonstrate an extraordinary
ability to optimize a multitude of data processing tasks.

Fractional Haar wavelet. Its principle is based on
the generalization of the low-pass filter associated with
the ordinary Haar basis through fractional delay [17],
where the integer delay Z", neZ, is replaced by a
fractional delay Z”, DeR:

Hi(Z)=4+B-Z7", (1)

where D is the filter order, 4 and B are its coefficients.

The orthogonality and regularity of the scaling and
wavelet functions are ensured by the proper choice of
coefficients 4 and B [18].

To ensure the feasibility of implementing fractional
delays, an approximation method based on Lagrange
interpolation has been chosen [17]. This approach was
favored due to its simplicity in calculating filter
coefficients and its ability to generate frequency
responses with a flat magnitude at low frequencies.

The fractional high-pass filter will be constructed
through a simple modulation of the fractional low-pass
filter and deducing, through the cascade algorithm, the
associated scaling and wavelet functions [18].

The frequency responses of the designed fractional
filters are adjusted by varying the parameter D, as shown
in Fig. 1. It appears that the generalization of ordinary
filters via the fractional delay Z” leads to more flexible
filters with better accuracy, where key filter parameters
are continuously adjusted.

Methodology for fault detection in PV systems via
fractional wavelets. In our study, we explored the practical
application of the fractional wavelets that we specifically
developed. To do so, we selected a widely adopted PV
system, comprising solar panels, a DC-DC converter, and a
battery for storage (Fig. 2), where we utilized
measurements from a system described in [21]. Fault
detection was carried out twice, at two different levels of
the system, under various meteorological conditions.

Initially, we focused on faults that may occur at the
level of the solar panels, such as microcracks and hot
spots. We analyzed a signal captured at the output of the
solar panel (V),), presented in Fig. 3. This initial phase
was conducted under stable meteorological conditions,
characterized by constant solar irradiance. Subsequently,
we performed detection after the chopper, aiming to
identify connection or wiring faults, using a signal
captured after the chopper (V)), as illustrated in Fig. 3.
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Fig. 1. Frequency responses of the fractional filters:
a — low-pass filter; b — high-pass filter
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Fig. 2. PV system with a DC-DC buck converter, battery load
and processing unit [21]

24

V.V I l l l l

A R R PR,
L ! | L . 1

NF==—=F=-— -

o =T 1
| | | 2 V

16— - -~ T | i T -
| | | | |

M —--- T | [ (i
| | | | |

12 ---- - - - - [t Rttt [ttty 1= == =
| | | | |

10 ———— 4---=- [ [ 1= ===
| | | | |

8 - — - — 4= [ [ == =2
T T T T T

6 —— - — 4-———= e = [ ===
| | | | |

4L — - - - 4-———= e = [ ===
| | | | |

2k - —— - [ bm e —— - [E I
| | | | |

0 | | | | | Ls

0 200 400 600 800 1000

Fig. 3. Signals captured at the output of the solar panel (V) and
after the chopper (V;) under stable meteorological conditions [21]

In a second phase, we proceeded with the detection
of faults in the same previous system but under unstable
meteorological conditions, characterized by the presence
of clouds affecting solar radiation. The signals of the
system under these conditions are presented in Fig. 4.

% 200 400 600 800 1000
Fig. 4. Signals captured at the output of the solar panel (V},) and after

the chopper (V;) under unstable meteorological conditions [21]

Defects and noise were added to the signals to
reflect various fault scenarios encountered in PV systems
(Fig. 5). These anomalies were incorporated precisely and
controlled to replicate realistic conditions. Simulated
faults included microcracks modeled by pulses, wiring
faults represented by voltage drops, and simulated hot
spots represented by voltage spikes.
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Fig. 5. Solar panel and chopper signals (V),,, Vo) with simulated
faults: a — stable meteorological conditions;
b — unstable meteorological conditions

Our approach comprises several steps, as shown in
Fig. 6.

Signal denoising using the designed fractional
wavelets (pre-processing signal phase). Before proceeding
with the fault detection, we denoised the signals using
fractional wavelets. This phase is crucial as it aims to
accurately detect and isolate various components of noise,
thereby preparing the ground for subsequent anomaly
detection. These filtered and isolated data were then utilized
in our detection approach, contributing to a more precise
identification and a better understanding of faults in the
studied systems.
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Fig. 6. Proposed method steps

Fault detection through denoised signals
thresholding. After an appropriate decomposition of the
denoised signals using the fractional wavelets we
developed, thresholding was employed as a crucial step in
our methodology. The choice of threshold is a delicate
process, as it must be precisely calibrated to ensure
reliable fault detection. This step is essential for isolating
relevant signal details and thereby highlighting anomalies.

The thresholded signal details are carefully
examined. Components with amplitudes exceeding the
threshold are identified as potential fault points. These
points are then located in the original signal, enabling us
to accurately determine their temporal location.

In order to enhance detection precision and eliminate
any points identified as faults erroneously, a second
thresholding process was conducted on all initially
identified suspect points.

Once the second thresholding is completed and the
suspect fault points are detected, we compare their
locations with the actual locations of anomalies
previously introduced into the signals. This allowed us to
quantify the performance of our method. We defined the
following terms to evaluate these performances:

e True Positive (TP): The number of actual faults
correctly detected.

e True Negative (TN): The number of points correctly
identified as non-faulty.

e False Positive (FP): The number of points identified
as faulty when they are not.

e False Negative (FN): The number of actual faults
not detected.

TP
Sensitivity =—— 2
4 TP+ FN @

TN
Specificity = — 3
pecificity TN + FP ®)
Precision = _r . 4)

TP + FP

This quantitative evaluation of performance has
allowed us to validate the effectiveness of our fractional

wavelet-based approach in the accurate and reliable
detection of faults in PV systems.

Results and discussion. After applying our fractional
wavelet-based methodology to simulated signals from
various levels of the PV system and under different
meteorological conditions, we conducted a detailed
analysis to assess the effectiveness of our approach.

Firstly, concerning the detection of faults at the solar
panel level, we analyzed the signals under different
meteorological conditions. The use of fractional wavelets
allowed for a precise decomposition of the signals,
providing a fine separation between their various
components, which was crucial for improved fault
detection, notably for microcracks and hot spots as
illustrated in Fig. 7. The detailed thresholded components
revealed salient points corresponding to abnormal voltage
variations. These points serve as potential indicators of
faults in the PV system.
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Fig. 7. Fault detection using the proposed method at the solar
panels level: a — stable meteorological conditions;
b — unstable meteorological conditions

Microcracks are subtle yet critical anomalies in
solar cells. Through our methodology, we were able to
accurately detect these micro-cracks, even when they
were of low amplitude and under unstable meteorological
conditions (Fig. 8). This demonstrates the heightened
sensitivity of our approach.

Hot spots. Our methodology proved particularly
effective in detecting hot spots, which can cause serious
damage if not detected in time. By analyzing the signals
using our fractional wavelets, we accurately and reliably
identified the voltage peaks caused by hot spots (Fig. 9).
This ability to spot these critical anomalies demonstrates
the effectiveness of our approach in detecting the most
serious defects in all meteorological conditions.
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Wiring defects. During the detection of wiring faults
after the chopper, our method demonstrated remarkable
effectiveness. By decomposing the captured signals using
our fractional wavelets, we were able to precisely isolate
abnormal voltage variations associated with wiring faults.
This ability to detect wiring faults, even in scenarios where
voltage fluctuations are subtle, underscores the robustness
and accuracy of our approach in identifying critical system
anomalies, as clearly illustrated in Fig. 10.
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Fig. 10. Fault detection using the proposed method

at the chopper level (detection of wiring faults)
In order to quantify the performance of our
methodology, we calculated various metrics, including
True Positives (TP), True Negatives (TN), False Positives
(FP), and False Negatives (FN), as well as sensitivity,

precision, and specificity. These calculations were
conducted for each signal and under different
meteorological conditions to capture the variability of our
approach’s  performance in  realistic ~ scenarios.
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Subsequently we compared the results obtained with those
of classical wavelets commonly used in fault detection in
PV systems. Specifically, we examined Haar, Daubechies,

Coiflets, Symlets, Meyer wavelets, and bi-orthogonal
wavelets. The performance evaluation results are presented
in Tables 1 — 3.

Table 1
Results of fault detection at the chopper level using different wavelet families
Number of PR e T
Wavelet type detected faults TP N FP FN | Sensitivity, % Specificity, % Precision, %
Fractional wavelet
(developed model) 482 482 | 687 0 0 100 100 100
Haar 424 410 | 673 14 72 85.06 97.96 96.7
db6 444 438 | 681 6 44 90.87 99.13 98.65
coif5 440 431 | 678 9 51 89.42 89.69 97.95
sym5 429 417 | 675 12 65 86.51 98.25 97.20
dmey 446 444 | 685 2 38 92.11 99.71 99.55
bior3.3 439 429 | 677 10 53 89.00 98.54 97.72
rbio4.4 430 407 | 664 23 75 84.44 96.65 94.65
Table 2
Results of fault detection at the solar panel level using different wavelet families (stable meteorological condition)
Number of PR e S
Wavelet type detected faults TP N FP FN | Sensitivity, % Specificity, % Precision, %
Fractional wavelet
(developed model) 53 53 1116 0 0 100 100 100
Haar 48 27 1095 | 21 26 50.94 98.12 56.25
db6 51 34 1099 | 17 19 64.15 98.48 66.67
coif5 50 37 1103 | 13 16 69.81 98.83 74.00
sym5 52 35 1099 | 17 18 66.04 98.48 67.31
dmey 51 48 1113 3 5 90.57 99.73 94.12
bior3.3 52 40 1104 | 12 13 75.47 98.93 76.92
rbio4.4 51 36 1101 15 17 67.93 98.66 70.59
Table 3
Results of fault detection at the solar panel level using different wavelet families (unstable meteorological condition)
Number of P N S
Wavelet type detected faults TP TN FP | FN | Sensitivity, % Specificity, % Precision, %
Fractional wavelet
(developed model) 53 52 1115 1 1 98.11 99.91 98.11
Haar 29 0 1087 | 29 53 00 97.40 00
Db6 49 37 1104 | 12 16 69.81 98.92 75.51
coif5 45 32 1103 | 13 21 60.38 98.84 71.11
sym5 48 29 1097 | 19 24 54.71 98.30 60.42
dmey 49 45 1112 4 8 84.91 99.64 91.84
bior3.3 42 18 1092 | 24 35 33.96 97.85 42.86
rbio4.4 47 35 1104 | 12 18 66.04 98.93 74.47

The results revealed an exceptional sensitivity of our
approach, reaching 100 % for both the chopper signal
(Table 1) and the solar panel signal under stable
meteorological conditions (Table 2), demonstrating a
robust capability to accurately detect real faults.
Furthermore, the high specificity and precision indicate
correct identification of non-faulty points. In contrast,
under unstable meteorological conditions, our method’s
performance remained satisfactory, as evidenced by a low
number of false positives (Table 3), highlighting its
capability to mitigate false detections.

These results demonstrate the power and precision
of our methodology based on fractional wavelets for fault
detection in PV systems. The advantages of this approach
are particularly evident in detecting low-amplitude faults
and subtle anomalies, reinforcing its relevance in the
context of solar installation inspection.

In comparison with classical wavelets, our
methodology has demonstrated a superior ability to
isolate relevant signal details. This is attributed to the
significant flexibility and selectivity of the filters

comprising the fractional wavelet, leading to a more
precise detection of anomalies. This quantitative
evaluation confirms the effectiveness of our fractional
wavelet-based approach in accurately and reliably
detecting faults in PV systems. These promising results
pave the way for practical applications in the field of solar
installation maintenance and optimization.

Conclusions. Our study has highlighted the
remarkable effectiveness of fractional wavelets in the
accurate detection of faults in photovoltaic systems.
Through this innovative approach, we achieved significant
selectivity and precision, enabling reliable detection of
anomalies such as microcracks, wiring faults, and hot spots.

The implementation of our methodology yielded
extremely promising results. We also conducted a
comprehensive comparison with other commonly used
wavelet types. This comparative study demonstrated that
our fractional wavelet-based approach significantly
outperforms methods based on classical wavelets.

These advancements open new perspectives for
preventive  maintenance of eco-friendly energy
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installations,  contributing  significantly to  the
sustainability and overall efficiency of solar energy. A
major innovation lies in the ability of our approach to
synergistically combine with other cutting-edge methods,
notably convolutional neural networks. This synergy
expands possibilities for even more precise fault
detection, solidifying our fractional model as a benchmark
in the analysis of photovoltaic systems.
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