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Fuzzy current analysis-based fault diagnostic of induction motor using hardware
co-simulation with field programmable gate array

Introduction. Presently, signal analysis of stator current of induction motor has become a popular technique to assess the health state of
asynchronous motor in order to avoid failures. The classical implementations of failure detection algorithms for rotating machines, based on
microprogrammed sequential systems such as microprocessors and digital signal processing have shown their limitations in terms of speed
and real time constraints, which requires the use of new technologies providing more efficient diagnostics such as application specific
integrated circuit or field programmable gate array (FPGA). The purpose of this work is to study the contribution of the implementation of
Suzzy logic on FPGA programmable logic circuits in the diagnosis of asynchronous machine failures for a phase unbalance and a missing
phase faults cases. Methodology. In this work, we propose hardware architecture on FPGA of a failure detection algorithm for asynchronous
machine based on fiizzy logic and motor current signal analysis by taking the RMS signal of stator current as a fault indicator signal. Results.
The validation of the proposed architecture was carried out by a co-simulation hardware process between the ML402 boards equipped with a
Virtex-4 FPGA circuit of the Xilinx type and Xilinx system generator under MATLAB/Simulink. Originality. The present work combined the
performance of fuzzy logic techniques, the simplicity of stator current signal analysis algorithms and the execution power of ML402 FPGA
board, for the fault diagnosis of induction machine achieving the best ratios speed/performance and simplicity/performance. Practical value.
The emergence of this method has improved the performance of fault detection for asynchronous machine, especially in terms of hardware
resource consumption, real-time online detection and speed of detection. References 22, tables 3, figures 19.

Key words: asynchronous machine, fuzzy current analysis, field programmable gate array, hardware co-simulation.

Bemyn. B oanuil yac ananiz cuemany cmpymy Ccmamopa AacuHXpoHHO20 O6U2YHA CMAE NONYIAPHUM MemoooM OYiHKU Ccmamy
npaye30amHocmi aCUHXPOHHO20 08USYHA, W00 YHUKHYmMuU 8iomos. Kiacuuni peanizayii ancopummis uagieHHs HeCnpagHOCmel MauH, o
00epmaiomvcs, 3aCHOBAHI HA MIKPONPOSPAMHUX NOCTIOOBHUX CUCMEMAX, MAKUx aK Mikponpoyecopu i yugposa o0pobka cucHanis,
noKazanu coi 0OMediceH s 3 MOUKU 30py WEUOKOCH Ma 00MedIceHb Y PeabHOMY Yaci, Wo 8UMA2ac GUKOPUCAHHS HOBUX MEXHON02IL, o
3a6e3neqyioms Oinbul epexmueHy OiaeHOCIUKY. HANPUKIAO, IHMEeZPatbHAa cxema 05l KOHKPEemHOI npozpami abo npoepamosana 6eHmuIbHa
mampuys. (FPGA). Memoto danoi € 0ocniodicennss 6uecky peanizayii Hewimkoi 102iku Ha npospamosanux nociunux cxemax FPGA e
0la2HOCMUKY 8I0MO68 ACUHXPOHHUX MAWUH Npu Hecumempii ¢haz i obpusax gpazu. Memooonozia. Y yiii pobomi Mu nponoHyemo anapammy
apximexmypy na FPGA aneopummy eusenenHs 6i0MO8 AcuMXpOHHOI MAWIUHU HA OCHOGI HeYimKOi NI02iKU ma aHamizy cueHanie cmpymy
08UYHA, NPUUMAIOUU CEPeOHbOKBAOPAMUYHULL CUSHATL CIMAIOPA CIPYMY AK CUSHA THOUKamopa Hecnpagrocmi. Pesynemamu. Banioayis
3aNPONOHOBAHOT APXIMEKMYPU NPOBOOUNACS ULIAXOM ANAPAMHO20 MOOent08anHs micxc niamamviu ML402, ocnawenumu cxemoro Virtex-4
FPGA muny Xilinx ma zenepamopom cucmemu Xilinx nio xepysannam MATLAB/Simulink. Opucinansnicmes. [Jana poboma noeonana 6
cobi epexmusHicmb Memooie HewimKol J102IKu, NPOCMONTY AI2OPUMMIE AHANIZY CUSHATE CIPYMY CIAMopa ma 8UKOHABYY NOMYICHICINb
niamu ML402 FPGA oOna  OiaeHOCMuKU — HECHpasHOCmell  ACUMXPOHHUX —MAWUH, 00CA2AI0YU  HAUKPAWUX — CRIBBIOHOWIEHD
WBUOKICMb/MPoOdyKmusHicms  ma  npocmoma/npodykmueticmos.  Ilpakmuuna  yinnicme. llossa yvoco memody nokpawuia
NPOOYKMUBHICMb BUAGTIEHHS HECHPABHOCMEN ACUHXPOHHOT MAWIUHY, OCOOIUBO 3 MOYKU 30PY CHONCUBAHHS ANAPAMHUX PecypCis, OHAAUH-
BUAGIICHHSL 8 PeAIbHOMY uaci ma weuoxkocmi eusignenns. bion. 22, Tabn. 3, puc. 19.

Kniouogi crosa: aCHHXpOHHA MAIIMHA, aHAJI3 HEYiTKHX CTPYMiB, MIPOrpaMoOBaHA BeHTHJILHA MATPHIA, alapaTHe CHilbHe
MO/IeJII0OBaHHS.

Introduction. The advances in electronics, power
electronics and control circuits have contributed to the
growing use of asynchronous machines in electrical drive
systems. The use of asynchronous machines is mainly
linked to their robustness, their specific power and their
manufacturing cost. Their maintenance and monitoring
make it possible to make the installations profitable. It is
therefore important to develop diagnostic tools for early
detection of faults that may appear in these machines [1].

Usually, diagnostic methods require knowledge of
the healthy state of the machine regardless of the physical
quantity used. The detection of a fault is based on the
comparison of the signature of a given state with a healthy
state, by considering an indicator resulting from a
measurement that is known to be sensitive to a particular
fault [2]. Analysis and processing of measurable
quantities in the electrical system, in particular stator
currents, has taken a preponderant place in the approaches
for detecting and diagnosing faults in electrical machines.

In the last decades, the diagnosis of the asynchronous
machine has known a growing enthusiasm on the part of
the scientific community. The model approach consists of
the analytical modeling of machine [3]. The occupation of
Lipo et al. [4] and Cornell et al. [5] all relate to the accurate
modeling of the machine. Those of Toliyat are
characterized by the winding function and the consideration

of space harmonics [6]. On the other hand, Devanneaux et
al. studies [7] are based on the multi-winding model. This
work has greatly enriched the accurate modeling oriented
towards diagnosis. Filippetti’s et al. research for the
diagnosis defects in the induction motor by using the
technique of artificial intelligence [8] and neural networks
[9]. The signal approach consists in the detection of
indicators or signatures of defects [10]. This operation is
carried out by the extraction and quantification of
measurable electrical or mechanical quantities of reliable
indices related to defects. Work has been illustrated by the
search for internal indicators (magnetic field, etc.) [2],
others by external indicators (voltage, current, torque,
speed) [6]. The system approach consists of extracting and
classifying or interpreting the results. A form of automation
of the diagnostic procedure from acquisition to decision-
making has been developed and presented [11].

Intelligent techniques such as fuzzy logic and neural
networks are increasingly integrated into algorithms for
detecting the failure of electrical machines, particularly in
the classification of faults. Filippetti et al. [9] introduced
neural networks for the rotor faults diagnosis, in particular
for the detection and estimation of the number of broken
bars. In [12] presented a new method for on-line detection
of faults in asynchronous machine by monitoring stator
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current based on artificial neural networks. His essays
prove the interest of neural networks for classification and
decision making. In [13] introduced the Kalman filter in a
parametric study for detection of broken bars with
estimation of rotor resistance. Another study [14], in
which was presented a method for the diagnosis of
electrical faults, based on Park vector approach using the
technique of artificial neural networks as a decision
criterion for the discrimination between healthy and failed
cases. In [15] were proposed a system for identifying and
classifying asynchronous machine faults. This system is
based on radial function-based neural networks. The
author [16] proposed a parameter selection method based
on a genetic algorithm. It allows a notable reduction of
the dimension of this vector without significant loss of
information. In [17] was presented a new estimation
model without sensors of inaccessible quantities of
asynchronous machine for control and monitoring, based
on artificial intelligence techniques, such as artificial
neural networks and neuro-fuzzy networks. Furthermore,
he gave the notion of neuro-fuzzy extended Kalman filters
for the estimation of the internal parameters of
asynchronous machine.

Online fault diagnosis plays a vital role in
monitoring operation and provides early protection
against faults in many industrial areas without stopping
production lines. The use of field programmable gate
array (FPGA) for implementing fault diagnosis algorithm
solves the biggest obstacle of system complexity by
reducing interconnections and wiring problems [18].

The condition monitoring and diagnosis of faults
that occur in an asynchronous machine makes the
machine highly reliable, helping to avoid unplanned
downtime, which leads to more lost revenue and
interrupted production. This can only be achieved when
irregularities produced due to faults are detected as they
occur and diagnosed quickly so that appropriate action to
protect the equipment can be taken. This requires
intelligent control with a performing scheme [19].
Therefore, FPGA architecture based on a hardware
implementation of the motor current signal analysis
(MCSA) failure detection algorithm and fuzzy logic is
suggested in this article to diagnose the fault more
efficiently and almost instantaneously.

The purpose of this work is to study the
contribution of the implementation of fuzzy logic on
FPGA programmable logic circuits in the diagnosis of
asynchronous machine failures for a phase unbalance and
a missing phase faults cases. In this study, we start with
the adaptation of the fuzzy logic in order to allow an
optimal implementation. This implementation must
ensure efficiency, speed of execution and a minimum
possible space on the FPGA circuit.

Basic calculation relationships and assumptions.
A proposed system consists of a power supply block
having an AC-DC inverter node and a DC-AC inverter
node, an asynchronous machine, a flux and torque
estimation block, a fault based on fuzzy MCSA, a
controller block based on direct torque control (DTC)
command. The input signals corresponding to the currents
at the terminals of the asynchronous machine are
transformed into output signals indicating the torque and
the flux by the estimation block. These signals are fed
into the controller block, which creates input signals for

the DTC block, which processes and generates
appropriate pulses for the bipolar transistor inverter. The
fault diagnosis block receives signals corresponding to the
stator currents of the asynchronous motor and gives the
states (healthy or faulty) of the asynchronous machine.

The diagnostic block diagram of the asynchronous
machine with a fuzzy MCSA implementation based on
FPGA is shown in Fig. 1.

Fuzzy MCSA diagnostic block
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Fig. 1. Schematic of fuzzy-MCSA-based fault diagnosis drive system

Fuzzy inference system will automatically detect the
fault of lack of phase, imbalance of the three phases and
short circuit also between the turns as soon as it appears
on the asynchronous motor.

RMS signal of the asynchronous motor stator phase
current is used as a fault indicator signal

1
RMS = —juz(t)dt. (1)
! 0
For a periodic signal 7, the relation will be:

)

The RMS values for the three phases of stator
currents are compared with their nominal values. The
results of this comparison give the three fault indicator
signals: fault indicator of phase A current (E;), fault
indicator of phase B current (£) and fault indicator of
phase C current (E}.) in the method proposed in this work.

Signals (Ey, Ej and E;) represent the linguistic
variables for the inputs of the proposed fuzzy inference
system. These variables can take three linguistic values: N
(negative), Z (zero) or P (positive). Figure 2 shows the

fuzzification membership functions of the RMS error.
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Fig. 2. The fuzzification membership functions of the RMS error
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Output signal of the proposed fuzzy inference system is
presented by the linguistic variable EM, which represents the
state of the machine and can take the following linguistic
values S (Healthy); D1 (Fault degree 1°); D2 (Fault degree 2°);
D3 (Fault degree 3°). The fuzzification membership functions
of the machine state EM is presented in Fig. 3.

[
>

Fig. 3. The fuzzification membership functions of the EM

Fuzzy inference system decides according to the
following rules:
e if all the fault indicators are zero then the state of the
EM machine takes the value S (Healthy);
e if only one fault indicator is non-zero then the state
of the EM machine takes the value D1 (Fault degree 1°);
e if only two fault indicators are non-zero then the state
of the EM machine takes the value D2 (Fault degree 2°);
e if all the fault indicators are non-zero then the state
of the EM machine takes the value D3 (Fault degree 3°).
FPGA implementation of RMS function. The
RMS block is used to calculate the effective value of a
signal using (1) [20]. Consider a signal form u(#) in Fig. 4
a signal form «’(7) will be as in Fig. 5.
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A signal sampled by a sampling steps 7.. Signal 1*(7)
will only be known at sampling instants. Figure 6 shows
the signal u’(r) sampled. Signal J;uz(t)dt can be

approximated by the area between u*(f) discretized and
the time axis as shown in Fig. 7.
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Fig. 6. Sampled u*(7)

Fig. 7. Area between () discretized and the time axis
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The hardware implementation on FPGA we used a
counter to count the number of samples, a multiplier to
calculate the square of a sampled signal u7, an
accumulator to cumulate the values of u7, then multiply
the value of the accumulator and the inverse of counter at
the end make the square root of it to obtain the result.

The hardware architecture on FPGA of the RMS
function is presented in Fig. 8.

Resource System
4 Generator
Estimator

Signal  Gatewayn
Generator

Gateway Out

Mult SquareRoot Display

Convert Convert3

Counter Reciprocal

Fig. 8. Hardware architecture on FPGA of the RMS function

FPGA implementation of fuzzy inference system. The
hardware implementation of a fuzzy inference system consists
in implementing the three phases of a regulation by fuzzy
logic: fuzzification, fuzzy inferences and defuzzification.

Fuzzification module implementation. In this
study, we employ a memory-oriented approach for
implementing the fuzzification module, which allows us
to determine the degree of membership in a fuzzy set
using a member ship function. This approach calculates
the output values offline and stores them in memory. One
advantage of this solution is that it simplifies the process
of changing a member ship function [21].

To represent each linguistic input/output variable, we
use tables that store the degree of membership for each
linguistic value. These tables are implemented in hardware
using Read Only Memory blocks that can be addressed with
a single entry. These memory blocks contain the degree of
membership for each linguistic value and provide a
representation of the discrete speech universe. For instance,
if we have a normalized discourse universe [0, 1] with 64
points of discretization, we would use an address space of
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[0:63]. The hardware implementation of these functions is
detailed in [22].

Implementation of rule inference and evaluation
module. The implementation of rule inference and
evaluation is shown in Fig. 9. This module takes three
blocks from the fuzzification module as input. The rules
selector block helps construct the rule base, which
consists of 27 rules. The realization of all the possible
combinations between the fuzzy values of «RMS error»
makes it possible to obtain this base of rules.

The (min/max) operators are implemented by a 2-1
multiplexer and a comparator on XSG «Xilinx System
Generator» hardware tool. If an operator (min/max) has
more than two inputs, multiple two-input (min/max)
operators are used. For instance, to implement a min
operator with three inputs, two min operators with two
inputs are employed.
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Fig. 9.Architecture of the inference engine module

Implementing the defuzzification module. The
hardware description of the defuzzification module is
performed by a MAX operator as shown in Fig. 10. The
inputs of this module are the outputs of the inference
module. The output of this block is representing the
output of the entire EM fuzzy block, which represents the
state of the machine.
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Fig. 10. Defuzzification architecture

Results, simulations and validation. This phase
consists of the integration of a fuzzy inference system in
the MCSA algorithm for diagnosis of asynchronous
machine defects. During this part and similar to the
simulation with MATLAB, we will simulate the proposed
hardware architecture using the Xilinx generator system.

The diagnostic algorithm is applied to an induction
motor, whose specifications are given in Table 1.

Table 1
Induction motor parameters

Stator resistance Rg, Q 10
Rotor resistance R,, Q 6.3
Stator inductance Lg, H 0.4642
Rotor inductance L,, H 0.4612
Mutual inductance L,,, H 0.4212
Moment of inertia j, kg-m’ 0.02
Machine pair pole number p 2

Synthesis results. Table 2 presents the performances in
terms of resource consumption obtained during the
implementation of the diagnostic algorithm proposed on the
FPGA Virtex 4 given by the architecture presented in Fig. 1.

Note that the proposed architecture optimizes the use of
the hardware resources of the FPGA card 4.8 % of slices and
13.7 % of look up tables (LUTs), moreover this architecture
considerably reduces the logical components to be used
compared to the architectures presented in [19, 21].

Table 2
FPGA proposed diagnostic algorithm

Target Device: ML402 Virtex-4 xc4vsx35-10ff668

Logic utilization RMS| P92 | Available|Utilization
system

Number of slice flip 170 | 1304 | 30720 | 4.8%
flops
Number of oceupied | 455 | 1685 | 15360 | 13.7%
slices
Total number o
of 4 Input LUTs 1286 2173 30720 | 11.25%
Number of bonded input o
output block (IOBs) 65 >8 448 274 %

Table 3 presents operating frequency comparison
between our implementation and previous implementations
of induction motor diagnostics algorithms.

Table 3
Operating frequency comparison
Proposed
References [21] [21] [19] fuzzy
MCSA
Device Intel Pentium | FPGA FPGA FPGA
family Dual Core Altera Xilinx )_(ﬂmx
processor | Cyclone-II | Spartan-3E| Virtex-4
Maximum
clock 2.95 kHz 45.45kHz | 92.1 MHz |231.64 MHz
frequency
Minimum 338 pis 2ps | 10857ns | 4317ns
period
The synthesis tool sets the maximum clock

frequency at 231.64 MHz, corresponding to a minimum
period of 4.317 ns. Table 3 presents a comparative study
of the operating frequencies among various references
within the same research axis.

MATLAB/Simulink and XSG/Xilinx simulations.
The structure of the fuzzy MCSA diagnostic algorithm block
is shown in Fig. 1. This proposed algorithm consists of two
modules. RMS module is used to calculate the effective
value for the three phases of stator currents. This signal is
used as the signal fault indicator and the diagnostic module
based on a fuzzy inference system, we simulated these
modules separately on MATLAB/Simulink with Xilinx
generator system. Simulation results of the RMS module for
the different types of input signals are illustrated in Fig. 11.
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Fig. 11. RMS function for different types of input signals
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FPGA hardware co-simulation validation. After a
simulation step, the proposed hardware architecture was
validated by co-simulation on the target device ML402
equipped with a Virtex4 FPGA circuit. This last is
dedicated to the implementation of the proposed
diagnostic algorithm on a development board integrating
an FPGA component. It is mainly intended for the
verification and validation of the digital implementation
of control and diagnostic algorithms on FPGA targets in a
«Hardware in the loop» simulation environment.

Figure 12 shows the principle of validation of the
architecture proposed by Hardware co-simulation.

Point-to-point
Ethernet communication

procedure to generate a bitstream file from the prototype and
a point-to-point Ethernet block. This facilitates the
Hardware-in-the-Loop (HIL) procedure. The generated
block (Fig. 13) replaces the previously constructed hardware
architecture for the fuzzy MCSA diagnostic algorithm.

[1a] Ia Ell—#{el D1—42H
Point-to-point DE1 <A
Ib E2—m "

= Ethernet ( -

Pi—»4BEL
Sysem
[Te] Ic E3—me3 51 s Generaior
RMS FUZZY DIAG SYS

hweosim
Fig. 13. Fuzzy MCSA diagnostic algorithm HIL point-to-point
Ethernet block

During the HIL validation process, the point-to-point
Ethernet blocks are connected to both the inverter and the
induction motor. In this setup, the motor model, DTC
control, and inverter models are simulated in the
MATLAB/Simulink environment, while the XSG
architectures of the fuzzy MCSA diagnostic algorithm are
implemented on the ML402 FPGA device.

To perform the HIL validation, the target device is
connected to a PC using an Ethernet cable. This allows
for real-time communication and interaction between the
simulated models running on the PC and the hardware
implementation running on the FPGA device.

1. For phase unbalance: phase 4 voltage V,, =40 %
Vi at t = 0.5 s the waveform responses of the induction
motor speed, torque, phase voltages and currents are
shown in the Fig. 14, 15.
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Fig. 12.Hardware in the loop validation of fuzzy MCSA
diagnostic algorithm

Upon completion of the simulation and timing analysis,
the hardware co-simulation process in XSG follows a

01 04 f,s
Fig. 14. Behavior of induction motor phase voltages
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Fig. 15. Behavior of induction motor speed, torque and phase
currents

Figure 16 presents the results of the analysis by the
fuzzy MSCA algorithm proposed for the phase currents of
the previous Fig. 15.
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" ‘ : : Figure 19 presents the results of the analysis by the
, f . fuzzy MSCA algorithm proposed for the phase currents of
u ‘ i ‘ | i the previous Fig. 18.
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In the machine start-up phase (transient regime)
from 0 to 0.2 s the three current phases are greater than ' ; ; : ; ;
. i | | \ i

their nominal values so it is obvious to have a class D3
fault in this time interval.

In the interval 0.2 to 0.5 s the machine reaches their
permanent regime and the three current phases resume
their nominal values so the state of the machine takes the
value Healthy.

At instant 0.5 s a fault appeared and the state of the
machine changes from the S value to the value D1.

The fault does not have a great influence on the
dynamic response of the machine speed; this is due to the
robustness of the DTC command.

2. For missing of a phase: Vy,, = 0 at t = 0.5 s the
waveform responses of the induction motor speed, torque,
phase voltages and currents are shown in the Fig. 17 and 18.
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Fig. 17. Behavior of induction motor phase voltage
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Fig. 18.Behavior of induction motor speed, torque and phase
currents
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Fig. 19. Proposed fuzzy MSCA analysis of the phase currents

In the machine start-up phase (transient regime)
from 0 to 0.2 s the three current phases are greater than
their nominal values so it is obvious to have a class D3
fault in this time interval.

In the interval 0.2 to 0.5 s the machine reaches their
permanent regime and the three current phases resume
their nominal values so the state of the machine takes the
value Healthy.

At instant 0.5 s a fault appeared and the state of the
machine changes from the S value to the value D3.

The lack of phase fault has a great influence on the
dynamic response of the machine speed, this is due to the
catastrophic nature of the lack of phase fault.

Conclusions.

1. The purpose of this work was, firstly, to evaluate the
performance of the use of field programmable gate array
programmable logic circuits for the diagnosis of faults in
an asynchronous machine by introducing a fuzzy
inference system into the algorithm of the analysis of the
motor current signal analysis by taking the RMS signal of
the stator phase current as the fault indicator signal.
Secondly, to implement and validate the proposed
hardware detection algorithm.

2. The originality of our work has been to combine the
performance of artificial intelligence techniques, the
simplicity of motor current signal analysis algorithms and the
execution power of programmable logic circuits, for the
definition of a fault diagnosis structure for the asynchronous
machine achieving the best simplicity/performance and
speed/performance ratios.

3. Finally, we believe that the proposed solution has
improved the performance of fault detection for the
asynchronous machine, especially in terms of hardware
resource consumption, real-time online detection and
speed of detection.
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