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Introduction. Nowadays, fault diagnosis of induction machines plays an important role in industrial fields. In this paper, Artificial Neural 
Network (ANN) model has been proposed for automatic fault diagnosis of an induction machine. The aim of this research study is to design 
a neural network model that allows generating a large database. This database can cover maximum possible of the stator faults. The fault 
considered in this study take into account a short circuit with large variations in the machine load. Moreover, the objective is to automate the 
diagnosis algorithm by using ANN classifier. Method. The database used for the ANN is based on indicators which are obtained from 
wavelet analysis of the machine stator current of one phase. The developed neural model allows to taking in consideration imbalances which 
are generated by short circuits in the machine stator. The implemented mathematical model in the expert system is based on a three-phase 
model. The mathematical parameters considered in this model are calculated online. The characteristic vector of the ANN model is formed 
by decomposition of stator current signal using wavelet discrete technique. Obtained results show that this technique allows to ensure more 
detection with clear evaluation of turn number in short circuit. Also, the developed expert system for the taken configurations is 
characterized by high precision. References 18, tables 5, figures 4. 
Key words: discrete wavelet transform, induction machine, three-phase model, multilayer perceptron neural network. 
 

Вступ. Нині діагностика несправностей асинхронних машин відіграє значну роль у промисловості. У цій статті запропоновано 
модель штучної нейронної мережі для автоматичної діагностики несправностей асинхронної машини. Метою цього 
дослідження є розробка моделі нейронної мережі, що дозволяє генерувати велику базу даних. Ця база може охоплювати 
максимально можливі несправності статора. Несправності, розглянуті у цьому дослідженні, враховують коротке замикання 
при великих коливаннях навантаження машини. Крім того, мета полягає в тому, щоб автоматизувати алгоритм діагностики за 
допомогою класифікатора штучної нейронної мережі. Метод. База даних, що використовується для штучної нейронної мережі, 
заснована на показниках, отриманих в результаті вейвлет-аналізу струму статора машини однієї фази. Розроблена нейронна 
модель дозволяє враховувати дисбаланси, що виникають при коротких замиканнях у статорі машини. Реалізована математична 
модель в експертній системі ґрунтується на трифазній моделі. Математичні параметри, що враховуються в цій моделі, 
розраховуються онлайн. Характеристичний вектор моделі штучної нейронної мережі формується шляхом розкладання сигналу 
струму статора з використанням вейвлет-дискретного методу. Отримані результати показують, що дана методика дозволяє 
забезпечити більше виявлення з чіткою оцінкою числа витків при короткому замиканні. Також розроблена експертна система 
для конфігурацій, що приймаються, відрізняється високою точністю. Бібл. 18, табл. 5, рис. 4. 
Ключові слова: дискретне вейвлет-перетворення, асинхронна машина, трифазна модель, багатошарова персептронна 
нейронна мережа. 
 

Introduction. The application of the discrete wavelet 
transform (DWT) technique demonstrates significant results 
in terms of fault diagnosis [1, 2]. The discrete decomposition 
of the stator current to multilevel gives a real image about 
stator fault of the induction machine. Detection of non-
stationary produced by the stator current during a short 
circuit is obtained by using multilevel decomposition. 
Diagnosis by using wavelet techniques for discrete and 
continuous signals has been presented in [1-3]. Fault 
diagnosis methods that based on the fast Fourier transform 
approach are more efficient for stationary signals or 
permanent regime. Furthermore, these methods are largely 
used for fault detection and isolation scheme of induction 
machines [2]. However, the fast Fourier transform approach 
is not efficient and has drawbacks for no-stationary signals 
[1, 4]. To resolve these drawbacks the DWT technique has 
been proposed. This last is not only used for fault detection 
and localization in the machine stator (such as short circuit), 
but also it allows extracting their frequency. The frequency 
extraction is performed based on decomposition of the stator 
current to multilevels. 

The proposed technique offers a powerful analysis of 
signals. In signal processing field this technique is 
considered as an important tool of diagnosis for the induction 
machines [5, 6]. So, to ameliorate the diagnosis procedure 
for induction machine a novel approach has been proposed. 
This approach is hybridization between neural networks 
(NNs) and the DWT technique. The principal of the 
proposed approach is given as follow: first by using the 
DWT technique three parameters (energy, Kurtosis and 

singular values), which are associated to a stator fault are 
calculated. These three parameters must be extracted for 
each level of the current stator. The obtained results 
demonstrate the effectiveness of the proposed approach for 
fault detection and isolation in induction machines. 

Automatic fault detection and localization using NNs 
for the three-phase model of the induction machine, is 
considered more realistic «Xianrong Chang model» [7]. 
Intern faults which are studied in this work are short circuits 
between turns of the same stator phase. This model allows 
taking into account disequilibrium in the stator. This 
disequilibrium can generate a short circuit between turns.  

Several methods have been developed in literature. 
These methods are based on NNs [7-9], shape recognition 
[1, 10], fuzzy logic [11], genetic algorithms [12], time- 
frequency representations. All these methods are used to 
automate the diagnosis process basing on data acquisition 
from the machine for without intervention of an expert.  

NNs represent a preferred solution for diagnosis 
problems using automatic classification of signals and 
shapes. In this context, many applications of NNs are 
distinguished for fault diagnosis and especially for 
electrical machines [13]. 

In fact, NNs are largely exploited in the field of 
classification and shape recognition. Their outputs allow 
approximating the inputs to different classes; which 
means that a NN can work as an optimal classifier [14]. 
NNs are characterized by a mathematical structure, and 
able to generate behavioral model from input-output data 
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of dynamic systems. Recently, NNs have known large use 
in modeling, controlling and supervision of industrial 
systems. Using NN models for measuring, observing and 
diagnosis can solve many problems of classical modeling. 
These models allow global monitoring for complex 
systems, and offer the possibility of fault isolation with 
necessary decisions [15]. 

Following the obtained results given in [1] and 
taking into consideration the results of [2, 3, 16], it is 
possible to select as an input vector for the NN model the 
stored energy [17], the Kurtosis and the singular values 
decomposition (SVD) of each level (D3, D4, D5, D6, D7) 
and the resistant torque value. The designed NN model 
has three layers. Many tests of classification have been 
realized to determine the optimal structures of the NN 
model. The NN model used for discrimination of the 
stator fault is described as follow:  

 16 neural for the input layer; 
 10 neural for the hidden layer; 
 4 neural for the output layer.  

The main objective of this research work is to 
present developments by applying NNs in fault diagnosis. 
Methods of diagnosis based on a black box model type 
(NNs with supervised learning) have been adopted. This 
research work is subdivided in two steps:  

 The first step concerns a formulation of an input 
vector based on the Kurtosis values, SVD and the stored 
energy values in each level D3, D4, D5, D6, D7 with 
variations in short circuit percentage between 0 to 15 %. 
This formulation is applied for the phase A, B and C 
respectively in different operating regime from 0 to 7 Nm 
with a variation step of 0.25. 

 The second step concerns the classifier conception to 
classify the operating modes of the induction machine. 
So, different classes are distinguished, three classes are 
used for fault cases and one class is used for normal case.  

Three-phase equivalent model of unbalanced 
asynchronous machine (X. Chang model). The present 
paper shows an induction machine model taking into 
account a short circuit in the three-phases of the machine. 
To extract electrical faults signature, the stator currents of 
the phases are used. First, to detect effectively the 
presence of the signatures related to the stator currents of 
three-phase model, sophisticated techniques have been 
proposed. Furthermore, the obtained results using 
numerical simulation demonstrate that excellent 
performances have been obtained using the proposed 
method. Finally, in last section, many comments and 
explanations are highlighted. The model used in this work 
is the X. Chang model which equivalent three-phase 
model having the following properties: 

 all parameters of the model are computable online; 
 this model is derived directly from the equivalent 

three-phase model, no additional assumptions required; 
 the mutual inductances no longer depend on the 

relative position between the stator and the rotor, the 
value of this position is unknown in practice; 

 the model is verified by comparing the simulation 
data to the experimental data obtained on a test rig 
(Poitiers LAII Laboratory, France) in the time domain.  

The motor model [6] in the presence of short circuit 
fault is obtained from electric and magnetic equations of 

asynchronous machine. X. Chang et al, have proposed a 
transformation matrix T to transform the rotor variables into 
new variables having the same angular stator frequency. 
Equations (1) – (4) represent the new three-phase model in 
which all parameters can be computed on-line [8, 9]: 

       ssss PIRU  ;                     (1) 
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r

s
r

sp
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s
rr PKgIR   10 ;       (2) 
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s
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where P is the differential operator d/dt.  
 stator variables are: 

   Tscsbsas uuuU  ;                    (5) 

   Tscsbsas IIII  ;                    (6) 

   Tscsbsas   ;                    (7) 

   TrU 000 ;                         (8) 

 rotor variables are: 

   Trcrbrar IIII  ;                    (9) 

   Trcrbrar   ;                    (10) 

     r
s

r T   ;                         (11) 
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rs MTM  ;                       (13) 

        1 TMTM r
s
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It is important to note that the matrixes [Rs], [Rr], 
[Ls], [Lr], [Mss], and [Mrr] are constant matrixes. The 
parameters values depend on the number of considered 
coils turns. The matrixes [Msr] and [Mrs] are with 
coefficients varying over time. Thus, the coefficients are 
in function of the relative position  between the stator 
and the rotor. This position is defined as follows:  is the 
angle between the stator phase A and the rotor phase A, 
thus the following expressions are obtained: 
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where g is the slip coefficient;  is the rotating field 
speed;  is the rotor mechanical speed.  

If the rotor is balanced, the following equations are 
deduced: 
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The following coefficients are defined as: 
fsa

* = 1 – fsa;   fsb
* = 1 – fsb;   fsc

* = 1 – fsc, 
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where fsa, fsb and fsc are the percentages of turns number 
reduction in stator 3 phases A, B and C. 

The matrixes [Rs], [Ls], [Mss], [Msr] and [Mrs] 
depend on 3 coefficients *

saf , *
sbf  and *

scf : 

 



















*

*

*

00

00

00

sc

sb

sa

ss

f

f

f

RR ;                    (18) 

 




























ssc

ssb

ssa

ss

LfLL

LLfL

LLLf

RL
2*

00

0
2*

0

00
2*

;     (19) 

 

































2*
****

**
2*

**

****
2*

22

22

22

sc
scsbscsa

scsb
sb

sbsa

scsasbsa
sa

sss

f
ffff

ff
f

ff

ffff
f

MM ;   (20) 

 

 

 

 






























 






 







 






 







 






 









cos
3

2
cos

3

2
cos

3

2
coscos

3

2
cos

3

2
cos

3

2
coscos

***

***

***

scscsc

sbsbsb

sasasa

sr

fff

fff

fff

MM
;(21) 

where: 

   Trssr MM  .                       (22) 
The transformation matrix T: 
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where: 

   TTT 1 .                            (24) 
From (1)–(4), the new model is rewritten in the 

following form: 
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The obtained equations are nonlinear; thus, a numerical 
method must be implemented to reach a solution and the 
classical 4th order Runge Kutta method is chosen: 
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Mechanical equations. According to [10] if we 
consider the current and flux in three-phase frame, the 
following expression is obtained: 
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In the case of three-phase source without neutral: 
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From this, the equation presented below is obtained: 

 scsbsbscem IIPC   3 .              (31) 

Automatic detection steps of stator faults. DWT 
application for diagnosis. The three-phase model of the 
synchronous machine is called X. Chang, which take into 
account a disequilibrium mode in the stator turns [1]. This 
model has ability to study many phenomena more than a 
short circuit fault in synchronous machines, which allows 
to select an efficient diagnosis method. For this reason, 
the DWT technique has been used [1]. This technique has 
proved significant results in terms of short circuit faults. 
In addition, it facilitates the X. Chang model use in real 
time to diagnosis and control of machines.  

Analysis of wavelets is performed in order to study 
the spectral behavior, elaborate reliable spectral 
signatures, characterize short circuit fault between turns, 
and estimate in real time the phase currents (IA, IB and IC). 

In order to study the effect of turn number in short 
circuit (fsa, fsb and fsc) on one of the three stators phase the 
nominal load C is fixed to 7 Nm, with variation in turn 
number between 0 % and 15 %. The experiment tests 
have been realized under variation of load between 0 and 
7 Nm with a sampling step equals to 0.25. The obtained 
results in [1] show that the application of the wavelet 
technique is largely used for fault diagnosis. In fact, this 
technique allows decomposing the stator signal for a non-
stationary current during a short circuit. The direct 
decomposition of the stator signal to multilevels generates 
a real image about the induction machine stator faults.  

In the research work [1], it is also remarked that the 
coefficient amplitudes of signals which are obtained after 
decomposition are augmented comparing to healthy mode 
of the machine. 

This augmentation is interpreted by the variation of 
the relative stored energy associated to each level of 
decomposition. It is observed that, the wavelet technique 
is used to extract and locate the no-stationary point in 
signals, which allows to select the stored energy as an 
important fault indicator. The fault indicator is considered 
as a parameter to formulate input vector of the artificial 
neural network (ANN). So, to detect automatically the 
differential state between the faulty and the healthy 
machine an ANN is designed.  

In order to analyze the no-stationary generated in the 
stator current during a short-cut of a phase, or in 
transitional mode, the decomposition of the stator current 
signal of a specific phase has been performed (Table 1). 
The decomposition test is realized by using the DWT on 
the phase A «Daubechies (by 40 dB)». The 
decomposition level n depends on the sampling frequency 
fe and the supply frequency fs and can be calculated using 
the equation presented below [18]: 
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 
1

2log

log
 se ff

n ,                        (32) 

where sampling frequency fe = 2000 samples/s; supply 
frequency fs = 50 Hz.  

Table 1 
Frequency bands for wavelet signal 

Levels Approximations Details 
Level 1 A1 0-1000 Hz 1000-2000 Hz 
Level 2 A2 0-500 Hz 500-1000 Hz 
Level 3 A3 0.250 Hz 250-500 Hz 
Level 4 A4 0-125 Hz 125-250 Hz 
Level 5 A5 0-62.5 Hz 62.5-125 Hz 
Level 6 A6 0-31.25 Hz 31.25-62.5 Hz 
Level 7 A7 0-15.625 Hz 15.625-31.25 Hz 

 

Architecture of the automatic diagnosis system. 
By using the NN technique, it is possible to detect a short-
cut in a stator phase during the operating of the induction 
machine. However, the localization of the fault represents 
a big problem. So, in this work the problem of 
localization is solved by considering specific indicators 
for the NN input. These indicators are used for 
classification and learning of the NN. The short circuit 
fault on the three stator phases is evident from the wavelet 
decomposition of stator current signal IA, the results of the 
expertise carried out in our work showed that the best 
performance of the localization of the short circuit fault 
phase is the stored energy (Ej), the Kurtosis value (KT), 
the singular value decomposition (SVD) of each level D3, 
D4, D5, D6 and D7: 

 the proper value of the stored energy (Ej) in each band 
of frequency is defined by the following formulation: 
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 Several facts on Kurtosis are transformed into the 
one for discrete time system as: 
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where xi: i = 1, 2, ... , N represents the discrete signal data; 
x is an average of {xi} and given as follow: 
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 the decomposition to singular values (SVD) allows 
to extract principal components of a matrix. In the case of 
signals, these principal components are linked to data 
which maximize the energy of signal. For example, the 
SVD of a matrix that composes of vibratory measures in 
different points allows under certain conditions to extract 
specific dominant proper modes [4].  

In Tables 24 among 1334 experiments examples of 
experiences are presented. For each experiment, the value of 
load is fixed and the short-cut percentage varies between 0 % 
and 15 % in the phase A. So, an experiment is repeated for 
each value of load. The load values considered in the 
simulation are 0, 3.5 and 7 Nm. 

Table 2 
Stored energy evolution (Ej) in levels D3, D4, D5, D6 and D7 

in function to short circuit in phase A 
Short

circuit, %
E3 E4 E5 E6 E7 

Torque
Cr, Nm

0 0.00032867 0.13039 12.185 0.10273 0.090117
1 0.00033862 0.13235 12.846 0.10392 0.089307
5 0.00039182 0.14131 16.095 0.10922 0.086439

10 0.00049887 0.15584 21.936 0.11727 0.084027
15 0.00067368 0.17576 30.673 0.12749 0.083692

0 

0 0.00052029 0.14211 18.863 0.11242 0.098359
1 0.00054522 0.14478 19.988 0.11424 0.098125
5 0.00066619 0.15701 25.356 0.12237 0.097866

10 0.00087918 0.17681 34.567 0.13490 0.099550
15 0.00119040 0.20373 47.724 0.15096 0.104510

3.5 

0 0.00210290 0.30525 121.46 0.19438 0.196270
1 0.00218110 0.31311 126.18 0.19935 0.199820
5 0.00253800 0.34828 147.43 0.22160 0.216480

10 0.00310670 0.40248 180.55 0.25584 0.244090
15 0.00385850 0.47173 223.27 0.29941 0.281750

7 

 

Table 3 
SVD evolution in levels D3, D4, D5, D6 and D7 in function to 

short circuit in phase A 
Short 

circuit, %
SVD3 SVD4 SVD5 SVD6 SVD7 

Torque
Cr, Nm

0 0.81076 16.149 156.11 14.334 13.425
1 0.82224 16.270 160.29 14.417 13.365
5 0.88524 16.812 179.42 14.780 13.148
10 0.99887 17.655 209.46 15.315 12.964
15 1.16080 18.749 247.68 15.968 12.938

0 

0 1.02010 16.859 194.23 14.995 14.026
1 1.04420 17.016 199.94 15.116 14.009
5 1.15430 17.720 225.19 15.644 13.990
10 1.32600 18.805 262.93 16.426 14.110
15 1.54300 20.186 308.95 17.376 14.457

3.5 

0 2.05080 24.708 492.88 19.717 19.813
1 2.08860 25.024 502.35 19.968 19.991
5 2.25300 26.392 543.01 21.052 20.808
10 2.49270 28.372 600.92 22.620 22.095
15 2.77790 30.716 668.24 24.471 23.738

7 

 

Table 4 
KT evolution in levels D3, D4, D5, D6 and D7 in function to 

short circuit in phase A 
Short 

circuit, %
KT3 KT4 KT5 KT6 KT7 

Torque
Cr, Nm

0 193.16 28.635 12.3050 63.194 71.722
1 188.78 27.614 11.9410 63.637 71.495
5 169.47 23.783 10.391 64.755 69.782
10 149.21 19.579 8.4478 64.377 65.305
15 142.86 16.032 6.7193 61.632 57.558

0 

0 195.95 24.129 5.4852 53.033 60.318
1 199.08 23.101 5.2977 52.963 59.372
5 214.10 19.302 4.6081 52.059 54.801
10 236.47 15.270 3.8850 49.466 47.383
15 259.73 12.022 3.3069 45.319 38.634

3.5 

0 449.87 6.6108 1.7489 25.888 22.014
1 455.70 6.3101 1.7480 25.802 21.521
5 477.96 5.2501 1.7434 25.385 19.834
10 503.00 4.2131 1.7362 24.768 18.421
15 524.31 3.4466 1.7271 24.176 17.789

7 

 

Following Tables 24, the stored energy (Ej), the 
Kurtosis value (KT) and the singular value decomposition 
(SVD) of different levels (D3, D4, D5, D6 and D7) are 
considered efficient indicators for diagnosis of the 
induction machine in terms of short-cut fault.  

ANN for diagnosis. The present research work focuses 
on the use of an artificial NN model. This model allows to 
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estimate automatically the state of the induction machine in 
healthy and fault modes basing on the input indicators. 
Diagnosis using learning and recognition algorithms is 
considered as a powerful tool comparing to conventional 
techniques. However, training of an ANN requires a large 
database to attain high precision. In this sense, the three 
phases model of the induction machine is used (X. Chang). 
This model takes into account all possible situations of short 
circuit percentage for each stator phase. 

Stator fault diagnosis by NN. The purpose of the 
proposed fault diagnosis system is to detect and locate 
short circuits on the stator windings of a three phase 
induction motor using ANN. The motor fault diagnosis 
process is shown in [1]. It is composed of four parts: data 
acquisition, feature extraction, fault detection and post-
processing as shown in Fig. 1. The design of the ANN 
based fault diagnosis system can be decomposed in the 
following four steps [2]: 

 preparation of a training data set for the ANN; 
 selection of the ANN architecture; 
 training of the ANN model; 
 evaluation of the trained model on test dataset. 

 Motor: 
X. Chang model 

Transforming signals by DWT on stator current Ia:
- Energy level computation (Ej)  
- Several facts on Kurtosis (KT)  
- The singular value decomposition (SVD) 

Detection Algorithm: 
- Neural network training 
- Detection motor faults 

Diagnosis decision  
Fig. 1. Flowchart of proposed motor fault diagnosis 

 
Preparation of the training dataset for NN. The 

dataset consists of examples where each example is couple 
of the input vector and the output default to train the 
classifier. Input data was collected through simulations 
using X. Chang’s three-phase mathematical model. To 
locate the faulty phase of an induction motor very 
efficiently, since the model is practically validated in the 
NANTE Laboratory, the training data must cover the entire 
range of operating conditions, including all possible fault 
phenomena, even healthy cases. 

The input matrix Xtrain and the output matrix Ytrain have 
been used as database to train the ANN model. Equations 
(25), (26) and (29) are used to formulate the Xtrain matrix. 
The experiment tests have been realized under variation of 
load between 0 and 7 Nm with a sampling step equals to 
0.25, which corresponds to the following different 
operating cases of the induction motor: healthy 
(29 samples) and fault of an odd number of shorted turns 
(with variation in turn number between 0 % and 15 %) on 
each stator phase [(435 = 2915) samples]. Thus, a total of 
1334 (1334 = 4353 + 29) samples have been collected and 
applied as the inputs to the NNs for stator inter-turn fault 
diagnosis. 

The desired outputs (Si) of the NN are chosen as 
follows: 

1) S1 = 1 for a short circuit at phase As; otherwise, S1 = 0; 
2) S2 = 1 for a short circuit at phase Bs; otherwise, S2= 0; 
3) S3 = 1 for a short circuit at phase Cs; otherwise, S3 = 0. 

Therefore, the output states of the NNs are set as the 
following (Table 5): 

[1; 0; 0; 0] – healthy mode;  
[0; 1; 0; 0] – a defect has occurred on phase A; 
[0; 0; 1; 0] – a defect has occurred on phase B; 
[0; 0; 0; 1] – a defect has occurred on phase C. 

Table 5 
The output states of the NNs 

Type of fault Symbol S1 S2 S3 S4
Healthy mode C1 1 0 0 0
Fault occurred on phase A C2 0 1 0 0
Fault occurred on phase B C3 0 0 1 0
Fault occurred on phase C C4 0 0 0 1

 

The ANN paradigm used in the proposed fault 
diagnosis system is a feed forward multilayer perceptron 
NN trained by a back propagation and gradient descent 
algorithm. The number of input units of ANN is 
determined by the size of the input vector. However, the 
number of neurons in the output layer is determined by 
the number of faults to be diagnosed. 

The input vector values are: the stored energy 
eigenvalues (Ej), the Kurtosis value (KT) and the singular 
value decomposition (SVD) of each level D3, D4, D5, D6 
and D7. The outputs of the ANN represent the fault 
classes, which are the 3 phases of the induction motor, 
respectively, and one hidden layer with 10 neurons. The 
activation functions of the hidden and output layers are 
«tansig» and «logsig», respectively. 

Training of the NN. Multilayered perceptron NNs 
are trained using a supervised learning algorithm known 
as backpropagation. Backpropagation combined with 
descent gradient raining is the used training algorithm. It 
attempts to reduce global error by updating the weights in 
the direction of the gradient, thereby improving the 
performance of the ANN. 

In this paper, the error is expressed as mean square error 
(MSE). The training performance is shown in Fig. 2, where a 
low training MSE is achieved after 334 epochs (2.6377ꞏ10–7). 
The training output and error from the NN are shown in 
Fig. 3. From Fig. 4 it is clear that the NN is well trained and 
reproduces the desired output correctly with few errors. 

 
Fig. 2. Training performances of the NN 

 

Simulation results. The performance of a NN on 
the test dataset is its capacity for generalization. This data 
set is divided into 2 parts. One set is used for training and 
the other set is used for testing. In fact, the trained ANN 
classifier performs well on both training and test data. The 
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test procedure is carried out on an independent test dataset 
from the training dataset to assess the generalizability of 
the trained model. 

The test data set is presented to the NNs under 14 load 
torques (0.25, 0.75, 1.25, 1.75, 2.25, 2.75, 3.25, 3.75, 4.25, 
4.75, 5.25, 5.75, 6.25, and 6.75 Nm) and corresponds to the 

following different operating cases of the induction motor: 
healthy (14 samples) and fault of an even number of shorted 
turns (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15) 
on each stator phase [210 samples]. Thus, a total of 224 test 
samples were collected to test each phase stator inter-turn 
fault. 

 

 
Fig. 3. Training outputs and errors of NN 

 

 
Fig. 4. Test outputs and errors for fault on phase As, Bs and Cs 

 

Figure 4 shows the NN test outputs and their errors for 
faults on the As, Bs and Cs phases. The test output of the NN 
(C1, C2, C3, C4) is equal to (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) 
and (0, 0, 0, 1) with good accuracy. This means that the NN 
is able to correctly locate the fault occurring on the faulty 
phase, As phase, Bs phase and Cs phase respectively. The 
test error for this case is very small. We conclude that the 
NN is able to correctly locate the stator inter turn short circuit 
fault occurring on one of the phases. 

Conclusions. This article presents a technique of 
detection and localization of short circuit defects of turn-
by-turn in induction motors, chosen as a condition model, 
the three-phase model of X. Chang because it takes into 
account the case of imbalance in the stator winding. This 
choice is based on the nature of the fault to be studied 
(short circuit) and in addition the ease of use of this model 
for diagnosis and monitoring. In this work, the use of two 
analytical methods for diagnosing and detecting defects in 
the machine is based on two techniques, one being 
discrete wavelet transform and the other on neural 
network fault classification techniques. The discrete 
wavelet transform application of the stator current in 
phase A is used to determine the three parameters that are 

sensitive to the short circuit fault: energy, kurtosis and 
decomposition into singular values of each level D3, D4, 
D5, D6 and D7. These values are then used as inputs for 
classifier neural network. The information provided by 
this input on the detection and localization of defects 
makes it a reliable indicator of the short circuit defects 
between coils in the stator windings of induction motors. 
The results obtained are outstanding, and the proposed 
technique is capable of automatically detecting and 
locating short circuit failures. As another area of this 
paper, we can expand our research to determine the 
number of short circuits on a faulty phase, allowing for a 
complete diagnostic procedure. 
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