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Optimal hybrid photovoltaic distributed generation and distribution static synchronous
compensators planning to minimize active power losses using adaptive acceleration
coefficients particle swarm optimization algorithms

The paper aims to identify the optimum size and location of photovoltaic distributed generation systems and distribution static synchronous
compensators (DSTATCOMs) systems to minimize active power losses in the distribution network and enhance the voltage profile. The
methodology employed in this article begins by thoroughly discussing various acceleration algorithms used in Particle Swarm Optimization
(PSO) and their variations with each iteration. Subsequently, a range of PSO algorithms, each incorporating different variations of
acceleration coefficients was verified to solve the problem of active power losses and voltage improvement. Simulation results attained on
Standard IEEE-33 bus radial distribution network prove the efficiency of acceleration coefficients of PSO; it was evaluated and compared
with other methods in the literature for improving the voltage profile and reducing active power. Originality. Consists in determining the most
effective method among the various acceleration coefficients of PSO in terms of minimizing active power losses and enhancing the voltage
profile, within the power system. Furthermore, demonstrates the superiority of the selected method over others for achieving significant
improvements in power system efficiency. Practical value of this study lies on its ability to provide practical solutions for the optimal
placement and sizing of distributed generation and DSTATCOMs. The proposed optimization method offers tangible benefits for power system
operation and control. These findings have practical implications for power system planners, operators, and policymakers, enabling them to
make informed decisions on the effective integration of distributed generation and DSTATCOM technologies. References 30, table 3, figures 7.

Key words: photovoltaic distributed generation, distribution static synchronous compensators, power losses, voltage profile,
acceleration coefficients particle swarm optimization algorithms.

Memoio cmammi € Gu3HAYEHHA ONMUMANBLHO20 PO3MIPY Ma PO3MAULYBAHHS QOMOENEKMPUUHUX CUCmeM PO3noodineHoi 2enepayii ma
cucmem POo3NOOLTbHUX CINAMUYHUX CUHXpOHHUX Komnencamopie (DSTATCOM) ona minimizayii empam axKmMueHOi NOmMysiCHOCmi y
PO3n00INbHIL Mepedici ma nokpawjenns npogino nanpyeu. Memooonozia, wo uKOpUcmosyemvcs 8 yill cmammi, NOYUHAEMbCS 3
0emanbHO20 0620B0PEHHSL PI3HUX ANCOPUMMIE NPUCKOPEHHS, W0 BUKOPUCO8YIombCsl 8 onmumizayii poto yacmunox (PSO), ma ix eapiayiit
Ha KodcHill imepayii. 32000m 6yno nepegipeno nusky aneopummie PSO, Kodicen 3 SKUX 6KIIOYAE Pi3Hi 6apiaHmu Koe@iyicHmie npucKopenns,
O0nsl GupiwenHs npobiemu empam aKmueHoOi NOMYICHOCMI ma noxkpawjenns Hanpyeu. Pesynsmamu modenioganus, oodepocai Ha
padianshiti po3nodinvhiil mepedci wunu cmanoapmy IEEE-33, niomeepoaicyioms egpexmusnicme xoeghiyicnmie npuckopennss PSO; 6in 6ys
OYiHeHUll Ma NOPIGHAHUL 3 THUWUMU ONUCAHUMU 6 JIMepamypi Memooamu NOKPAWeHHs. npoQiio HAnpyeu ma 3HUMCEHHS. AKMUGHOT
nomyscnocmi. Opuzinansuicme. Ilonsizac y eusnauenni Haubinbw epekmusHo2o memoody cepeo pizHux Koeghiyicnmie npuckopennsi PSO 3
noenady MIHIMI3ayii empam akmueHoi NOMYIHCHOCMI Ma NOKpaweHHs npogino Hanpyeu 6 enepeocucmemi. Kpim moeo, demoncmpye
nepesazy o0pano2co Memooy Hao HWUMU 0151 OOCASHEHHs 3HAUHO20 NidguueHHs eghekmuerocmi enepeocucmemu. Ilpakmuyuna yinnicmo
Yb020 OCHIONCEHHS NOMARAE Y U020 30AMHOCIE HA0AMU NPAKMUYHI PilUeHHs O ONMUMATBHO20 POSMIWEHH. MA 6USHAYEHHSL PO3MIDIE
posnodinenoi eenepayii ma DSTATCOM. 3anpononosanuii memoo onmumizayii oae giouymHi nepeeazu OJisi eKCHAyamayii ma KepyeanHs.
enepeocucmemoro. Li pesyiomamu maioms npakmuyne 3HauenHs Ol axieyis i3 NIAHYBAHHS eHEP2OCUCEM, ONepamopie ma po3POOHUKIE
NORIMUKY Kepy8amHs, 003601a104Y iM nputimamu 0OTPYHMOBAHI pileHHs w000 eqheKmueHoOT inmezpayii mexnonoeii posnooineHoi eeHepayii
ma mexronoziti DSTATCOM. bi6x. 30, tabn. 3, puc. 7.

Knouosi cnosa: ¢oroejiekTpuuHa po3MoOJiJieHa TreHepauis, PO3NOAUIbHI CTATHYHI CHHXPOHHI KOMIIEHCATOPH, BTPATH
NOTYKHOCTI, Npodine HANPYrU, KoedilieHTH NPUCKOPEHHs, AJITOPUTMH ONITHMI3aLil POI0 YACTHHOK.

1. Introduction. With the increasing demand for
electricity and the share of distributed generation,
including based on renewable energy sources, there is a
need to solve a number of problems [1], power losses
have become a significant concern for power system
operators. In recent years, the deployment of distributed
energy resources such as photovoltaic distributed
generation (PVDG) systems and distribution static
synchronous compensators (DSTATCOMSs) has gained
attention as a means to minimize power losses. PVDG
systems generate electricity from solar energy and supply
it to the distribution network, while DSTATCOMs
provide reactive power compensation to increase the
power quality of the network.

The incorporation of sustainable energy sources into
the electrical grid has become increasingly important in
latest years, due to the rising demand for clean energy and
the need to reduce greenhouse gas emissions. Previously
generation and transmission power systems were
responsible for the power quality transmitted to customers
[2], but currently, there is a significant focus on distribution
networks, as they are prone to electrical breakdowns and
considered a vulnerable point in the power grid. Among the
Renewable Energy Sources (RES), PVDG systems have

gained popularity due to their ease of installation and
maintenance, low operating costs, and environmental
benefits. However, the fitful nature of solar energy and the
variability of the generated power can cause issues such as
voltage fluctuations, power quality problems, and power
losses in the distribution network.

In order to overcome these issues, DSTATCOMs
can offer reactive power compensation and improve the
quality of network. The effective integration of PVDG
and DSTATCOM systems can enhance the dependability
and stability of the power system while effectively
harnessing RES. Therefore, the planning and optimization
of PVDG and DSTATCOM systems have become crucial
for the successful integrating of RES into the network.

It has been proven in the literature beyond any doubt
that metaheuristic optimization algorithms perform well
by optimally handling several versatile real-world
optimization tasks [3].

Particle Swarm Optimization (PSO) is a powerful
metaheuristic method for optimization derived from the
demeanor of bird flocking or fish schooling. This
approach involves a group of particles working to find the
most optimal solution in a given problem space by
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iteratively adjusting their positions and velocities guided
by their individual experience and the finest experiences
of their neighbors. PSO has been widely applied in
assorted domains, including engineering, finance, and
science, due to its simplicity, flexibility, and ability to
successfully tackle intricate optimization problems.

Different algorithms have been employed to investigate
the suitable capacity and placement of Distributed
Generation (DG) and DSTATCOM units are mentioned as
follows: the Bacterial Foraging Optimization Algorithm
(BFOA) [4], Multi-Verse Optimization Algorithm (MVOA)
[5], Differential Evolution Optimization Algorithm (DEOA)
[6], Slime Mould Algorithm [7], Multi-Objective
Grasshopper Optimization Algorithm [8], Teaching Learning
Based Optimization-Particle Swarm Optimization [9],
Genetic Salp Swarm Algorithm [10], Northern Goshawk
Optimization algorithm [11], Dwarf Mongoose Optimization
Algorithm [12], Elitist Harris Hawks Optimization
Algorithm [13], African Vultures Optimization Algorithm
[14], Flower Pollination Algorithm [15], Butterfly-based
PSO algorithm [16], hybrid Firefly PSO algorithms [17],
Bald Eagle Search Algorithm [18], Modified Shuffled Frog
Leaping Algorithm [19].

The goal of the paper is to identify the optimum
placement and size of photovoltaic distributed generation
and distribution static synchronous compensators on a
radial distribution network according to the best-obtained
result from the different particle swarm optimization
applied algorithms and compare it to the other algorithms
existing in the literature. The study was conducted using a
standard IEEE-33 bus as the testing system by lessening
active power dissipation and voltage profile enhancement.

2. Problem formulation.

2.1. Objective function. The primary aim of this
paper has been to minimize the total active power losses,
where the objective function is focused on achieving the
least possible value of active power losses:

Ny
Ob=min B . (1)
iJ
where N, is the number of busses; Py, is the active power
losses.

The following equation represents the branch power

loss (Pyss) 1s:

P} +0?,
F}ossi,j = 1,1—2Ql,1 Pi,jﬁ (2)
Vi
where R;;, P;;, O;; are the resistance, active and reactive
powers respectively from bus i to bus j; V; is the voltage
in the bus.
2.2. Constraints.
2.2.1. Distribution line constraints. The power
conversation constraints [20-24]:
P+ Ppg = Pp + Py (3)
Oc *+ Opsrarcom = Op + Ouoss, “)
where (Ppg, Opsrarcom), (Pe, Qc), (Pp, Op) are the active
and reactive powers of PVDG and DSTATCOM, the
generator and load respectively.
Bus voltage limits are:

Vmin < |V1| < Vmax > (5)

where Vi, Vmax are the predetermined minimum and
maximum voltage values for the bus; V; is the voltage
magnitude at /" bus in p.u.
Voltage drop limit is:
[1=Vi| < AV » (6)

where AV, is the maximum permitted voltage drop at
each branch.
Line capacity limit is:

‘Sij‘ = |Smax| > (7)

where S, Smax are the apparent and maximum apparent
power in the line distribution between i and j bus.

2.2.2. DG constraints. The limitations of the DG
unit are expressed through inequality constraints:

P8 < Ppg < P& ®)
NDG Nbus
D Pogli)< Y Pogli): ©)
i=1 j=1
2< DGposition < Nbus ; (10)
NDGSNDGmax; (11)
(nDG’i/Location)S 1; (12)

max

where PS" and PJ2* are the allowable range for power

generation by the PVDG, encompassing both upper and
lower limits; Npg and Npgmax are the number and maximum
number of PVDG, that are limited for one unit and location.

2.2.3. DSTATCOM constraints. The DSTATCOM
unit’s limits can be represented by inequality constraints
formulated as follows:

min max .
Opsrarcom < Opsrarcom < Opstarcom s (13)

NDST Nbus

D Opsrarcom (i)< Y 0pli); (14)
i-1 [
2 S DSTA TCOMpOSiliO}’l S Nbus , (15)
Npsrarcom < NpSTaTrcOM max 5 (16)
(nDSTATCOM’Z-/Location)S 1, (17)

where OB rcon and OB oy are the allowable

range for power generation by the DSTATCOM,
encompassing both upper and lower limits; Npsrarcon and
Npsrarcommax are the number and maximum number of
DSTATCOM, that are limited for one unit for one location.

3. Adaptive acceleration coefficients PSO
algorithms. PSO algorithm was first introduced in 1995,
which can be seen as a global search technique. In this
algorithm, each particle, denoted by i, has a velocity
vector (V;) and a position vector (X;) [20]. It can be
modeled by the following equations:

Vi = arf e[ Bl — X [ eanlGle —xF |5 19)

DD G s (19)

where @, r are the inertia weight and random values

between 0 and 1 respectively; C;, C, are the acceleration

coefficients; Gy, is the global best position; & is the
iterations number.

This paper proposes novel PSO strategies that utilize

time-varying acceleration coefficients (C; and C,) to
improve the global search performance. The primary
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concept behind employing PSO with time-varying
acceleration coefficients is to increase the global search
during the initial phase of the optimization process.

This is accomplished by altering C; and C, over time
in such a way that the cognitive component decreases
while the social component increases [25].

In this work, it should be noted that the names assigned
to the various PSO methods are not mere abbreviations.
Instead, they represent unique and distinct algorithms, each
with its own set of characteristics and features. These names
serve as identifiers for specific approaches in the field of
PSO. The following equations show the acceleration
formulas and their corresponding constants.

The Adaptive Accelerated Coefficients for the PSO
algorithm (AAC PSO) and constants [26] are:

2
kmax .

€1 =Cmin (Cmax ~ Cmin )e

(20)
2
. 4k
(kmax j
€2 =Cmax — (Cmax ~ Cmin )e > (21)
with
Cmin = Cmax = 0.5, (22)

where Cpin, Cmax are the constants of the AAC PSO
method; k, kn.x represent the iteration number and the
maximum number of iterations, respectively.

The Autonomous Particles Groups for PSO (APG
PSO) acceleration coefficient formula and constants [27] are:

a
01:1.95—[2k J; (23)

kglax

a
¢y = 0.05—( 2k J , (24)

kranax

with

a=1/3, (25)

where a is the constant of APG PSO method.

The Nonlinear Dynamic Acceleration Coefficients
for PSO (NDAC PSO) acceleration coefficient formula
and constants [28] are:

2
clz—(cf—c,-)-[ k ] +eps (26)
kmax

Y k

czzci-[l— ] +cf-[ j, 27
kmax kmax

where the constants of this method c;, ¢ are:
¢;=0.5, (28)
cr=2.5, (29)

The acceleration coefficient formula and constants
for Sine Cosine Acceleration Coefficients for PSO (SCAC

PSO) [29]:
¢y =0-sin (1— i J-E +0; (30)
kmax 2’
c2:a~cosH1— k jﬁ}ua‘, G1)
kmax 2
with the constants 0, &:
o0=2, (32)
5=0.5. (33)

Finally, Time Varying Acceleration for PSO (TVA
PSO) acceleration coefficient formula and constants [30] are:

C ~ —c .
o =cy +[MJ~1¢ ; (34)
kmax
C —CnH;
¢y =y + [—” 2 J ), (35)
max
with
Cli=Cif=Co = Cp = 05, (36)

where £ is the iterations number; cy;, ¢y, €15 Cof are the
constants of the method.

Figure 1 displays diverse updating strategies for the
C, and C, acceleration coefficients across the various
PSO algorithms.

3 Coefficients Basic PSO
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25
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Iteration Number
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24
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lteration Nurnber

Fig. 1. Time-varying acceleration coefficients
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In Fig. 1 the acceleration coefficients exhibit a
varying trend with iterations, typically ranging from 0 to
2.5. The wvalues of C; generally decrease over the
iterations, whereas the values of C, tend to increase.
These changes are dependent on the update function of C;
and C,, which can be linear, polynomial, or exponential.
When C, is bigger than C,, the particles conduct local
search, whereas when C, is bigger than C, the particles
conduct global search. The succeeding section will
discuss the outcomes of these algorithms in achieving the
efficient allocation of DG and DSTATCOM.

4. Test system, results and comparison. This
section describes the test systems used for evaluation,
results and comparison of various PSO algorithms applied
to the IEEE 33 bus system for optimal planning of PVDG
and DSTATCOM size and location.

The work’s objective has been to enhance the
voltage profile and reduce the active power losses of the
system through the identification of the optimal locations
and sizes of PVDG and DSTATCOM units. The
presented Fig. 2 depicts the IEEE 33 bus radial
distribution system, which serves as a widely adopted
benchmark system for power system analysis that allows
for fair comparison of different optimization algorithms.
A range of PSO algorithms with different variations of the
acceleration coefficients was applied and performance
comparison of speed convergence, solution quality, and
computational efficiency. The results are presented in
terms of the total active power loss reduction, voltage
profile improvement, and optimal locations and sizes of
PVDG and DSTATCOM.

19 20 21 22

9 16 11 12 12 14 15 16 17 18

bus 28 20 30 31 32 33

Fig. 2. IEEE 33 bus model

Finally, strengths and weaknesses of each PSO
algorithm were analyzed and discussed as well as the
comparison of the best method obtained from the different
PSO coefficients with other algorithms existing in the
literature. The comparison is performed in terms of the total
active power loss reduction, voltage profile improvement,
and computational efficiency. The results demonstrate the
superiority of the suggested PSO algorithm and providing
valuable insights into the optimal placement of PVDG and
DSTATCOM units for power systems.

The results were obtained after 20 runs with 300
iterations each, using different PSO coefficients. It should
be reminded that in the initial case, the active power
losses were 210.987 kW and the initial Vi, and Vi, were
0.9038 p.u. and 1.000 p.u, respectively.

The results presented in Table 1, 2 suggest that the
AAC PSO method outperforms the other PSO methods in
terms of both active power losses reduction, with a

reduction of 72.23 %, and voltage profile improvement,
with a value of 0.95 for minimal voltage and 1.02 for
maximal voltage.

Table 1
Test results in term of power losses
p AP PVDG D-STATCOM
Method | ~ 2o Lo [ Bus Bus 0,
kw & location P, kW location | kVar
Basic
PSO 59.00 | 72.03 6 2666.4 30 1358.7
AAC
PSO 58.58 | 72.23 6 2437.2 30 1281.3
APG
PSO 58.69 | 72.18 6 2502.3 30 1168.4
NDAC
PSO 58.80 | 72.12 6 2370.1 30 1240.0
SCAC
PSO 59.12 | 71.97 6 2390.2 30 1141.5
TVA
PSO 59.45 | 71.82 6 2773.9 30 1173.4
Table 2
Test results in term of voltage profile improvement
- v PVDG D-STATCOM
Method ml‘l"’ m&"’ Bus PKW Bus 0,
P-u PU o cation |1 location | kVa
Basic
PSO 098 | 1.03 6 2666.4 30 1358.7
AAC
PSO 095 | 1.02 6 2437.2 30 1281.3
APG
PSO 095 | 1.02 6 2502.3 30 1168.4
NDAC
PSO 0.95 | 1.00 6 2370.1 30 1240.0
SCAC
PSO 0.95 | 1.01 6 2390.2 30 1141.5
TVA
PSO 0.95 | 1.00 6 2773.9 30 1173.4

These results are attributed to the integration of a
2.43 kW DG unit at bus 6 and a 1.28 kW DSTATCOM at
bus 30. The APG PSO and NDAC PSO methods also
demonstrated good results regarding the reduction of
active power losses.

It should be noted that, even with the same
allocation of DG units and DSTATCOM, the AAC PSO
method produced the best results. Therefore, it may be the
most suitable choice for the simultaneous installation of
PVDG and DSTATCOM in the IEEE 33-bus radial
distribution system. However, further analysis is needed
to confirm the robustness of the method under different
conditions and constraints.

In order to gain a deeper insight into the behavior of
the different PSO methods, the curves of active power
losses versus the number of executions for each method
were plotted.

Figure 3 shows clearly the obtained results, after 20
trials for each method, it is clear that the range of
variation for the basic PSO, NDAC PSO, and TVA PSO
is approximately between 59 kW and 64 kW, while the
range of variation for AAC PSO and APG PSO is
between 59 kW and 69 kW.

These results highlight the importance of selecting the
appropriate PSO parameters and coefficients, as some
methods converge faster and reach lower losses than others.
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compared to the other PSO algorithms. It reaches a lower
objective function value in less iteration, demonstrating its
superior performance in optimizing the implementation of
PVDG and DSTATCOM.

The AAC PSO method also achieves faster
convergence and enhances the voltage profile, resulting in
minimized active power losses.

Reration Number

Fig. 4. Convergence curve of different PSO method

As seen in Fig. 5, the integrating of DG and
DSTATCOM in simultaneous operation results in a
significant improvement of the voltage profile compared
to the base case. The implementation of DG and
DSTATCOM together leads to a greater enhancement of
the voltage profile, with the minimum voltage improving
from 0.9038 to 0.9894 p.u.

[ 5:fore PVDG & DSTATCOM
I /er PYDG & DSTATCOM

Voltage p.u

0.85

08

25 30 35

Bus number

Fig. 5. Improved voltage profile with PVDG and DSTATCOM

The results from Table 3 manifest the efficiency and
superiority of the AAC PSO algorithm over other
algorithms in the literature for the simultaneous
installation of DG and DSTATCOM for an IEEE 33 bus
system, achieving the minimum active power losses and
improving the optimum deployment of PVDG and
DSTATCOM units.

58 i 1
0 5 10 15 20
Execution number

Fig. 3. Curves of active power losses versus the number executions

Figure 4 depicts the convergence curves of various
algorithms applied to the simultaneous installation of DG
and DSTATCOM, after 20 executions.

The results for the 33-bus system reveal that all
algorithms converge at a total power loss reduction of 85 kW.
Notably, the AAC PSO method shows superior convergence

Table 3
Comparison between our best method and others existing in the literature
PVDG D-STATCOM
Pross, | APpos
Method | * Fo5 o [ Bus Bus 0,
kW & location P, kW location | kVar
AAC
PSO 58.58 | 72.23 6 2437.2 30 1281.3
BIE3O]A 70.87 65 10 1239.8 30 1094.6
MEQC])A 59.94 | 71.59 6 2848.8 30 1334.4
D}[ES?A 80.48 | 61.85 7 2327.5 26 1446.4
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Figure 6 clearly shows that the proposed method
resulted in a lower value of active power losses, with a
value of 58.58 kW, which is superior to MVOA’s value of

59.94 kW.
70
GO
50
40
30
20
10
AAC PSO

BFOA
Algorithms  MYOA  peoa

Fig. 6. Comparison between proposed method and others
existing in the literature in term of active power losses

[o2]
o

Active power losses kW

(]

Figure 7 provides a visual representation of the
percentage reduction in active power losses between the
proposed method and the other method. The proposed
method resulted in the highest reduction of active power,
with a 27 % reduction compared to the other method.

Reducing active power losses, %
Fig. 7. Minimization rate of the active power losses for each method

Conclusions. The study aim has been to optimize
the simultaneous implementation of photovoltaic
distributed generation and distribution static synchronous
compensator units in a standard IEEE 33-bus radial
distribution system with the objective of reducing active
power losses and enhancing the voltage profile.

Assorted particle swarm optimization methods with
variable acceleration coefficients were applied, and the
findings were evaluated against each other existing
algorithms in the literature. The tables exhibited that the
adaptive accelerated coefficients for particle swarm
optimization method provided the best results in terms of
active power loss reduction and voltage profile
improvement, and the optimum size and location of the
photovoltaic distributed generation and distribution static
synchronous compensator. The figures demonstrated that
the adaptive accelerated coefficients for particle swarm
optimization method had the best convergence among the
different particle swarm optimization algorithms and the
losses curve according to the number of executions for
each method.

Overall, the study demonstrated that the optimization
of photovoltaic distributed generation and distribution static

synchronous compensator installation using the adaptive
accelerated coefficients for particle swarm optimization
algorithm could significantly reduce active power losses and
enhancement of voltage profile in the distribution system.
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