Open circuit fault diagnosis for a five-level neutral point clamped inverter in a grid-connected photovoltaic system with hybrid energy storage system

Introduction. Recently, the number of high and medium voltage applications has increased dramatically. The connection between these different applications requires series-parallel combinations of power semiconductors. Multilevel converter topologies provide major advantages to these applications. In this paper, a grid-connected photovoltaic system with a hybrid energy storage system using a five-level neutral point clamped inverter is studied. Although the multilevel inverter has many advantages over the two-level inverter, it has a high probability of experiencing an open circuit fault. In this context, the five-level inverter has 24 controllable switches, one of which may experience an open circuit fault at any time. Therefore, it plays an important part in the reliability and robustness of the whole system. The novelty of this paper presents an approach to accurately detect the open circuit fault in all insulated gate bipolar transistors of a five-level neutral point clamped inverter in a photovoltaic power generation application with a hybrid energy storage system. **Purpose.** Before using fault-tolerant control to ensure service continuity, fault diagnosis techniques must first be used, which are the crucial phase of reliability. **Methods.** A detection method based on the maximum and minimum error values is proposed. These errors are calculated using the expected and measured line-to-line pole voltages. **Results.** The open circuit fault detection method is implemented using MATLAB/Simulink. Simulation results showed the accuracy of detecting the open circuit fault in all insulated gate bipolar transistors in a short time. Moreover, this method is adaptable to several applications and is also robust to transient regimes imposed by solar irradiation and load variations. **References.**

Key words: photovoltaic, fault diagnosis, five-level neutral point clamped inverter, line-to-line pole voltages.
when an OC fault occurs, the system continues to operate, but the line current and DC bus voltage fluctuate, which may result in a secondary fault in the power converter or other devices. One of the most important ways to boost system reliability is through fault-tolerant techniques. Currently, fault tolerance methods for inverters are mainly classified into two categories: software-based approaches without additional hardware and hardware-based approaches [13]. However, fault diagnosis is a crucial phase of system service continuity, because without it, it is impossible to reconfigure the converter correctly [14].

Literature review. Fault diagnosis methods for multilevel converters are still not widely studied in the literature due to their more recent development than two-level converters. Moreover, the diagnostic methods validated for two-level converters are not directly applicable to multilevel converters due to their large number of power components. These methods are classified into two categories: voltage-based methods and current-based methods. For methods based on currents [15] proposes a method using the Average Current Park Vector for a three-level NPC inverter. Although this method can detect the OC fault in two switches, the possibility of the failure of two IGBTs at the same time is rare. In [16], the authors contribute to the improvement of the previously mentioned study by accurately detecting the faulty switch. However, this study is only dedicated to AC drive applications. A study based on the extension theory method to locate faults in a three-level NPC inverter supplying an AC motor is proposed in [17]. The inputs used for this method are the frequency spectra of the line current waveforms. For an AC motor drive, the frequency spectra are different depending on the faulty switch. However, for a grid-connected system, it is impossible to detect the OC fault because the frequency spectrum is the same for the upper half arm as well as for the lower half arm. The authors of [18] accurately locate the OC fault in a three-level NPC converter associated with a wind power system using the neural network. The inputs used in this study are the magnitude and phase angle of the generator currents. However, this method is limited to AC drive applications and requires large data storage and computing capacity.

For voltage-based methods, the authors of [19] propose a method based on the evaluation of pole voltages and motor line currents to detect the fault in a three-level NPC inverter. Although this method has the ability to detect multiple OC faults in all IGBTs and clamp diodes, it is not suitable for grid-connected systems. In [20] the authors contributed significantly to the accurate location of the faulty IGBT in a three-level NPC rectifier without adding additional hardware. The estimated voltage errors are represented by the expected value of the converter line voltage and its estimated value. However, this estimation generates a lot of noise, and the choice of thresholds and minimum detection time depends on each system, which reduces the robustness of this method. Fault detection of a five-level NPC inverter is not studied at all in the literature. The authors in [21] focused on the reconfiguration of this inverter without specifying the diagnostic method.

The goal of the paper. To remedy the previously mentioned drawbacks, this study presents an approach to accurately detect the OC fault in all IGBTs of a five-level NPC inverter. This inverter is used in a grid-connected PV system with a HESS to improve the power quality and to be able to support high power. The detection method is based on the maximum and minimum error values resulting from the comparison between the measured line-to-line pole voltages and their expected values. The fault monitoring is well achieved regardless of the load type (resistive or inductive) and power state (transient or steady-state), which amplifies the reliability of this algorithm. In addition, the proposed method can quickly detect the OC fault.

2. **System description.** The global system architecture is depicted in Fig. 1, which comprises three main functions: generation of electrical energy, HESS and energy management, connection to the grid.

2.1 **PV generation.** PV panels have been installed to produce electrical energy (Fig. 1a). The PV generator is formed by PV panels connected in series for increasing the voltage and in parallel for increasing the current, and a DC/DC boost converter which transmits the produced power \(P_m \) to the DC bus. The voltage \(V_{pv} \) at the terminals of the bank of panels, and the current \(I_m \) passing through them, follow a \(I_m(V_{pv}) \) characteristic which depends on the exogenous inputs which are the solar irradiation, and the atmospheric temperature. The electrical behavior of a PV cell can be described with good precision by a model called «single diode» [22].

![Fig. 1. Schematic diagram of grid-connected PV system with AC load](image-url)
then induces a slight disturbance of the voltage (or the current) to analyze the resulting power change [23].

2.2 Configuration of the HESS and energy management. Figure 1, b presents the HESS, which includes batteries and SCs. Each bank of SCs and batteries is connected to a DC/DC buck-boost converter, which connects it to the DC bus. There must be a complementarity between these hybrid storage systems. The batteries providing the «energy» function are sized in terms of average power, while the SCs having the «power» function are sized in transient power. The implementation of SCs is to improve battery life.

The energy management is presented in Fig. 1, c. To determine the total power P_{tot}, it is necessary to calculate the power of the PV generation P_{pv}, the power of the load P_{load} and the power dissipated in the grid filter P_{loss}. Then a low-pass filter is used to split the total power into two components: the transient power component P_{trans} and the average power component P_{avg}. Consequently, the part containing the high frequencies (transient power) is supplied to the SCs and those of the low frequencies to the batteries [24]. The power balance equation is stated as follows:

$$P_{tot} = P_{load} + P_{loss} - P_{pv} = P_{avg} + P_{trans}. \quad (1)$$

Since the components P_{trans} and P_{avg} are based on a reference current on the DC bus side, two gains are used to estimate the reference currents on the SC side ($I_{SC, ref}$) and battery side ($I_{bat, ref}$). The measured values of the SC and battery current (I_{SC} and I_{bat}) are taken in order to compare them with their reference values. In addition, a compensation factor is used to increase system performance by recovering uncompensated battery power due to its slow dynamics [25]. This uncompensated power is added to the transient power to be recovered by SC. Finally, the PI controllers are concerned with the generation of adequate control signals via the duty cycles of the converters (D_{SC} and D_{bat}), which allow the measured currents to follow their references.

2.3 Control of grid connection. The grid connection consists of a five-level NPC inverter, an R-L filter at each phase, a load and a power grid as shown in Fig. 1, d. To control the grid side, Voltage Oriented Control (VOC) is proposed in this paper using the PI controller. The purpose of the VOC is to keep the DC bus voltage constant regardless of the amplitude and direction of the power. This control technique needs to calculate the angle using a phase locked loop for the Park transform. The control strategy comprises an outer loop to control the DC bus voltage and two internal loops to control the direct and quadrature components of the current (d-axis and q-axis). The external loop is then produced employing a regulation loop, making it possible to maintain a constant DC bus voltage, with a PI regulator producing employing a regulation loop, making it possible to regulate active and reactive power, respectively. Furthermore, a decoupled control for direct and quadrature components is implemented to tackle the problem of the relationship between the d-axis and q-axis [26].

3. Open circuit fault analysis. This section presents the analysis of the OC fault in a five-level NPC inverter, which is shown in Fig. 2 by the arm of the A phase. The five-level NPC inverter arm consists of four capacitors of equal capacity dividing the input voltage V_{dc} into four identical voltage levels and eight switches (IGBTs) mounted in antiparallel with diodes. In addition, six clamp diodes are present to have five additional voltage levels, as shown in Table 1 [9].

This analysis is only dedicated to the switches of the upper half arm of phase A, S_{a1}, S_{a2}, S_{a3}, S_{a4} due to its symmetrical shape. Therefore, the switches of the lower half arm S_{b5}, S_{b6}, S_{b7}, S_{b8} have the same analysis as those of the upper half arm, except for the path and the sign of the phase current.

3.1 Open circuit fault in S_{a1}. When the OC fault arises in the switch S_{a1}, then the current path is D_1, S_{a2}, S_{a3}, S_{a4} and the switching state P_2 is impossible as shown in Fig. 3, a. Figure 4, a represents when an OC fault occurs in S_{a1} at the instant $t = 0.5$ s, from this instant a part of the positive phase current (I_{a}) flows. Furthermore, the diode D_1 is reverse biased due to the grid voltage, which is greater than the DC bus voltage V_{dc}. The control increases the amplitude of the currents of other phases (I_{b} and I_{c}) to balance the power.

3.2 Open circuit fault in S_{a2}. When the OC fault has appeared at the switch S_{a2}, the switching states P_2 and P_1 are impossible. Therefore, the current path of the faulty phase (I_{a}) is formed by D_2, S_{a3} and S_{a4} as shown in Fig. 3, b. Then the diode D_3, which blocks the majority of the positive phase current, is reverse biased. Therefore, the positive phase current is 0, as shown in Fig. 4, b.

![Fig. 2. The A-phase arm of a five-level NPC inverter](image)

![Fig. 3. Current paths in the case of an OC fault](image)

<table>
<thead>
<tr>
<th>State of leg X</th>
<th>IGBT's states $X \in {A, B, C}$</th>
<th>Pole voltage V_{XO}</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_2</td>
<td>S_{a1} S_{a2} S_{a3} S_{a4}</td>
<td>$+V_{dc}/2$</td>
</tr>
<tr>
<td>P_1</td>
<td>0 1 1 1 0 0 0</td>
<td>$+V_{dc}/4$</td>
</tr>
<tr>
<td>N_1</td>
<td>0 0 0 1 1 1 0</td>
<td>0</td>
</tr>
<tr>
<td>N_2</td>
<td>0 0 0 0 1 1 1</td>
<td>$-V_{dc}/4$</td>
</tr>
</tbody>
</table>

Table 1

Electrical Engineering & Electromechanics, 2023, no. 6

35
3.3 Open circuit fault in S_{43}. When S_{43} is open-circuited, the impossible switching states are P_{2}, P_{1} and 0. Therefore, the current path is formed by D_{3}, S_{44} as shown in Fig. 3.c. However, because of the negative DC bus voltage and the positive grid voltage, diode D_{3} is always reverse biased. So, the positive current corresponding to the faulty phase cannot flow, as shown in Fig. 4.c.

From the previous analysis, the phase current is 0 in both situations when the switch S_{43} or S_{44} is faulty. The phase current when the fault occurs in S_{45} or S_{46} is also equal to each other. Therefore, if the load is not reactive, it is difficult or impossible to distinguish the OC fault from the switches mentioned above. Unless there are additional algorithms added to the detection technique. This will add a large computational capacity and slow down the detection time.

4. Diagnostic technique. In this section, a technique for detecting an OC fault of one of the switches of a five-level NPC inverter is proposed. This method is based on the comparison between the measured and expected line-to-line pole voltages, denoted V_{XY} and V_{XY}^*, respectively ($XY \in \{AB, BC, CA\}$). The five-level NPC inverter is controlled by the sine-triangle PWM control, which generates the control commands $\delta_{i}(i \in \{1, 2, ..., 8\})$ to control the DC-bus voltage and the active and reactive power. Using these control commands those of the upper half arm of each phase, it is possible to estimate each pole voltage $V_{XY}^*(X \in \{A, B, C\})$ according to the following relation:

$$V_{XY}^* = (\delta_{X1} + \delta_{X2} + \delta_{X3} + \delta_{X4} - 2) \frac{V_{dc}}{2}.$$

The expected line-to-line pole voltages are:

$$V_{XY} = V_{XY}^* - V_{YO}.$$

To precisely locate the OC fault in each phase and each switch, the fault was analyzed using the deference between the expected and measured line-to-line pole voltages ΔV_{XY}. The diagnostic errors are calculated by:

$$\Delta V_{XY} = V_{XY}^* - V_{XY}.$$

The diagnostic errors must be normalized so that the diagnostic algorithm is independent of the DC bus voltage using the following formula:

$$\varepsilon_{XY} = \Delta V_{XY}/V_{dc}.$$

In healthy conditions, the diagnostic errors are 0, which means the measured and expected line-to-line pole are equal. On the other hand, if the OC fault has occurred in any switch, two-line voltage errors are affected by the OC fault, because each phase is linked to two line-to-line pole voltages. The third error, which has nothing to do with the faulty phase, remained 0.

Therefore, it is possible to accurately detect the defective half arm. For example, if the fault appeared in the upper half arm of phase X, the errors are as follows:

$$\varepsilon_{XY} = \text{threshold};$$

$$\varepsilon_{YZ} \approx 0;$$

$$\varepsilon_{ZX} = -\text{threshold}.$$

The diagnostic errors linked to defective phase X take symmetrical values. If the fault appeared in the lower half arm of phase X, the errors are the same, but the values of those linked to the defective phase are reversed.

After detecting the fault and determining the faulty phase and half-arm, it is necessary to identify with precision the faulty switch by determining the values of the errors corresponding to each switch. To calculate the maximum error value when S_{43} is in OC, the current passes through D_{3}, S_{42}, S_{43} and S_{44} instead as explained in section (3), connecting the DC bus mid-point (O) to the AC terminal and generating a pole voltage of value P_{1}. This results in a pole voltage error ΔV_{XY} of $V_{dc}/4$. From (5), the normalized diagnostic error applied to the identification process (ε_{XY}) reaches a magnitude of 0.25 when the switching state is P_{2}. Furthermore, the second normalized diagnostic error (ε_{YZ}) affected by the fault obtains a symmetrical value of –0.25 when the switching state is N_{2}. The third error (ε_{ZX}), which is completely unrelated to the faulty phase, is 0. Using the analysis done in section (3), a similar process is employed to compute the normalized diagnostic error values for all switches, and the results are listed in Table 2.

However, these errors are not fixed at those values which vary at each cycle between 0 and the maximum value for the high error and between 0 and the minimum value for the low error. For this, it is only necessary to capture the maximum and minimum error values using an algorithm that calculates at any time the maximum and minimum error values, resulting in six errors ($\max(\varepsilon_{XY})$, $\min(\varepsilon_{XY})$, $\max(\varepsilon_{YZ})$, $\min(\varepsilon_{YZ})$, $\max(\varepsilon_{ZX})$, $\min(\varepsilon_{ZX})$). Therefore, the fault detection of each switch relies on the behavior of these six errors and the threshold ranges in which these errors may exist. Table 3 summarizes the proposed OC fault detection method.

The diagnostic algorithm is recapitulated in the block diagram in Fig. 5. In summary, the algorithm begins with a step of calculating the expected pole voltages, and a line-to-line pole voltage measurement from which the necessary diagnostic errors are calculated. Then, as shown in Table 2, the maximum and minimum values of each normalized diagnostic error are extracted, since the errors don’t have a
fixed value. An OC fault is recognized by checking (6), which identifies the faulty phase. In the event of a fault, the conditions in Table 3 immediately locate the faulty IGBT.

5. Simulation results and discussion. The simulation results of a grid-connected PV system with a hybrid storage system were performed via MATLAB. All the parameters of the studied system are presented in the Appendix. Power is injected via a balanced three-phase grid (220 V / 50 Hz). Before the system is subjected to an OC type fault, it is simulated in its healthy state to check the energy management. The PV generation power and the load power are shown in Fig. 6a. From Fig. 6b, it is evident that when the PV generation is higher than the demand the battery and the SC discharge to provide the rest of the required power. In the same figure, the SC supplies or absorbs the transient component of the current, while the battery supplies or absorbs the average component of the current. Figure 6c shows the DC bus voltage following its reference (630 V). There are small fluctuations that are corrected by the PI regulator when the generation power or the load demand is changed. Figure 6d illustrates the three-phase currents coming out of the five-level NPC inverter. The quality of the currents is very good thanks to this inverter. From Fig. 6e, it is clear that the active power coming out of the inverter is the same as that of the load, which means that the energy management is working well.

The simulation quality of the currents is very good thanks to this inverter. The active power coming out of the inverter is the same as that of the load, which means that the energy management is working well. Since the load is purely active, the grid side controller maintains the reactive power around 0, as shown in Fig. 6f.

![Diagram](image)

Fig. 5. Proposed diagnostic algorithm block diagram

<table>
<thead>
<tr>
<th>Faulty switch</th>
<th>ε_{XY}</th>
<th>ε_{YZ}</th>
<th>ε_{ZX}</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{X1}</td>
<td>0.25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S_{X2}</td>
<td>0.5</td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>S_{X3}</td>
<td>0.75</td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>S_{X4}</td>
<td>1</td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>S_{X5}</td>
<td>–1</td>
<td>–0.25</td>
<td>0</td>
</tr>
<tr>
<td>S_{X6}</td>
<td>–0.75</td>
<td>–0.25</td>
<td>0</td>
</tr>
<tr>
<td>S_{X7}</td>
<td>–0.25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S_{X8}</td>
<td>–0.25</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2: Normalized diagnostic errors with OC fault in phase X

<table>
<thead>
<tr>
<th>Faulty switch</th>
<th>ε_{XY}</th>
<th>ε_{YZ}</th>
<th>ε_{ZX}</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{X1}</td>
<td>[0.05 0.25]</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S_{X2}</td>
<td>[0.25 0.5]</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S_{X3}</td>
<td>[0.75 1]</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S_{X4}</td>
<td>[0.75 1]</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S_{X5}</td>
<td>[–1 –0.75]</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S_{X6}</td>
<td>[–0.75 –0.25]</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S_{X7}</td>
<td>[–0.25 –0.05]</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S_{X8}</td>
<td>[–0.25 –0.05]</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3: Look-up table for detection of the faulty IGBT of phase X

To verify the effectiveness of the proposed detection technique, an OC type fault is imposed on the switches by forcing the switching states to 0. For the same parameters (irradiation and load) used previously, the OC type fault is generated at 0.55 s in switches $S_{\delta 3}$, $S_{\delta 4}$ and $S_{\delta 7}$, as shown in Fig. 7–9. From Fig. 7, the three fault cases show significant oscillations on the output currents of the faulty five-level NPC inverter. Consequently, the active power supplied to the load and the grid is no longer stable as well as the reactive power supplied to the grid is no longer equal to 0 and is oscillating, as shown in Fig. 8. Figure 9 shows a comparison between an ESS with and without SCs when the OC type fault occurs on the same switches mentioned previously. When the OC fault appeared, it turned out that the SCs absorb the power peaks that are harmful to the batteries. These show small ripples as if nothing had happened. On the other hand, the system without hybrid storage (without SCs) forces the batteries to absorb the power peaks, which will reduce its lifespan.

The normalized diagnostic errors with which the fault can be detected are shown in Fig. 10. After $t = 0.55$ s, the behavior of these errors for the three fault cases is changed, which means that there is a fault. From Fig. 10a, the $\varepsilon_{\delta 8}$ and $\varepsilon_{\delta 9}$ errors vary at 0.75 and –0.75 respectively, and $\varepsilon_{\delta 3}$ is around 0. From Table 2, the fault is in the $S_{\delta 3}$ switch. The fault can be easily detected using the same reasoning for Fig. 10b,c. Furthermore, when the load changes at $t = 0.75$ s, these errors remain stable at maximum and minimum values.
Fig. 6. The overall system behavior without OC fault

Fig. 7. The output currents of the PWM converter:
- a) OC fault in \(S_{A3} \)
- b) OC fault in \(S_{B4} \)
- c) OC fault in \(S_{C7} \)

Fig. 8. Effects of an OC fault on active and reactive power:
- a) \(S_{A3} \)
- b) \(S_{B4} \)
- c) \(S_{C7} \)

Fig. 9. Comparison between a storage system with and without SC under an OC fault:
- a) \(S_{A3} \)
- b) \(S_{B4} \)
- c) \(S_{C7} \)

Fig. 10. Normalized diagnostic errors:
- a) \(S_{A3} \)
- b) \(S_{B4} \)
- c) \(S_{C7} \)

Fig. 11. Maximum and minimum values of the normalized diagnostic errors:
- a) \(S_{A3} \)
- b) \(S_{B4} \)
- c) \(S_{C7} \)

Fig. 12. Fault detection signals for phase and switch:
- a) \(S_{A3} \)
- b) \(S_{B4} \)
- c) \(S_{C7} \)

To test the robustness under transient conditions, the fault is shifted to \(t = 0.5 \) s which is the same time as the load variation. The OC fault is now applied to the switches \(S_{A5}, S_{B2}, S_{C3} \). From Fig. 13.a–c, the maximum and minimum errors are the same values of Table 3 to detect the fault in switches \(S_{A5}, S_{B2}, S_{C3} \). Therefore, the detection results are shown in Fig. 14.a–c. Moreover, for an active load fixed at a value of 2 kW with a reactive power of 2 kVAr, it is obvious that the OC fault is well detected, according to Fig. 15, 16.
errors are determined by comparing the three measured line-to-line pole voltages with their expected values. The fault in each switch is related to the behavior of all six faults at once. Therefore, it is possible to discriminate the fault in each insulated-gate bipolar transistor through the lookup table. Furthermore, this method can identify the open circuit fault no matter what type of load. It is also robust to transient regimes imposed by solar irradiation and load variations, ensuring system reliability.

Appendix.

PV array parameters: MPPT power $P_m = 165$ W; inductor filter $L_{pv} = 10$ mH; cells in series $N_p = 8$; cells in parallel $N_a = 4$.

Battery parameters: terminal voltage $V_{bat} = 12$ V; inductor filter $L_{bat} = 8$ mH; Ah capacity 100 Ah; internal resistance 1.2 mΩ; batteries in series $= 25$.

SC parameters: maximum voltage $V_{SC} = 2.5$ V; inductor filter $L_{SC} = 8$ mH; internal resistance 3.2 mΩ; nominal capacity 350 F; SC in series $= 120$.

Utility grid parameters: DC bus capacitance $C = 900$ μF; coupling inductance $L_p = 68$ mH; grid voltage $V_g = 380$ V; grid frequency $f = 50$ Hz.

Conflict of interest. The authors of the article declare that there is no conflict of interest.

REFERENCES

9. Himour K., Ghedamsi K., Berkouk E.M. Supervision and control of grid connected PV-Storage systems with the five level diode

Received 24.11.2022
Accepted 03.03.2023
Published 02.11.2023

Abderrahmane Abdellah¹, PhD Student, M’hamed Larbi², Full Professor, Djilali Toumi³, Senior Lecturer,
¹Department of Electrical Engineering, L2EGEI Laboratory, University of Tiaret, Algeria, e-mail: abderrahmane.abdellah@univ-tiaret.dz (Corresponding Author); larbi_mh@yahoo.fr; toumi_dj@yahoo.fr

How to cite this article: