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Introduction. In this paper, we present an innovative methodology based on fractional wavelets for detecting defects in photovoltaic 
systems. Photovoltaic solar systems play a key role in the transition to a low-carbon economy, but they are susceptible to various 
defects such as microcracks, wiring faults, and hotspots. Early detection of these anomalies is crucial to prevent energy losses and 
extend the lifespan of installations. Novelty of the proposed work resides in its pioneering nature, leveraging a family of fractional 
wavelets, with a specific emphasis on fractional Haar wavelets. This approach enhances sensitivity in anomaly detection, introducing 
a fresh and promising perspective to enhance the reliability of photovoltaic installations. Purpose of this study is to develop a defect 
detection methodology in photovoltaic systems using fractional wavelets. We aim to improve detection sensitivity with a specific 
focus on low-amplitude defects such as microcracks. Method. Our innovative methodology is structured around two phases. Firstly, 
we undertake a crucial step of filtering photovoltaic signals using fractional Haar wavelets. This preliminary phase is of paramount 
importance, aiming to rid signals of unwanted noise and prepare the ground for more precise defect detection. The second phase of 
our approach focuses on the effective detection of anomalies. We leverage the multiresolution properties of fractional wavelets, 
particularly emphasizing fractional Haar wavelets. This step achieves increased sensitivity, especially in the detection of low-
amplitude defects. Results. By evaluating the performance of our method and comparing it with techniques based on classical 
wavelets, our results highlight significant superiority in the accurate detection of microcracks, wiring faults, and hotspots. These 
substantial advances position our approach as a promising solution to enhance the reliability and efficiency of photovoltaic 
installations. Practical value. These advancements open new perspectives for preventive maintenance of photovoltaic installations, 
contributing to strengthening the sustainability and energy efficiency of solar systems. This methodology offers a promising solution 
to optimize the performance of photovoltaic installations and ensure their long-term reliability. References 21, tables 3, figures 10. 
Keywords: fault detection, photovoltaic systems, microcracks, wiring defects, hot spots, preventive maintenance, 
multiresolution analysis, fractional wavelets. 
 

Вступ. У статті ми представляємо інноваційну методологію, засновану на дробових вейвлетах для виявлення дефектів у 
фотоелектричних системах. Фотоелектричні сонячні системи відіграють ключову роль у переході до низьковуглецевої 
економіки, але вони схильні до різних дефектів, таких як мікротріщини, несправності проводки та гарячі точки. Раннє 
виявлення цих аномалій має вирішальне значення для запобігання втратам енергії та продовження терміну служби установок. 
Новизна запропонованої роботи полягає у її новаторському характері, в якій використовується сімейство дробових вейвлетів з 
особливим упором на дробові вейвлети Хаара. Цей підхід підвищує чутливість виявлення аномалій, відкриваючи нову суттєву 
перспективу для підвищення надійності фотоелектричних установок. Метою дослідження є розробка методології виявлення 
дефектів у фотоелектричних системах з використанням дробових вейвлетів. Ми прагнемо покращити чутливість виявлення, 
приділяючи особливу увагу дефектам малої амплітуди, таким як мікротріщини. Метод. Наша інноваційна методологія 
складається із двох етапів. По-перше, ми робимо вирішальний крок щодо фільтрації фотоелектричних сигналів з 
використанням дробових вейвлетів Хаара. Цей попередній етап має першорядне значення, оскільки його мета - позбавити 
сигнали від небажаного шуму та підготувати ґрунт для більш точного виявлення дефектів. Другий етап нашого підходу 
спрямовано на ефективне виявлення аномалій. Ми використовуємо властивості множини роздільної здатності дробових 
вейвлетів, приділяючи особливу увагу дробовим вейвлетам Хаара. На цьому етапі досягається підвищена чутливість, особливо у 
разі виявлення дефектів малої амплітуди. Результати. Оцінюючи ефективність нашого методу та порівнюючи його з 
методами, заснованими на класичних вейвлетах, наші результати підкреслюють значну перевагу у точному виявленні 
мікротріщин, несправностей проводки та гарячих точок. Ці суттєві досягнення роблять наш підхід багатообіцяючим 
рішенням для підвищення надійності та ефективності фотоелектричних установок. Практична цінність. Ці досягнення 
відкривають нові перспективи для профілактичного обслуговування фотоелектричних установок, сприяючи підвищенню 
стійкості та енергоефективності сонячних систем. Ця методологія пропонує багатообіцяюче рішення для оптимізації 
продуктивності фотоелектричних установок та забезпечення їхньої довгострокової надійності. Бібл. 21, табл. 3, рис. 10.  
Ключові слова: виявлення несправностей, фотоелектричні системи, мікротріщини, дефекти проводки, гарячі точки, 
профілактика, множинний аналіз, дробові вейвлети. 
 

Introduction. Photovoltaic (PV) solar energy plays 
a crucial role in the transition to a low-carbon economy. 
However, the efficiency and reliability of PV systems are 
susceptible to various defects, such as microcracks, hot 
spots, and wiring faults. Early detection of these 
anomalies is essential to prevent energy losses and extend 
the useful life of PV installations. 

In response to this complex challenge, the scientific 
community has developed a range of sophisticated 
methodologies. Among these highly relevant and frequently 
utilized approaches in this field, the method based on 
Independent Component Analysis stands out [1, 2]. The 
latter distinguishes itself by its ability to provide 
remarkable spatial resolution in detecting microcracks. 
Significantly, defect detection based on Support Vector 
Machines offers another valuable perspective for 
identifying various anomalies in PV installations [3, 4]. In 

parallel, artificial intelligence plays a crucial role in the 
field of defect diagnosis, where the utilization of 
Convolutional Neural Networks has yielded promising 
results for defect detection in PV systems [5, 6]. The 
approach based on Deep Neural Networks has also 
garnered increasing interest for its potential in defect 
detection in PV modules [7]. Furthermore, methods based 
on wavelet transforms have proven effective in detecting 
defects by analyzing the frequency variations of PV 
signals, offering a robust and sensitive approach to 
anomaly detection [8, 9]. Finally, recent studies [10-13] 
have successfully combined neural networks with 
Discrete Wavelet Transform (DWT) for defect diagnosis 
in PV systems. This innovative approach has 
demonstrated great effectiveness in defect detection and 
precise localization. 
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However, despite the undeniable advantages of these 
methods, limitations persist, especially in terms of 
sensitivity to the subtlest signal variations. It is precisely 
at this stage that fractional wavelets come into play, 
offering an alternative approach capable of overcoming 
these challenges.  

The purpose of the paper is to present an 
innovative approach based on fractional wavelets aimed 
at enhancing fault detection in PV systems. Fractional 
wavelets provide a multiresolution representation and can 
be adapted to capture features at different scales in signals 
with remarkable precision. This capability stems from the 
flexibility, selectivity, and high accuracy of the filters 
comprising fractional wavelets. En incorporating these 
properties into fault diagnosis, our aim is to enhance the 
level of sensitivity and precision in detecting anomalies, 
be they microcracks in solar cells, wiring defects, or hot 
spots. Moreover, this approach allows for a more accurate 
localization of faults, thereby facilitating their 
intervention and repair. This promising methodology 
paves the way for a new generation of diagnostic 
techniques for PV installations, offering significant 
advantages in terms of reliability and operational 
efficiency.  

Fractional wavelets. Fractional wavelets represent a 
powerful extension of the well-established tool of 
wavelets, providing increased flexibility in the 
multiresolution decomposition of signals. Unlike classical 
wavelets, fractional wavelets enable the capture of 
features at different scales with unparalleled precision. 
This capability stems from the fractional nature of the 
wavelet filters, which can be tailored to extract crucial 
information from PV signals, be it microcracks in solar 
cells, wiring defects, or hot spots. 

Over the past few decades, the emergence of 
fractional wavelets in both continuous and discrete forms 
has marked a significant conceptual advance. This 
development has merged the power of classical wavelet 
transform with the properties of fractional Fourier 
transform [14]. This synergy has led to a new 
formulation, simplifying the construction significantly 
while ensuring increased accuracy. Particularly in the 
continuous domain, the integration of fractional derivative 
concepts within mathematical functions has greatly 
facilitated operations. Examples include generating 
wavelets from the Gaussian function and its fractional 
derivatives, as well as using the spline function with 
fractional degrees [15]. Quincunx wavelets have also been 
generalized to non-integer orders with a construction 
based on fractional Quincunx filters, which are generated 
through the diamond McClellan transform [16]. 

However, the definition of the discrete fractional 
wavelet transform has been a gap in scientific literature. 
To address this deficiency, a robust definition has been 
developed by discretizing the continuous version. 
Furthermore, the creation of discrete fractional wavelet 
bases has materialized through the generalization of the 
composing filters, leveraging fractional delay [17]. 
Indeed, from an architectural standpoint, the DWT 
manifests as a set of iterative filters, conferring upon it a 
multiresolution characteristic. This paves the way for the 
utilization of fractional-order filters in the realization of 

fractional wavelets, thus providing an innovative and 
accurate approach [18, 19]. 

The construction typically begins with the selection 
of a low-pass digital filter, enjoying the property of 
orthogonality; it is then generalized using fractional 
operators, ensuring the preservation of required 
orthogonality, compactness, and regularity properties. The 
high-pass filter can be derived from the low-pass filter 
through a simple modulation, thereby allowing, through 
the cascade algorithm [20], the deduction of the 
associated scaling function and wavelet function. 

Our study focuses on the application of fractional 
Haar wavelets [18]. These types of wavelets stand out for 
their intriguing characteristics and properties. Thanks to 
the flexibility of the associated filters and their 
exceptional selectivity, they demonstrate an extraordinary 
ability to optimize a multitude of data processing tasks. 

Fractional Haar wavelet. Its principle is based on 
the generalization of the low-pass filter associated with 
the ordinary Haar basis through fractional delay [17], 
where the integer delay Z–n, nZ, is replaced by a 
fractional delay Z–D, D: 

D
f ZBAZH )(

~
,                     (1) 

 

where D is the filter order, A and B are its coefficients. 
The orthogonality and regularity of the scaling and 

wavelet functions are ensured by the proper choice of 
coefficients A and B [18]. 

To ensure the feasibility of implementing fractional 
delays, an approximation method based on Lagrange 
interpolation has been chosen [17]. This approach was 
favored due to its simplicity in calculating filter 
coefficients and its ability to generate frequency 
responses with a flat magnitude at low frequencies. 

The fractional high-pass filter will be constructed 
through a simple modulation of the fractional low-pass 
filter and deducing, through the cascade algorithm, the 
associated scaling and wavelet functions [18]. 

The frequency responses of the designed fractional 
filters are adjusted by varying the parameter D, as shown 
in Fig. 1. It appears that the generalization of ordinary 
filters via the fractional delay Z–D leads to more flexible 
filters with better accuracy, where key filter parameters 
are continuously adjusted. 

Methodology for fault detection in PV systems via 
fractional wavelets. In our study, we explored the practical 
application of the fractional wavelets that we specifically 
developed. To do so, we selected a widely adopted PV 
system, comprising solar panels, a DC-DC converter, and a 
battery for storage (Fig. 2), where we utilized 
measurements from a system described in [21]. Fault 
detection was carried out twice, at two different levels of 
the system, under various meteorological conditions. 

Initially, we focused on faults that may occur at the 
level of the solar panels, such as microcracks and hot 
spots. We analyzed a signal captured at the output of the 
solar panel (Vpv), presented in Fig. 3. This initial phase 
was conducted under stable meteorological conditions, 
characterized by constant solar irradiance. Subsequently, 
we performed detection after the chopper, aiming to 
identify connection or wiring faults, using a signal 
captured after the chopper (V0), as illustrated in Fig. 3. 
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Fig. 1. Frequency responses of the fractional filters: 

a – low-pass filter; b – high-pass filter 
 

 
Fig. 2. PV system with a DC-DC buck converter, battery load 

and processing unit [21] 
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Fig. 3. Signals captured at the output of the solar panel (Vpv) and 

after the chopper (V0) under stable meteorological conditions [21] 
 

In a second phase, we proceeded with the detection 
of faults in the same previous system but under unstable 
meteorological conditions, characterized by the presence 
of clouds affecting solar radiation. The signals of the 
system under these conditions are presented in Fig. 4. 
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Fig. 4. Signals captured at the output of the solar panel (Vpv) and after 

the chopper (V0) under unstable meteorological conditions [21] 
 

Defects and noise were added to the signals to 
reflect various fault scenarios encountered in PV systems 
(Fig. 5). These anomalies were incorporated precisely and 
controlled to replicate realistic conditions. Simulated 
faults included microcracks modeled by pulses, wiring 
faults represented by voltage drops, and simulated hot 
spots represented by voltage spikes. 
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Fig. 5. Solar panel and chopper signals (Vpv, V0) with simulated 

faults: a – stable meteorological conditions; 
b – unstable meteorological conditions 

 

Our approach comprises several steps, as shown in 
Fig. 6. 

Signal denoising using the designed fractional 
wavelets (pre-processing signal phase). Before proceeding 
with the fault detection, we denoised the signals using 
fractional wavelets. This phase is crucial as it aims to 
accurately detect and isolate various components of noise, 
thereby preparing the ground for subsequent anomaly 
detection. These filtered and isolated data were then utilized 
in our detection approach, contributing to a more precise 
identification and a better understanding of faults in the 
studied systems. 
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Fig. 6. Proposed method steps 

 

Fault detection through denoised signals 
thresholding. After an appropriate decomposition of the 
denoised signals using the fractional wavelets we 
developed, thresholding was employed as a crucial step in 
our methodology. The choice of threshold is a delicate 
process, as it must be precisely calibrated to ensure 
reliable fault detection. This step is essential for isolating 
relevant signal details and thereby highlighting anomalies. 

The thresholded signal details are carefully 
examined. Components with amplitudes exceeding the 
threshold are identified as potential fault points. These 
points are then located in the original signal, enabling us 
to accurately determine their temporal location. 

In order to enhance detection precision and eliminate 
any points identified as faults erroneously, a second 
thresholding process was conducted on all initially 
identified suspect points. 

Once the second thresholding is completed and the 
suspect fault points are detected, we compare their 
locations with the actual locations of anomalies 
previously introduced into the signals. This allowed us to 
quantify the performance of our method. We defined the 
following terms to evaluate these performances: 

 True Positive (TP): The number of actual faults 
correctly detected. 

 True Negative (TN): The number of points correctly 
identified as non-faulty. 

 False Positive (FP): The number of points identified 
as faulty when they are not. 

 False Negative (FN): The number of actual faults 
not detected. 

FNTP
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ySensitivit


 ;                       (2) 

FPTN
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
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ecisionPr


 .                        (4) 

This quantitative evaluation of performance has 
allowed us to validate the effectiveness of our fractional 

wavelet-based approach in the accurate and reliable 
detection of faults in PV systems. 

Results and discussion. After applying our fractional 
wavelet-based methodology to simulated signals from 
various levels of the PV system and under different 
meteorological conditions, we conducted a detailed 
analysis to assess the effectiveness of our approach.  

Firstly, concerning the detection of faults at the solar 
panel level, we analyzed the signals under different 
meteorological conditions. The use of fractional wavelets 
allowed for a precise decomposition of the signals, 
providing a fine separation between their various 
components, which was crucial for improved fault 
detection, notably for microcracks and hot spots as 
illustrated in Fig. 7. The detailed thresholded components 
revealed salient points corresponding to abnormal voltage 
variations. These points serve as potential indicators of 
faults in the PV system. 
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Fig. 7. Fault detection using the proposed method at the solar 

panels level: a – stable meteorological conditions; 
b – unstable meteorological conditions 

 

Microcracks are subtle yet critical anomalies in 
solar cells. Through our methodology, we were able to 
accurately detect these micro-cracks, even when they 
were of low amplitude and under unstable meteorological 
conditions (Fig. 8). This demonstrates the heightened 
sensitivity of our approach. 

Hot spots. Our methodology proved particularly 
effective in detecting hot spots, which can cause serious 
damage if not detected in time. By analyzing the signals 
using our fractional wavelets, we accurately and reliably 
identified the voltage peaks caused by hot spots (Fig. 9). 
This ability to spot these critical anomalies demonstrates 
the effectiveness of our approach in detecting the most 
serious defects in all meteorological conditions. 
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Fig. 8. Zoom 1: detection of micro-cracks: a – stable meteorological 

conditions; b – unstable meteorological conditions 
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Fig. 9. Zoom 2: detection of hot spots: a, b – stable meteorological 

conditions; c, d – unstable meteorological conditions 
 

Wiring defects. During the detection of wiring faults 
after the chopper, our method demonstrated remarkable 
effectiveness. By decomposing the captured signals using 
our fractional wavelets, we were able to precisely isolate 
abnormal voltage variations associated with wiring faults. 
This ability to detect wiring faults, even in scenarios where 
voltage fluctuations are subtle, underscores the robustness 
and accuracy of our approach in identifying critical system 
anomalies, as clearly illustrated in Fig. 10. 
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Fig. 10. Fault detection using the proposed method 

at the chopper level (detection of wiring faults) 
In order to quantify the performance of our 

methodology, we calculated various metrics, including 
True Positives (TP), True Negatives (TN), False Positives 
(FP), and False Negatives (FN), as well as sensitivity, 
precision, and specificity. These calculations were 
conducted for each signal and under different 
meteorological conditions to capture the variability of our 
approach’s performance in realistic scenarios. 
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Subsequently we compared the results obtained with those 
of classical wavelets commonly used in fault detection in 
PV systems. Specifically, we examined Haar, Daubechies, 

Coiflets, Symlets, Meyer wavelets, and bi-orthogonal 
wavelets. The performance evaluation results are presented 
in Tables 1 – 3. 

Table 1 
Results of fault detection at the chopper level using different wavelet families 

Wavelet type 
Number of 

detected faults 
TP TN FP FN Sensitivity, % Specificity, % Precision, % 

Fractional wavelet 
(developed model) 

482 482 687 0 0 100 100 100 

Haar 424 410 673 14 72 85.06 97.96 96.7 
db6 444 438 681 6 44 90.87 99.13 98.65 

coif5 440 431 678 9 51 89.42 89.69 97.95 
sym5 429 417 675 12 65 86.51 98.25 97.20 
dmey 446 444 685 2 38 92.11 99.71 99.55 

bior3.3 439 429 677 10 53 89.00 98.54 97.72 
rbio4.4 430 407 664 23 75 84.44 96.65 94.65 

 

Table 2 
Results of fault detection at the solar panel level using different wavelet families (stable meteorological condition) 

Wavelet type 
Number of 

detected faults 
TP TN FP FN Sensitivity, % Specificity, % Precision, % 

Fractional wavelet 
(developed model) 

53 53 1116 0 0 100 100 100 

Haar 48 27 1095 21 26 50.94 98.12 56.25 
db6 51 34 1099 17 19 64.15 98.48 66.67 

coif5 50 37 1103 13 16 69.81 98.83 74.00 
sym5 52 35 1099 17 18 66.04 98.48 67.31 
dmey 51 48 1113 3 5 90.57 99.73 94.12 

bior3.3 52 40 1104 12 13 75.47 98.93 76.92 
rbio4.4 51 36 1101 15 17 67.93 98.66 70.59 

 

Table 3 
Results of fault detection at the solar panel level using different wavelet families (unstable meteorological condition) 

Wavelet type 
Number of 

detected faults 
TP TN FP FN Sensitivity, % Specificity, % Precision, % 

Fractional wavelet 
(developed model) 

53 52 1115 1 1 98.11 99.91 98.11 

Haar 29 0 1087 29 53 00 97.40 00 
Db6 49 37 1104 12 16 69.81 98.92 75.51 
coif5 45 32 1103 13 21 60.38 98.84 71.11 
sym5 48 29 1097 19 24 54.71 98.30 60.42 
dmey 49 45 1112 4 8 84.91 99.64 91.84 

bior3.3 42 18 1092 24 35 33.96 97.85 42.86 
rbio4.4 47 35 1104 12 18 66.04 98.93 74.47 

 

The results revealed an exceptional sensitivity of our 
approach, reaching 100 % for both the chopper signal 
(Table 1) and the solar panel signal under stable 
meteorological conditions (Table 2), demonstrating a 
robust capability to accurately detect real faults. 
Furthermore, the high specificity and precision indicate 
correct identification of non-faulty points. In contrast, 
under unstable meteorological conditions, our method’s 
performance remained satisfactory, as evidenced by a low 
number of false positives (Table 3), highlighting its 
capability to mitigate false detections. 

These results demonstrate the power and precision 
of our methodology based on fractional wavelets for fault 
detection in PV systems. The advantages of this approach 
are particularly evident in detecting low-amplitude faults 
and subtle anomalies, reinforcing its relevance in the 
context of solar installation inspection. 

In comparison with classical wavelets, our 
methodology has demonstrated a superior ability to 
isolate relevant signal details. This is attributed to the 
significant flexibility and selectivity of the filters 

comprising the fractional wavelet, leading to a more 
precise detection of anomalies. This quantitative 
evaluation confirms the effectiveness of our fractional 
wavelet-based approach in accurately and reliably 
detecting faults in PV systems. These promising results 
pave the way for practical applications in the field of solar 
installation maintenance and optimization. 

Conclusions. Our study has highlighted the 
remarkable effectiveness of fractional wavelets in the 
accurate detection of faults in photovoltaic systems. 
Through this innovative approach, we achieved significant 
selectivity and precision, enabling reliable detection of 
anomalies such as microcracks, wiring faults, and hot spots. 

The implementation of our methodology yielded 
extremely promising results. We also conducted a 
comprehensive comparison with other commonly used 
wavelet types. This comparative study demonstrated that 
our fractional wavelet-based approach significantly 
outperforms methods based on classical wavelets. 

These advancements open new perspectives for 
preventive maintenance of eco-friendly energy 
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installations, contributing significantly to the 
sustainability and overall efficiency of solar energy. A 
major innovation lies in the ability of our approach to 
synergistically combine with other cutting-edge methods, 
notably convolutional neural networks. This synergy 
expands possibilities for even more precise fault 
detection, solidifying our fractional model as a benchmark 
in the analysis of photovoltaic systems. 
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