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Application of a wavelet neural network approach to detect stator winding short circuits
in asynchronous machines

Introduction. Nowadays, fault diagnosis of induction machines plays an important role in industrial fields. In this paper, Artificial Neural
Network (ANN) model has been proposed for automatic fault diagnosis of an induction machine. The aim of this research study is to design
a neural network model that allows generating a large database. This database can cover maximum possible of the stator faults. The fault
considered in this study take into account a short circuit with large variations in the machine load. Moreover, the objective is to automate the
diagnosis algorithm by using ANN classifier. Method. The database used for the ANN is based on indicators which are obtained from
wavelet analysis of the machine stator current of one phase. The developed neural model allows to taking in consideration imbalances which
are generated by short circuits in the machine stator. The implemented mathematical model in the expert system is based on a three-phase
model. The mathematical parameters considered in this model are calculated online. The characteristic vector of the ANN model is formed
by decomposition of stator current signal using wavelet discrete technique. Obtained results show that this technique allows to ensure more
detection with clear evaluation of turn number in short circuit. Also, the developed expert system for the taken configurations is
characterized by high precision. References 18, tables 5, figures 4.

Key words: discrete wavelet transform, induction machine, three-phase model, multilayer perceptron neural network.

Bcemyn. Huni diaenocmuka HecnpagHocmeti aCUHXPOHHUX MAWIUH 8i0iepae 3HAUHY Polb Y NPOMUCIO8oCcmi. Y yill cmammi 3anponoHoeano
MoOenb  WMYYHOT HeUpOHHOT Mepexci 0N asmOoMAmuyHoi OiazHOCMUKU HeCcnpasHocmell AacuHXpouHoi mawunu. Memorw ybo2o
00CTiOJHCeHHA € PO3POOKA MOOeNi HelPOHHOI Mepedci, wo 003680A€ 2eHepysamu 6enuxky 6asy oanux. Ll 6aza mooice oxonmosamu
MAKCUMATLHO MOJCIUGI Hecnpagnocmi cmamopa. Hecnpagnocmi, posensinymi 'y yboMy O0OCTIOdNCEHHI, 8pax08yIomy KOponiKe 3aMUKaHHs:
npu BeNUKUX KOTUBAHHAX HasaHmadicenHs mawunu. Kpiv moeo, mema nonseae 8 momy, wob asmomamu3zyeamu aneopumm OlaeHOCIMUKY 3
donomozoio Kiacugixamopa wimyynoi netiponnoi mepesici. Memoo. baza oanux, wo 8uKopucmogyemocsi Ois WNnYy4HOL HeUPOHHOT Mepedici,
3ACHOBANA HA NOKAZHUKAX, OMPUMAHUX 6 Pe3yTbmami 6eleiiem-ananizy Cmpymy cmamopa Mawunu oouici gasu. Pospobnena neviponna
MOOeb 00360TIAE 6PAXOBY6AMU OUCOANAHCH, WO BUHUKAIOMb NPU KOPOMKUX 3AMUKAHHAX Yy cmamopi mawuny. Peanizoeana mamemamuyna
MOOelb 8 eKCNepmHil cucmemi IPYHMyemvcs Ha mpughasuiti mooeni. Mamemamuuni napamempu, wo 6paxoeyiomocsi 8 yiil Mooeli,
DO3PAX0BYIOMbCA OHNAIH. XapaKmepucmuyHull 6eKmop Mooeni WmyyHoi HelpoHHOT Mepedrci hopMyEmMbCs WIAXOM POSKIAOAHHS CUSHATY
cmpymy cmamopa 3 UKOPUCIAHHAM 8eligem-0UCKpemHo2o memooy. Ompumani pe3yibmamu noKasyoms, Wo 0aua Memoouxa 003601596
3a6e3neuumu Oinbuie GUAGTEHHS 3 YIMKOIO OYIHKOIO YUCIA GUMKIG NpU KOPOMKOMY 3amukanui. Takodc po3pobiena exchepmua cucmema
ons1 Koughieypayitl, wo npuiiMalomsbcs, 8i0pi3HAEMbCs 8ucokolo mounicmio. bion. 18, tadm. 5, puc. 4.

Kniouosi cnosa: nuckpeTrHe BeHBJIeT-IePeTBOPEHHs, ACHHXPOHHA MallIMHAa, Tpuda3Ha Moje/b, 0araTolapoBa IepcenTPoOHHA

HelpOHHA Mepexa.

Introduction. The application of the discrete wavelet
transform (DWT) technique demonstrates significant results
in terms of fault diagnosis [1, 2]. The discrete decomposition
of the stator current to multilevel gives a real image about
stator fault of the induction machine. Detection of non-
stationary produced by the stator current during a short
circuit is obtained by using multilevel decomposition.
Diagnosis by using wavelet techniques for discrete and
continuous signals has been presented in [1-3]. Fault
diagnosis methods that based on the fast Fourier transform
approach are more efficient for stationary signals or
permanent regime. Furthermore, these methods are largely
used for fault detection and isolation scheme of induction
machines [2]. However, the fast Fourier transform approach
is not efficient and has drawbacks for no-stationary signals
[1, 4]. To resolve these drawbacks the DWT technique has
been proposed. This last is not only used for fault detection
and localization in the machine stator (such as short circuit),
but also it allows extracting their frequency. The frequency
extraction is performed based on decomposition of the stator
current to multilevels.

The proposed technique offers a powerful analysis of
signals. In signal processing field this technique is
considered as an important tool of diagnosis for the induction
machines [5, 6]. So, to ameliorate the diagnosis procedure
for induction machine a novel approach has been proposed.
This approach is hybridization between neural networks
(NNs) and the DWT technique. The principal of the
proposed approach is given as follow: first by using the
DWT technique three parameters (energy, Kurtosis and

singular values), which are associated to a stator fault are
calculated. These three parameters must be extracted for
each level of the current stator. The obtained results
demonstrate the effectiveness of the proposed approach for
fault detection and isolation in induction machines.

Automatic fault detection and localization using NNs
for the three-phase model of the induction machine, is
considered more realistic «Xianrong Chang model» [7].
Intern faults which are studied in this work are short circuits
between turns of the same stator phase. This model allows
taking into account disequilibrium in the stator. This
disequilibrium can generate a short circuit between turns.

Several methods have been developed in literature.
These methods are based on NNs [7-9], shape recognition
[1, 10], fuzzy logic [11], genetic algorithms [12], time-
frequency representations. All these methods are used to
automate the diagnosis process basing on data acquisition
from the machine for without intervention of an expert.

NNs represent a preferred solution for diagnosis
problems using automatic classification of signals and
shapes. In this context, many applications of NNs are
distinguished for fault diagnosis and especially for
electrical machines [13].

In fact, NNs are largely exploited in the field of
classification and shape recognition. Their outputs allow
approximating the inputs to different classes; which
means that a NN can work as an optimal classifier [14].
NNs are characterized by a mathematical structure, and
able to generate behavioral model from input-output data

© S. Sakhara, M. Brahimi, L. Nacib, T.M. Layadi

Electrical Engineering & Electromechanics, 2023, no. 3

21



of dynamic systems. Recently, NNs have known large use
in modeling, controlling and supervision of industrial
systems. Using NN models for measuring, observing and
diagnosis can solve many problems of classical modeling.
These models allow global monitoring for complex
systems, and offer the possibility of fault isolation with
necessary decisions [15].

Following the obtained results given in [1] and
taking into consideration the results of [2, 3, 16], it is
possible to select as an input vector for the NN model the
stored energy [17], the Kurtosis and the singular values
decomposition (SVD) of each level (D3, Dy, Ds, D¢, D7)
and the resistant torque value. The designed NN model
has three layers. Many tests of classification have been
realized to determine the optimal structures of the NN
model. The NN model used for discrimination of the
stator fault is described as follow:

e 16 neural for the input layer;

e 10 neural for the hidden layer;

o 4 neural for the output layer.

The main objective of this research work is to
present developments by applying NNs in fault diagnosis.
Methods of diagnosis based on a black box model type
(NNs with supervised learning) have been adopted. This
research work is subdivided in two steps:

e The first step concerns a formulation of an input
vector based on the Kurtosis values, SVD and the stored
energy values in each level D;, Dy, Ds, Dg, D; with
variations in short circuit percentage between 0 to 15 %.
This formulation is applied for the phase A, B and C
respectively in different operating regime from 0 to 7 N-m
with a variation step of 0.25.

e The second step concerns the classifier conception to
classify the operating modes of the induction machine.
So, different classes are distinguished, three classes are
used for fault cases and one class is used for normal case.

Three-phase equivalent model of unbalanced
asynchronous machine (X. Chang model). The present
paper shows an induction machine model taking into
account a short circuit in the three-phases of the machine.
To extract electrical faults signature, the stator currents of
the phases are used. First, to detect effectively the
presence of the signatures related to the stator currents of
three-phase model, sophisticated techniques have been
proposed. Furthermore, the obtained results using
numerical simulation demonstrate that excellent
performances have been obtained using the proposed
method. Finally, in last section, many comments and
explanations are highlighted. The model used in this work
is the X. Chang model which equivalent three-phase
model having the following properties:

o all parameters of the model are computable online;

o this model is derived directly from the equivalent
three-phase model, no additional assumptions required;

e the mutual inductances no longer depend on the
relative position between the stator and the rotor, the
value of this position is unknown in practice;

e the model is verified by comparing the simulation
data to the experimental data obtained on a test rig
(Poitiers LAII Laboratory, France) in the time domain.

The motor model [6] in the presence of short circuit
fault is obtained from electric and magnetic equations of

asynchronous machine. X. Chang et al, have proposed a
transformation matrix 7 to transform the rotor variables into
new variables having the same angular stator frequency.
Equations (1) — (4) represent the new three-phase model in
which all parameters can be computed on-line [8, 9]:
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It is important to note that the matrixes [R,], [R.],
[Lsol, [Liol, [My], and [M,,] are constant matrixes. The
parameters values depend on the number of considered
coils turns. The matrixes [M,,] and [M,] are with
coefficients varying over time. Thus, the coefficients are
in function of the relative position € between the stator
and the rotor. This position is defined as follows: @1is the
angle between the stator phase A and the rotor phase A,
thus the following expressions are obtained:

ezjg'dt;
0Q'=(1-g)0;
g=(2-0Q)/Q,

where g is the slip coefficient; (2 is the rotating field
speed; £2’is the rotor mechanical speed.

If the rotor is balanced, the following equations are
deduced:
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The following coefficients are defined as:
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where f;,, f;» and f;. are the percentages of turns number
reduction in stator 3 phases 4, B and C.

The matrixes [Ry], [Lsol, [Myl, [My] and [M,]
depend on 3 coefficients £, f, and f..:
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The transformation matrix 7"
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From (1)—(4), the new model is rewritten in the
following form:
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The obtained equations are nonlinear; thus, a numerical
method must be implemented to reach a solution and the
classical 4th order Runge Kutta method is chosen:
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Mechanical equations. According to [10] if we
consider the current and flux in three-phase frame, the
following expression is obtained:

Yorlsa = Ysclsa — Ysalsp +
Cem :i( sbtsa sa’sb ] . 29)
\/E + 5ysc[ SUsalsc "Usb[sc
In the case of three-phase source without neutral:
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From this, the equation presented below is obtained:
Com = \/gp(?yc[sb - stlsc) : (3D

Automatic detection steps of stator faults. DWT
application for diagnosis. The three-phase model of the
synchronous machine is called X. Chang, which take into
account a disequilibrium mode in the stator turns [1]. This
model has ability to study many phenomena more than a
short circuit fault in synchronous machines, which allows
to select an efficient diagnosis method. For this reason,
the DWT technique has been used [1]. This technique has
proved significant results in terms of short circuit faults.
In addition, it facilitates the X. Chang model use in real
time to diagnosis and control of machines.

Analysis of wavelets is performed in order to study
the spectral behavior, elaborate reliable spectral
signatures, characterize short circuit fault between turns,
and estimate in real time the phase currents (/4, /g and I¢).

In order to study the effect of turn number in short
circuit (fy,, f;» and f;.) on one of the three stators phase the
nominal load C is fixed to 7 N-m, with variation in turn
number between 0 % and 15 %. The experiment tests
have been realized under variation of load between 0 and
7 N-m with a sampling step equals to 0.25. The obtained
results in [1] show that the application of the wavelet
technique is largely used for fault diagnosis. In fact, this
technique allows decomposing the stator signal for a non-
stationary current during a short circuit. The direct
decomposition of the stator signal to multilevels generates
a real image about the induction machine stator faults.

In the research work [1], it is also remarked that the
coefficient amplitudes of signals which are obtained after
decomposition are augmented comparing to healthy mode
of the machine.

This augmentation is interpreted by the variation of
the relative stored energy associated to each level of
decomposition. It is observed that, the wavelet technique
is used to extract and locate the no-stationary point in
signals, which allows to select the stored energy as an
important fault indicator. The fault indicator is considered
as a parameter to formulate input vector of the artificial
neural network (ANN). So, to detect automatically the
differential state between the faulty and the healthy
machine an ANN is designed.

In order to analyze the no-stationary generated in the
stator current during a short-cut of a phase, or in
transitional mode, the decomposition of the stator current
signal of a specific phase has been performed (Table 1).
The decomposition test is realized by using the DWT on
the phase A «Daubechies (by 40 dB)». The
decomposition level n depends on the sampling frequency
f. and the supply frequency f; and can be calculated using
the equation presented below [18]:
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where sampling frequency f, = 2000 samples/s; supply
frequency f; = 50 Hz.

Table 1

Frequency bands for wavelet signal
Levels Approximations Details
Level 1 | Al 0-1000 Hz 1000-2000 Hz
Level2 | A2 0-500 Hz 500-1000 Hz
Level3 | A3 0.250 Hz 250-500 Hz
Level4 | A4 0-125 Hz 125-250 Hz
Level 5 | AS 0-62.5 Hz 62.5-125 Hz
Level 6 | A6 0-31.25Hz 31.25-62.5 Hz
Level 7 | A7 0-15.625 Hz 15.625-31.25 Hz

Architecture of the automatic diagnosis system.
By using the NN technique, it is possible to detect a short-
cut in a stator phase during the operating of the induction
machine. However, the localization of the fault represents
a big problem. So, in this work the problem of
localization is solved by considering specific indicators
for the NN input. These indicators are used for
classification and learning of the NN. The short circuit
fault on the three stator phases is evident from the wavelet
decomposition of stator current signal /,, the results of the
expertise carried out in our work showed that the best
performance of the localization of the short circuit fault
phase is the stored energy (£)), the Kurtosis value (KT7),
the singular value decomposition (SVD) of each level D;,
Dy, Ds, Dg and D7:
e the proper value of the stored energy (£)) in each band
of frequency is defined by the following formulation:

k=n )
E;= ZDj,k(n).
k=1

e Several facts on Kurtosis are transformed into the
one for discrete time system as:

(33)
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where x;: i =1, 2, ..., N represents the discrete signal data;
x' is an average of {x;} and given as follow:
N
1
X=—>"x, (35)
N3

o the decomposition to singular values (SVD) allows
to extract principal components of a matrix. In the case of
signals, these principal components are linked to data
which maximize the energy of signal. For example, the
SVD of a matrix that composes of vibratory measures in
different points allows under certain conditions to extract
specific dominant proper modes [4].

In Tables 2—4 among 1334 experiments examples of
experiences are presented. For each experiment, the value of
load is fixed and the short-cut percentage varies between 0 %
and 15 % in the phase A. So, an experiment is repeated for
each value of load. The load values considered in the
simulation are 0, 3.5 and 7 N-m.

Table 2
Stored energy evolution (£)) in levels Ds, Dy, Ds, Dg and D,
in function to short circuit in phase A

cirillll(i)tl,t % Es Es Es £ &
0 0.00032867(0.13039{12.185]0.10273|0.090117
1 0.00033862(0.13235(12.846(0.10392(0.089307
5 0.00039182(0.14131{16.095|0.10922|0.086439| O
10 0.00049887(0.15584(21.936(0.11727|0.084027
15 0.00067368(0.17576|30.673|0.12749|0.083692
0 0.00052029{0.14211|18.863|0.11242|0.098359
1 0.00054522(0.14478(19.988|0.11424|0.098125
5 0.00066619(0.15701|25.356(0.12237|0.097866| 3.5
10 0.00087918(0.17681{34.567|0.13490(0.099550
15 0.00119040(0.20373(47.724|0.15096|0.104510
0 0.00210290(0.30525[121.46{0.19438]0.196270
1 0.00218110(0.31311{126.18[0.19935]0.199820
5 0.00253800(0.34828(147.43|0.22160(0.216480| 7
10 0.00310670(0.40248|180.55(0.25584|0.244090
15 0.00385850(0.47173(223.27(0.29941]0.281750

Torque
C,, N'm

Table 3
SVD evolution in levels D3, Dy, Ds, Dg and D5 in function to
short circuit in phase A

Cirillll(i)tl,—t% SvDsy | SvD, | SvDs | svDs | SVD, gorg“;
0 |0.81076]16.149 | 156.11 | 14.334 | 13.425
1 |0.82224 | 16270 | 160.29 | 14.417 | 13.365
5 088524 | 16.812]179.42 | 14780 | 13.148| 0
10 |0.99887 | 17.655 | 209.46 | 15315 | 12.964
15 | 1.16080 | 18.749 | 247.68 | 15.968 | 12.938
0 | 1.02010 | 16.859 | 194.23 | 14.995 | 14.026
1 1.04420 | 17.016 | 199.94 | 15.116 | 14.009
5 1.15430 | 17.720 | 225.19 | 15.644 | 13.990| 3.5
10 | 1.32600 | 18.805 | 262.93 | 16.426 | 14.110
15 | 1.54300 | 20.186 | 308.95 | 17.376 | 14.457
0 |2.05080 | 24.708 | 492.88 | 19.717 | 19.813
1 | 2.08860 | 25.024 | 502.35 | 19.968 | 19.991
5 [2.25300 | 26.392 | 543.01 | 21.052 | 20.808| 7
10 |2.49270 | 28.372 | 600.92 | 22.620 | 22.095
15 |2.77790 | 30.716 | 668.24 | 24.471 | 23.738
Table 4

KT evolution in levels D5, Dy, Ds, Dg and D5 in function to
short circuit in phase A

cirscllll(i)':;t% KTy | kT, | k1 | KT | KT g";%“;
0 | 193.16|28.635 | 12.3050 | 63.194 | 71.722
1 188.78 | 27.614 | 11.9410 | 63.637 | 71.495
5 169.47 | 23.783 | 10.391 | 64.75569.782| 0
10 | 149.21|19.579 | 8.4478 | 64377 | 65.305
15 | 142.86|16.032| 6.7193 | 61.632 | 57.558
0 195.95 | 24.129 | 5.4852 | 53.033 | 60.318
1 199.08 | 23.101 | 5.2977 | 52.963 | 59.372
5 |214.10]19.302 | 4.6081 |52.059 | 54.801| 3.5
10 |236.47 | 15.270 | 3.8850 | 49.466 | 47.383
15 |259.73 | 12.022| 3.3069 | 45319 | 38.634
0 |449.87|6.6108 | 1.7489 | 25.888 | 22.014
1 |455.70 | 63101 | 1.7480 | 25.802 | 21.521
5 |477.96|5.2501| 1.7434 |25385 | 19.834] 7
10 |503.00 | 42131 | 1.7362 | 24.768 | 18.421
15 | 5243134466 1.7271 | 24.176 | 17.789

Following Tables 2—4, the stored energy (£)), the
Kurtosis value (K7) and the singular value decomposition
(SVD) of different levels (D3, D4, Ds, Ds and D;) are
considered efficient indicators for diagnosis of the
induction machine in terms of short-cut fault.

ANN for diagnosis. The present research work focuses
on the use of an artificial NN model. This model allows to
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estimate automatically the state of the induction machine in
healthy and fault modes basing on the input indicators.
Diagnosis using learning and recognition algorithms is
considered as a powerful tool comparing to conventional
techniques. However, training of an ANN requires a large
database to attain high precision. In this sense, the three
phases model of the induction machine is used (X. Chang).
This model takes into account all possible situations of short
circuit percentage for each stator phase.

Stator fault diagnosis by NN. The purpose of the
proposed fault diagnosis system is to detect and locate
short circuits on the stator windings of a three phase
induction motor using ANN. The motor fault diagnosis
process is shown in [1]. It is composed of four parts: data
acquisition, feature extraction, fault detection and post-
processing as shown in Fig. 1. The design of the ANN
based fault diagnosis system can be decomposed in the
following four steps [2]:

e preparation of a training data set for the ANN;
selection of the ANN architecture;
training of the ANN model;
evaluation of the trained model on test dataset.

Motor:
X. Chang model

v

Transforming signals by DWT on stator current /,:
- Energy level computation (£))

- Several facts on Kurtosis (K7)

- The singular value decomposition (SVD)

v

Detection Algorithm:
- Neural network training
- Detection motor faults

|Diagnosis decision |

Fig. 1. Flowchart of proposed motor fault diagnosis

Preparation of the training dataset for NN. The
dataset consists of examples where each example is couple
of the input vector and the output default to train the
classifier. Input data was collected through simulations
using X. Chang’s three-phase mathematical model. To
locate the faulty phase of an induction motor very
efficiently, since the model is practically validated in the
NANTE Laboratory, the training data must cover the entire
range of operating conditions, including all possible fault
phenomena, even healthy cases.

The input matrix X,,,;, and the output matrix Y,,;, have
been used as database to train the ANN model. Equations
(25), (26) and (29) are used to formulate the Xj;, matrix.
The experiment tests have been realized under variation of
load between 0 and 7 N-m with a sampling step equals to
0.25, which corresponds to the following different
operating cases of the induction motor: healthy
(29 samples) and fault of an odd number of shorted turns
(with variation in turn number between 0 % and 15 %) on
each stator phase [(435 = 29-15) samples]. Thus, a total of
1334 (1334 = 435-3 + 29) samples have been collected and
applied as the inputs to the NNs for stator inter-turn fault
diagnosis.

The desired outputs (S;) of the NN are chosen as
follows:

1) S; = 1 for a short circuit at phase As; otherwise, S; =0;
2) S, =1 for a short circuit at phase Bs; otherwise, S,= 0;
3) S; =1 for a short circuit at phase Cs; otherwise, S; = 0.

Therefore, the output states of the NNs are set as the
following (Table 5):

[1; 0; 0; 0] — healthy mode;

[0; 1; 0; 0] — a defect has occurred on phase A;

[0; 0; 1; 0] — a defect has occurred on phase B;

[0; 0; 0; 1] — a defect has occurred on phase C.

Table 5
The output states of the NNs

Type of fault Symbol |S1|S2[S3[S4
Healthy mode Cl 11]0]0(0
Fault occurred on phase A C2 0]1[0]0
Fault occurred on phase B C3 0j|0]|1]0
Fault occurred on phase C C4 0]0]0]1

The ANN paradigm used in the proposed fault
diagnosis system is a feed forward multilayer perceptron
NN trained by a back propagation and gradient descent
algorithm. The number of input units of ANN is
determined by the size of the input vector. However, the
number of neurons in the output layer is determined by
the number of faults to be diagnosed.

The input vector values are: the stored energy
eigenvalues (£)), the Kurtosis value (K7) and the singular
value decomposition (SVD) of each level D;, D,, Ds, D¢
and D;. The outputs of the ANN represent the fault
classes, which are the 3 phases of the induction motor,
respectively, and one hidden layer with 10 neurons. The
activation functions of the hidden and output layers are
«tansig» and «logsig», respectively.

Training of the NN. Multilayered perceptron NNs
are trained using a supervised learning algorithm known
as backpropagation. Backpropagation combined with
descent gradient raining is the used training algorithm. It
attempts to reduce global error by updating the weights in
the direction of the gradient, thereby improving the
performance of the ANN.

In this paper, the error is expressed as mean square error
(MSE). The training performance is shown in Fig. 2, where a
low training MSE is achieved after 334 epochs (2.6377-107).
The training output and error from the NN are shown in
Fig. 3. From Fig. 4 it is clear that the NN is well trained and

reproduces the desired output correctly with few errors.

) Performance is 2.6377e-07 at epoch 334
10°F

Train
Best

Cross-Entropy (crossentropy)

. . . . . .
0 50 100 150 200 250 300
334 Epochs

Fig. 2. Training performances of the NN

Simulation results. The performance of a NN on
the test dataset is its capacity for generalization. This data
set is divided into 2 parts. One set is used for training and
the other set is used for testing. In fact, the trained ANN
classifier performs well on both training and test data. The
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test procedure is carried out on an independent test dataset
from the training dataset to assess the generalizability of
the trained model.

The test data set is presented to the NNs under 14 load
torques (0.25, 0.75, 1.25, 1.75, 2.25, 2.75, 3.25, 3.75, 4.25,
4.75,5.25,5.75, 6.25, and 6.75 N-m) and corresponds to the

following different operating cases of the induction motor:
healthy (14 samples) and fault of an even number of shorted
tumns (1, 2, 3,4, 5,6, 7, 8,9, 10, 11, 12, 13, 14, and 15)
on each stator phase [210 samples]. Thus, a total of 224 test
samples were collected to test each phase stator inter-turn
fault.
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Fig. 4. Test outputs and errors for fault on phase As, Bs and Cs

Figure 4 shows the NN test outputs and their errors for
faults on the As, Bs and Cs phases. The test output of the NN
(C1,C2,C3,C4)is equal to (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0)
and (0, 0, 0, 1) with good accuracy. This means that the NN
is able to correctly locate the fault occurring on the faulty
phase, As phase, Bs phase and Cs phase respectively. The
test error for this case is very small. We conclude that the
NN is able to correctly locate the stator inter turn short circuit
fault occurring on one of the phases.

Conclusions. This article presents a technique of
detection and localization of short circuit defects of turn-
by-turn in induction motors, chosen as a condition model,
the three-phase model of X. Chang because it takes into
account the case of imbalance in the stator winding. This
choice is based on the nature of the fault to be studied
(short circuit) and in addition the ease of use of this model
for diagnosis and monitoring. In this work, the use of two
analytical methods for diagnosing and detecting defects in
the machine is based on two techniques, one being
discrete wavelet transform and the other on neural
network fault classification techniques. The discrete
wavelet transform application of the stator current in
phase A is used to determine the three parameters that are

sensitive to the short circuit fault: energy, kurtosis and
decomposition into singular values of each level D;, D,,
Ds, D¢ and D,. These values are then used as inputs for
classifier neural network. The information provided by
this input on the detection and localization of defects
makes it a reliable indicator of the short circuit defects
between coils in the stator windings of induction motors.
The results obtained are outstanding, and the proposed
technique is capable of automatically detecting and
locating short circuit failures. As another area of this
paper, we can expand our research to determine the
number of short circuits on a faulty phase, allowing for a
complete diagnostic procedure.
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