Influence of permanent magnet parameters on the performances of claw pole machines used in hybrid vehicles

Introduction. Claw pole machines (CPM) are commonly used in the automotive industry. Recently, importance has focused on the use and introduction of permanent magnets (PM) in this type of machine to increase the power density. This paper studies the performance of permanent magnet claw pole machines (PM-CPM) used in hybrid electric vehicle applications. The structure considers that the PMs are placed between the claws of the rotor. Purpose. The influence of the PM magnetization effect on the performance of synchronous PM-CPM is analyzed. Radial and tangential magnetizations are applied to obtain the best possible sinusoidal shape of the electromotive force and an acceptable cogging torque. Then, the electromagnetic performance of the PM-CPM is analyzed and evaluated. Furthermore, due to the complexity of the rotor armature, it seems difficult to give a direct relationship between the PM parameters and the machine torque. This led us to study the effects of magnets geometrical dimensions variations on the torque and its ripple. Method. 3D nonlinear model of the machine is analyzed using the finite element method and comparisons between some electromagnetic performances are processed. Results. It was found that the tangential magnetization of PMs makes it possible to obtain a better distribution of the flux density and a minimum of cogging torque mainly responsible for vibrations and acoustic noise. Also, we observed a non-linear variation between the torque and its ripples depending on the dimensions of the PM. In fact, electromagnetic torque increases linearly with PM size but this is not the case for torque ripples. References 22, tables 2, figures 16.

Key words: claw pole machine, permanent magnet dimension, hybrid electric vehicles, finite element method, torque ripple.

Electrical Machines and Apparatus
UDC 621.313
A. Kimouche, M.R. Mekideche, M. Chebout, H. Allag

Influence of permanent magnet parameters on the performances of claw pole machines used in hybrid vehicles

Introduction. Claw pole machines (CPM) are commonly used in the automotive industry. Recently, importance has focused on the use and introduction of permanent magnets (PM) in this type of machine to increase the power density. This paper studies the performance of permanent magnet claw pole machines (PM-CPM) used in hybrid electric vehicle applications. The structure considers that the PMs are placed between the claws of the rotor. Purpose. The influence of the PM magnetization effect on the performance of synchronous PM-CPM is analyzed. Radial and tangential magnetizations are applied to obtain the best possible sinusoidal shape of the electromotive force and an acceptable cogging torque. Then, the electromagnetic performance of the PM-CPM is analyzed and evaluated. Furthermore, due to the complexity of the rotor armature, it seems difficult to give a direct relationship between the PM parameters and the machine torque. This led us to study the effects of magnets geometrical dimensions variations on the torque and its ripple. Method. 3D nonlinear model of the machine is analyzed using the finite element method and comparisons between some electromagnetic performances are processed. Results. It was found that the tangential magnetization of PMs makes it possible to obtain a better distribution of the flux density and a minimum of cogging torque mainly responsible for vibrations and acoustic noise. Also, we observed a non-linear variation between the torque and its ripples depending on the dimensions of the PM. In fact, electromagnetic torque increases linearly with PM size but this is not the case for torque ripples. References 22, tables 2, figures 16.

Key words: claw pole machine, permanent magnet dimension, hybrid electric vehicles, finite element method, torque ripple.

© A. Kimouche, M.R. Mekideche, M. Chebout, H. Allag
density has significantly increased. Another topology with skewed and non-skewed PMs in the claw-pole rotor fingers is presented in [10]. Results show that the CPM performances such as back-EMF value augments and the cogging torque vary when the skew angle increases.

Several techniques are used to introduce and place the PMs in the machine for hybrid excitation [11-15], however, the PMs placed between the claws destroy the excitation leakage flux in the rotor and, thus, improve the main flux for all speeds [1, 3, 4].

In this article, we examine how the PMs placed between the rotor claws affect the performance of the permanent magnet claw pole machine (PM-CPM) (Fig. 1) by taking into account the appropriate magnetization orientation and the PM’s geometrical dimensions. An alternating arrangement of PMs between the claws of the rotor (Fig. 2) is required to have a possible sinusoidal waveform of the EMF. The magnetization of the PMs is chosen by carrying out a nonlinear 3D electromagnetic simulation of PM-CPM with consideration of the tangential and radial directions of magnetization.

Finally, in order to improve its power density, torque, and ripple torque, the impacts of PMs dimensions such as length and thickness on PM-CPM output torque are studied.

Electromagnetic model of PM-CPM. The claw pole rotor has an asymmetric structure relative to the length of the machine and produces 3D flux distributions. The model must take into account the components of the radial, tangential and axial field, the study therefore consists of a 3D model. PM-CPM analysis can take into account periodicity conditions to enable 3D simulation of a single pole pair. This pole pair structure is complex due to the shape of its two claws and its hybrid excitation. Thus, for electromagnetic design and analysis, a transient nonlinear 3D FEM model is used.

The mathematical model of the machine with hybrid excitation is described in reference d-q. The d-axis flux ϕ_d and the q-axis flux ϕ_q equations can be written as:

\begin{align}
\phi_d &= L_d \cdot i_d + \varphi_r, \\
\phi_q &= L_q \cdot i_q,
\end{align}

where i_r, i_q are the d-axis and q-axis stator current components; L_d, L_q are the d-axis and q-axis inductance respectively.

The rotor flux linkage φ_r is given as:

$$\varphi_r = L_{df} \cdot i_r + \varphi_{PM},$$

where i_r is the rotor excitation coil current; φ_{PM} is the flux due to the PMs; L_{df} is the d-axis mutual inductance between the field winding and the armature winding.

The voltage equation of d-axis voltage component V_d and q-axis voltage component V_q are expressed as:

\begin{align}
V_d &= R_d \cdot i_d + \frac{d\phi_d}{dt} - \omega \cdot \varphi_q; \\
V_q &= R_q \cdot i_q + \frac{d\phi_q}{dt} - \omega \cdot \varphi_d,
\end{align}

where R_e is the stator winding phase resistance; ω is the angular velocity.

The torque T_e is given as:

$$T_e = \frac{3}{2} \rho \left(\phi_d \cdot i_d + \phi_q \cdot i_q \right),$$

where ρ is the number of pole pairs.

The above equation becomes:

$$T_e = \frac{3}{2} \rho \left[\left(L_d - L_q \right) \cdot i_d \cdot i_q + L_{df} \cdot i_r \cdot i_q + \varphi_{PM} \cdot i_q \right].$$

Therefore, in the case for L_d close to L_q, the torque equation becomes:

$$T_e = \frac{3}{2} \rho \cdot i_q \cdot \varphi_r.$$

Equation (8) shows that the rotor flux is mainly responsible to create the electromagnetic torque. In this study, the parameters of the claw pole model used are shown in Table 1.

<table>
<thead>
<tr>
<th>Parameters of the machine</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotor excitation current I_{ex}</td>
<td>4.5 A</td>
</tr>
<tr>
<td>Rotor coil number of conductor</td>
<td>400</td>
</tr>
<tr>
<td>Stator number conductor</td>
<td>12</td>
</tr>
<tr>
<td>Stator core length</td>
<td>32.5 mm</td>
</tr>
<tr>
<td>Stator number slots</td>
<td>36</td>
</tr>
<tr>
<td>External stator diameter</td>
<td>125.1 mm</td>
</tr>
<tr>
<td>Air gap length</td>
<td>0.8 mm</td>
</tr>
<tr>
<td>Rotor core diameter</td>
<td>93 mm</td>
</tr>
<tr>
<td>Number of poles</td>
<td>12</td>
</tr>
<tr>
<td>Rotor core length</td>
<td>52.4 mm</td>
</tr>
</tbody>
</table>

The PM’s dimensions introduced between claws are shown in Table 2.

<table>
<thead>
<tr>
<th>PMs dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnet length l</td>
</tr>
<tr>
<td>Magnet width d</td>
</tr>
<tr>
<td>Magnet thickness t</td>
</tr>
</tbody>
</table>

Magnetization effect of PMs on PM-CPM. PMs magnetization orientation has an effect on PM-CPM performance at high or low speeds. However, different magnetization directions of PM and arrangements can generate different magnetic field distributions in the system as well as different motor performances [16]. These directly influence the quality of the air gap flux.
density distribution and affect the FEM induced, the producing torque, and the ripple torque [17, 18].

Furthermore, in electric motors with PMs, the waveform of the back EMF depends on the excitation and arrangement of the PMs and windings, the structure of the motor, and the pole/slot combinations. Thus, the designers want to get a purely sinusoidal or trapezoidal back-EMF waveform based on motor types and control [16]. The model proposed in this study can take into account two different directions of magnetization of the PMs [19], the application contents tangential magnetization and radial magnetization (Fig. 3).

Electromagnetic field computation at 3000 rpm is carried out with the FEM. In order to analyze the effect of the magnetization orientation on the performance of the PM-CPM and to visualize only the impact of the excitation of the PMs, we consider the excitations of the rotor coils and those of the stator as zero. The PM-CPM magnets are oriented as shown in Fig. 3.

Figure 4 shows the magnetic flux distribution; we observe the difference repartitions of flux density between the tangential and radial magnetization. Furthermore, it can be seen that in the case of tangential magnetization the lines of flux pass directly into the adjacent claw and are channeled more into the magnetic circuit, which gives less leakage flux (Fig. 4,a). Whereas for the case of radial magnetization, the lines of flux pass in the vacuum existing between the claw and the rotor coil (Fig. 4,b), which does not help the principal flux and creates more leakage flux, and there will be a reduction in main flux, so the impact of radial magnetization is not significant.

EMF considering only the magnetic excitation is shown in Fig. 5; the flux distributions in the tangential magnetization give induced three-phase voltage waveforms close to the sinusoid compared to that given by the radial magnetization.

One of the particular problems of electric machines with PMs is the shape of the cogging torque resulting from the interaction of the PMs and the teeth of the stator without even the stator winding being excited [20]. Also, a strong cogging torque can cause acoustic vibrations and noise.

Figure 6 shows a comparison of the cogging torque between the two directions of magnetization in the case where the rotor excitation current is zero. We can see that the tangential magnetization gives a low cogging torque compared to that given by the radial magnetization. Then the tangential direction is strongly solicited.

Hybrid excitation CPM performance. The rotor coil is preserved in case the regulator needs to change the battery voltage. For a hybrid excitation with a value $I_{ext} = 4.5 \, \text{A}$ of the excitation rotor current and with PMs excitation, the calculation of the induced no-load voltage is illustrated in Fig. 7. The rates correspond to the 2 cases of magnetization tangential and radial magnetization. We can see that the RMS value of induced voltage in the case of tangential magnetization which is 32.3 V is greater than that in the case of radial magnetization which is 22.8 V. This comes down to the fact that in the case of the tangential direction the flux created by the PM is added to the flux created by the rotor coil and follows the same path. In addition, the use of inter-claw PMs with tangential magnetization makes it possible to reduce the leakage flux between claws.
To better show the positive effect of tangential magnetization, Fig. 8 illustrates the induced voltage in the case of the presence of the PM with tangential orientation and in the case of the absence of the PM. We can see that the maximum value of the voltage increases almost twice.

For load operation, the three-phase stator windings are fed by three-phase AC currents, the simulations with PM tangential magnetization and without PM of torque vs. rotor position at a nominal point such that stator current RMS value is 176.7 A and excitation current rotor is 4.5 A are given in Fig. 9. The structure without PMs gives an average torque of 21.2 N·m, after the introduction of PMs placed in inter-claws means that the torque increases because of the magnetic strength, and its average value is around 24.8 N·m. The result shows that the rotor design with PMs generates about 17 % more torque than the rotor design without PMs. We can see also that there are a lot of ripples, the ratio between the torque and its ripples is almost 16 % and 20 % for PMs rotor design and without PMs rotor design respectively.

The torque as a function of the different values of the rotor current is presented in Fig. 10. We note the average torque value of 13.18 N·m at zero current excitation and we can be seen that the average torque increases linearly with the increase in excitation current due to the unsaturated claw rotor core. This variation becomes non-linear from 7 A of the excitation current due to rotor claws saturation. The electromagnetic torque depends mainly on the rotor flux, which verifies (8).

To highlight the operation under load in steady state, the load angle is used as the parameter in this analysis of PM-CPM [21]. We assume that the instantaneous values of phase current and the load angle are known to investigate the electromagnetic torques.

The calculated values of the average torque with respect to load charge are shown in Fig. 11. In this case, we used a rotor excitation current \(I_{\text{ext}} = 7 \text{ A} \), in order to reach the magnetic saturation state of the machine. We can see the maximum value of 37.5 N·m of the electromagnetic torque corresponding to a load angle \(\theta = 90° \).

Parametric studies. In this study, the PMs placed between claws are applied with tangential magnetization to investigate the torque characteristics such as torque and ripple torque. The three-phase stator windings are fed by three-phase AC currents. As the PMs placed on the rotating part of the PM-CPM are responsible for the flux field, then a consideration of the dimensions of the PMs is taken into account. In particular, it takes into account the geometric length and the thickness of the PM (Fig. 12).

Varying magnet thickness. In this case, we vary the dimension of the magnet thickness \(t_h \) from 1.5 mm to 4.6 mm, when magnet length \(l_k \) keeps constant 30 mm.
Considering an optimal charging regime and for non-linear study state with rotor excitation current $I_{ext} = 7 \text{ A}$, we notice that the torque increases with the increase of the PM thickness (Fig. 13).

According to Fig. 13 – 16, we can see that the average torque increases with the increase in the size of the PMs. However, the impact on the torque ripples is not consistent; in fact, the torque ripples are minimal when the length of the PMs l is between 14 mm and 18 mm. Also, these ripples are minimal when the thickness th is between 2.9 mm and 3.6 mm. Then the torque ripples have a non-linear variation depending on the dimensions of the PMs.

Conclusions. In this paper, our first intention was to investigate the magnetization direction of PMs introduced between rotor claws. Two different PMs orientations were applied and presented different flux distributions, which in turn several motor performances.

As a result, the tangential magnetization direction shows the best performances of the permanent magnet claw pole machine (PM-CPM) such as a sinusoidal induced voltage and a best cogging torque. Furthermore, under optimal loading conditions, the CP-CPM with PMs tangential magnetization gives a higher average torque and a lower ripple torque compared to that given by the structure without magnets.

Finally, to know the impact of the size of the PMs of the CP-CPM on the torque characteristics, a parametric analysis of the variations in length and thickness of the PM showed evidence of an increase in magnetic force and torque. However, the torque ripples have a non-linear variation depending on the study parameters.

Conflict of interest. The authors declare that they have no conflicts of interest.

REFERENCES

Received 17.01.2024
Accepted 27.03.2024
Published 20.06.2024

A. Kimouche1, Assistant Lecturer, M.R. Mekideche1, Professor, M. Chebout2, Associate Professor, H. Allag1, Professor.

1. L2EI Laboratory, Department of Electrical Engineering, Jijel University, Algeria, e-mail: abdelghani.kimouche@univ-jijel.dz (Corresponding Author); mohamed.mekideche@univ-jijel.dz; allag.hicham@univ-jijel.dz

2. L2ADI Laboratory, Department of Electrical Engineering, Djelfa University, Algeria, e-mail: m.chebout@univ-djelfa.dz

How to cite this article: