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Introduction. Most distribution networks are unbalanced and therefore require a specific solution for load flow. There are many 
works on the subject in the literature, but they mainly focus on simple network configurations. Among the methods dedicated to this 
problem, one can refer to the load flow method based on the bus injection to branch current and branch current to bus voltage 
matrices. Problem. Although this method is regarded as simple and complete, its drawback is the difficulty in supporting the 
transformer model as well as its winding connection types. Nevertheless, the method requires the system per unit to derive the load 
flow solution. Goal. In the present paper, our concern is the implementation of distribution transformers in the modeling and 
calculation of load flow in unbalanced networks. Methodology. Unlike previous method, distribution transformer model is 
introduced in the topology matrices without simplifying assumptions. Particularly, topology matrices were modified to take into 
account all winding types of both primary and secondary sides of transformer that conserve the equivalent scheme of an ideal 
transformer in series with an impedance. In addition, the adopted transformer models overcome the singularity problem that can be 
encountered when switching from the primary to the secondary side of transformer and inversely. Practical value. The proposed 
approach was applied to various distribution networks such as IEEE 4-nodes, IEEE 13-nodes and IEEE 37-nodes. The obtained 
results validate the method and show its effectiveness. References 24, tables 4, figures 9. 
Key words: distribution systems, unbalanced load flow, distribution transformer models, topology network matrix. 
 
Вступ. Більшість розподільчих мереж незбалансовані і тому потребують спеціального рішення для потоку навантаження. У 
літературі є багато робіт на цю тему, але переважно вони присвячені простим мережевим конфігураціям. Серед методів, 
присвячених цій проблемі, можна назвати метод потоку навантаження, заснований на введенні шини в матрицю струму 
відгалуження і відгалуження струму в матрицю напруги шини. Проблема. Хоча цей метод вважається простим та повним, його 
недоліком є складність підтримки моделі трансформатора, а також типів з’єднання його обмоток. Проте метод вимагає 
системи на одиницю для отримання рішення про потік навантаження. Мета. У цій статті нас цікавить застосування 
розподільних трансформаторів для моделювання та розрахунку потоку навантаження у незбалансованих мережах. Методологія. 
На відміну від попереднього методу, модель розподільного трансформатора вводиться в матриці топології без спрощення 
припущень. Зокрема, матриці топології були змінені, щоб врахувати всі типи обмоток як первинної, так і вторинної сторін 
трансформатора, які зберігають еквівалентну схему послідовно ідеально включеного трансформатора з імпедансом. Крім того, 
прийняті моделі трансформаторів долають проблему сингулярності, з якою можна зіткнутися при перемиканні з первинної на 
вторинну обмотку трансформатора і навпаки. Практична цінність. Пропонований підхід був застосований до різних 
розподільних мереж, таких як IEEE з 4 вузлами, IEEE з 13 вузлами та IEEE з 37 вузлами. Отримані результати підтверджують 
метод та показують його ефективність. Бібл. 24, табл. 4, рис. 9. 
Ключові слова: розподільні системи, незбалансований потік навантаження, моделі розподільних трансформаторів, 
матриця топології мережеві. 
 

Introduction. Electrical distribution systems are 
generally unbalanced and therefore require special 
attention when solving the load flow problem for 
planning, operation and design studies [1, 2]. The power 
flow solution method must be robust and efficient to 
account for the characteristics of distribution systems, i.e., 
radial or weakly meshed configuration, unbalanced multi-
phases, large number of branches and nodes, high R/X 
ratio. Such load flow method must be able to handle 
different distribution components with sufficient details, 
especially the distribution transformer (DT) models 
whatever its winding connections. Load flow algorithms 
in distribution networks can be classified into two types: 
The first class of methods is based on Newton-Raphson 
algorithms [3, 4]. This well-known approach uses three-
phase current injection method in rectangular coordinates 
[5, 6]. In [7] the author presents a modified version of 
current injection method. Other linear forms are presented 
in [8, 9], However, their application is far from being 
adapted in unbalanced networks and the incorporation of 
distribution transformer models in nodal admittance 
matrices has revealed their difficult application and 
inefficiency to converge due to the singularity problem 
[10]. Methods of the second type use the forward and 
backward sweeping (FBS) algorithms [11, 12]. They are 
based on Kirchhoff’s laws. In this class of methods, 
branch numbering scheme is required for computing 
currents and node voltages that makes DT modelling, 
with various winding connection is difficult. 

Beside the above mentioned load flow methods, other 
methods may also be used, such those based on special 
topological characteristics of distribution networks [13]. The 
work [14] introduced a new contribution to power flow 
solution, using the node incidence matrix and a complex 
vector based model in αβ0 stationary reference frame. The 
formulation of the admittance matrix in the αβ0 reference 
and the estimation of the initial network voltage profile 
complicate the calculation, especially for large networks. 
The most cited algorithms were referred to in [15-18]. They 
are based on three matrices namely, bus injection to branch 
current matrix (BIBC), branch current to bus voltage 
(BCBV) matrix and distribution load flow matrix (DLF). 
However, in the latter, DT models and other distribution 
components cannot be directly incorporated. 

The goal. In this paper one proposes a method for 
unbalanced three-phase power flow solution which can 
handle DT regardless the type of its windings connection. 
DT models given by [19], which overcome the singularity 
problem, have been used. In the proposed load flow 
method, the BIBC and BCBV network topology matrices 
have been modified to incorporate DT whose equivalent 
scheme is branch impedance in series with ideal 
transformer taking into account the connection type of 
primary and secondary windings. 

The model of components. Distribution line. 
Typical branch model of distribution lines is shown in 
Fig. 1, where the line to ground charging capacitance is 
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ignored. The self and mutual elements of the 3×3 phase-
impedance matrix are determined by Carson’s equations. 
For neutral distribution line, Kron reduction is used [19]. 

 Ise 

Vse Zabc Vre

Ire 

 
Fig. 1. Typical distribution line branch 

 

From the line model given by Fig. 1, we can write:  
sr

sere VVV Δ ;                         (1) 

se
abcsr IZV Δ ;                           (2) 

sere II  ,                                   (3) 

where Ise = [Ise
a Ise

b Ise
c]T and Ire = [Ire

a Ire
b Ire

c]T are 
respectively the line current vectors at sending and receiving 
ends; Vse = [Vse

a Vse
b Vse

c]T and Vre = [Vre
a Vre

b Vre
c]T are 

respectively the line to ground voltage vectors at sending 
and receiving ends; ∆Vsr = [∆Vaa ∆Vbb ∆Vcc]T is the line 
voltages drop vector. 

If there are no full phase components in the 
distribution system, the elements corresponding to the 
missed phases in the impedance matrix are set to zero. 

Load model. In unbalanced three-phase distribution 
systems, the loads are specified by the power complex 
form. All the loads are assumed to be Wye or Delta 
connected and can be modeled as, constant power, 
constant current, constant impedance or any combination 
of the above cited models. Then, for a specified power 
Sφ(sp) and voltage Vφ, the equivalent load current injected 
into phase φ can be calculated by (4): 
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,                             (4) 

where φ = {φ1 φ2 φ3} refers to phases {a b c} for Wye 
load or {ab bc ca} for Delta load. The load currents 
injected into the ith bus are given by (5): 
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Depending on the load connection, Wye or Delta, 
the matrix D is given by (6): 
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D           (6) 

For single phase and two phase-loads, the currents in 
the missed phases are set to zero.  

Distribution transformer. Three-phase transformer is 
modeled by connecting three single-phase transformers, in 
which the transformer magnetizing currents are neglected. 
To convert the line-to-neutral voltages to phases voltages and 
the line currents to phases currents, the Wye or Delta 
windings connection shown in Fig. 2 [20, 21]. 

The branch equivalent model of a distribution 
transformer is as shown in Fig. 3. 

On Fig. 3: Is = [Is
a Is

b Is
c]T and Ip = [Ip

a Ip
b Ip

c]T are 
respectively the secondary and primary line currents; 
Vs = [Vs

a Vs
b Vs

c]T and Vp = [Vp
a Vp

b Vp
c]T  are  respectively 

 
Fig. 2. Three-phase transformer scheme 

Primary winding
connection 

Secondary winding 
connection  

Fig. 3. Transformer simplified branch model 
 

secondary and primary line-to-neutral voltages; 
Its = [Its

a Its
b Its

c]T and Vts = [Vts
a Vts

b Vts
c]T are the 

transformer secondary phase currents and voltages; 
Vt’s = [Vt’s

a Vt’s
b Vt’s

c]T are the transformer secondary phase 
voltages without voltages drop; Itp = [Itp

a Itp
b Itp

c]T and 
Vtp = [Vtp

a Vtp
b Vtp

c]T are respectively the transformer primary 
phase currents and voltages; IT is the ideal transformer; ZTs is 
the secondary transformer impedance matrix given by: 
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Using the DT equivalent branch shown in Fig. 3 and 
rearranging the accurate transformer equations given by 
[19], one can write the following equations. 

Current equations. For the secondary and primary 
line currents, one can write the following relationships: 

tsIp IKI  ;                                 (8) 

sLts IKI  .                                  (9) 

Substituting Its by its expression (9) into (8) leads to: 

sLIp IKKI  ,                             (10) 

where KI is the current transformation matrix. This matrix 
also takes into account the transition from Itp to Ip. It is as 
given by Table 1. KL is the matrix transforming the secondary 
line currents into phase delta currents. It is equal to: 
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Voltage equations. The relations between 
secondary and primary line-to-neutral voltages can be 
obtained as: 

pvts VKV  ;                               (12) 

tsTstsst' IZVV  ;                          (13) 

st'ws VKV  .                              (14) 
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Table 1. KI, KL, Kv, Kw for some common industrial distribution transformers 
Coefficients 

Connection 
KI KL Kv Kw nT 
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
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Here VLN is the rated-to-neutral voltage; VLL is the rated line-to-line voltage. 
 

Combining (12), (13) and (14), one can write: 

sLTswpvws IKZKVKKV  ,               (15) 

where Kv is the voltage transformation matrix given in Table 1. 
It takes into account the primary winding connection type i.e. 
transition from Vtp to Vp. Kw is the matrix which transforms 
the phase delta voltages to secondary line-to-neutral voltages. 
Like KL, Kw matrix is given by: 




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
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






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. connection Deltafor            

201
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012

3

1

; connection for Wye  matrix) (identite  I

Kw   (16) 

The relations (10) and (15) remain applicable 
regardeless the transformer configuration even for those 
having voltage or current zero-sequence component 
interrupted like Wye-Delta and ground Wye-Delta.  

Proposed method. Two basic topology matrices are 
required for solving three-phase power flow problem 
namely, bus injection currents to branch currents matrix BI 
and the matrix Bv that links branch voltage drops to bus 
voltages mismatch. The currents and voltages relations are as 
given below: 

busI IBI  ;                             (17) 

VBV  vbus  .                          (18) 

To update bus voltages, the following equation, 
where Vbus

nl is the no-load bus voltage vector, is used: 

bus
nl

busbus ΔVVV  .                       (19) 
Combining (17) and (18) with Ohm’s law given by 

(20), bus voltages mismatch ∆Vbus given by (21) is derived. 
ZIΔV  ;                              (20) 








.

;

Iv

busbus

ZBBmDLF

ImDLFΔV
                    (21) 

Equations (21) are similar to those given in literature 
by the following equations [10, 18]: 








.
busbus

BIBCBCBVDLF

      IDLFΔV ;
                     (22) 

In the method given by [16], BCBV and BIBC 
matrices are built based on DT equivalent scheme given in 
Fig. 3. To simplify the modeling of the network and after 
decoupling the phases of the DT, one substituted the 
mutual impedances by injecting currents in the nodes. This 
leaves, in the model, only the DTs whose equivalent 
scheme is an ideal transformer in series with impedance. 
The trick used to rule out the ideal transformer is the per-
unit system, which makes the ratio of the transformer equal 
to 1. Then, only the series impedance remains in the DT 
model. Unlike the method described above and governed 
by (22), in the proposed method whose mathematical 
model is given by (21), DTs are also substituted by their 
equivalent scheme of Fig. 3 without any simplifications. 
Matrices named BI and Bv, the details of which are 
developed in the following sections, are then constructed. 
Thus, in (21), the mDLF matrix is the modified of version 
of the DLF matrix that appears in (22). 

BI and Bv matrices building. The construction of BI 
and Bv matrices is illustrated using the one-line diagram 
of the radial distribution system shown in Fig. 4 and 
where V1 is the substation voltage. 

 
Fig. 4. Radial distribution network 

 

BI matrix building. The BI matrix building begin by 

calculating the bus injected currents abc
bus2I , abc

bus3I  and 
abc
bus4I  using (4) and (5) and integrating them in bus 

current vector Ibus as it is shown below: 

 abc
bus

abc
bus

abc
busbus 432 IIII  .                 (23) 
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Then, the relationships between bus currents and 
branch currents are determined using (3) and (10). They 
are as given below: 



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One can also write I1
abc in the following form: 

abc
bus
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4321 IKKIKKI  I LI .      (25) 

Equations (24) can also be rewritten in the following 
matrix form: 
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This matrix form brings us to the relationship given 
by (17) and thereby one can deduce BI by identification: 
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It is worth noting that 0 and I in (27) are 3×3 
matrices. 

Bv matrix building. To build Bv matrix, one 
calculates first branch voltages drops. For the considered 
example (Fig. 4), the branch voltage drops are given as: 
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where Z1
abc, Z3

abc are the 1st and 3rd branch impedance 
matrices; ZTs

abc is the 2nd branch impedance matrix 
transformer included.  

In a matrix form, the (28) becomes: 
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The identification of the matrix form (29) to that given 
by (20) allows us deducing the Z matrix. As shown in (29), it 
should be pointed out that the full matrix Z is built by 
gathering, on its diagonal, all branch impedance matrices. 

After which, the branch to bus voltages are calculated 
according to (1) and (15). One can write in this case:  
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Combining the (30) gives: 
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Equation (31) can be stated in the following 
contracted form: 

VBVBV Δvvbus  11 .                    (32) 
It is useful to note that B1v is the first column of Bv. 

For the bus voltages initialization, nl
busV  is obtained by 

equalizing the (32) and (19). Its equation is below given: 

11 VBV v
nl

bus  .                           (33) 
BI and Bv flowchart. For large distribution networks 

with n buses and m branches the flowchart for matrices Bv 
and BI building is presented in Fig. 5. Branch data are 
stored in four vectors, As for sending-end buses, Ar for the 
receiving-end buses, AI and Av for current and voltage 
transformation coefficients kI and kv respectively if the 
branches contains transformer. It can be seen that if the 
branch type (h) to be added in BI matrix is a line section, 
then, the column vector BI(:,s) is stored directly in BI(:,r). 
But in the case of transformer the BI(:,s) need to be 
multiplied by the current transformation coefficient kI before 
to be stored in BI(:,r). In both cases BI(h,r) is set to 1. 
A similar procedure can be used for building Bv but, by 
changing columns to rows and taking voltage transformation 
coefficient kv for branch containing transformer. 

 
Fig. 5. Flowchart for BI and Bv building for large distribution network 

 

The proposed algorithm can easily be extended to a 
multiphase or multi-buses systems by expending the bus 
index i to vector (1×3). The corresponding 1 in BI or in Bv 
matrices will be a 3×3 identity matrix and the 
corresponding kI and kv are respectively substituted by KI, 
KL and Kv, Kw matrices. If there are non-full phase 
components in the distribution system, the matrix columns 
and rows corresponding to missed phase will be eliminated. 

Load flow algorithm. The proposed algorithm can 
be summarized in the following steps: 
Step 1: Check the data and component modelling. 
Step 2: Form BI and Bv matrices built using procedures 
described in previous section. 
Step 3: Assemble all branch impedance matrices in the 
full matrix Z as in (29). 
Step 4: Determine the mDLF = Bv Z BI matrix using (21). 

Step 5: Initialize bus voltages using nl
busV  = B1v V1 given 

by (33). 
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Step 6: while the convergence rate is note reached. Solve 
iteratively the following equations, which, at (k)th iteration, 
are given by: 

 Compute (k)
Li

321 I  by (4) and (5) for a specified 

load and Vi
(k) at bus i; 

 assemble all )(321 k
Li

I  in a vector )(k
busI  as in (23); 

 calculate ∆Vbus
(k) = mDLF Ibus

(k) given by (21); 
 determine Vbus

(k+1) = Vbus
nl – ∆Vbus

(k) using (19). 
Step 7: End while. 
Step 8: Write the results. 
Step 9: End. 

As convergence criterion at (k+1)th iteration, the 
following inequality, where  is the convergence rate, 
fixed by user, is considered: 

 




  (k)

bus
)(k

bus VV 1max .                 (34) 

Test results. The load flow program was implemented 
using MATLAB. To validate the proposed method, the IEEE 
test networks stated by the Distribution Test Feeders 
Working Group, have been considered. Three test systems 
have been used in this work, it’s about respectively the IEEE 
4-bus, the IEEE 13-bus and the IEEE 37-bus networks. 

The validation is first done for the IEEE 4-bus network 
the  results  of  which are given in [23]. The obtained results 

have also been compared to those given by GridLAB-D for 
the 4-nodes, 13-nodes and 37-nodes IEEE power systems. 
GridLAB-D is a distribution software based on FBS method, 
well explained in [22, 24], using line and transformer models 
available in [19] and which are the same as those we had 
considered. 

First test network. The proposed method has first been 
applied to the IEEE 4-bus test feeder shown by Fig. 6. Four 
practice winding connections of a step-down transformer with 
unbalanced loads were considered. Standard 30° connections 
are assumed for Wye-Delta and Delta-Wye banks. The line-
to-line infinite bus-source voltages are equal to [12.470   
12.47–120   12.47120]T kV. The obtained voltages for 
each phase of buses 2, 3 and 4 are as given by Table 2 and 
Table 3 which show that our results are in agreement with 
those given by both IEEE [23] and GridLAB-D. It is to be 
noted that this version of GridLAB-D doesn’t support the 
Wye-Delta and ground Wye-Delta configurations. As shown 
by (19) and (33), the voltages of the various nodes are 
calculated with respect to that of the ground taken as 
reference. Thereby one don’t need to update the transformer 
primary voltage when there is a zero-sequence components. 

 
Fig. 6. IEEE4 bus test feeder 

 

Table 2. IEEE 4-bus test feeder voltages comparison (IEEE results) 

1V [Volt/°deg] 2V [Volt/°deg] 3V [Volt/°deg] Connection Node ID 
IEEE Proposed method IEEE Proposed method IEEE Proposed method 

2 7164/–0.1 7163.72/–0.14 7110/–120.2 7110.47/–120.18 7082/119.3 7082.05/119.26 
3 2305/–2.3 2305.53/–2.26 2255/–123.6 2254.71/–123.62 2203/114.18 2202.91/114.79 gY-gY 
4 2175/–4.1 2175.02/–4.12 1930/–126.8 1929.82/–126.79 1833/102.8 1832.86/102.85 
2 12350/29.6 12350.22/29.60 12314/–90.4 12313.83/–90.39 12333/149.8 12332.68/149.75 
3 2290/–32.4 2290.34/–32.39 2261/–153.8 2261.65/–153.81 2214/85.2 2214.05/85.18 D-gY 
4 2157/–34.2 2156.90/–34.24 1936/–157.0 1936.16/–157.03 1849/73.4 1849.59/73.39 
2 7112/–0.2 7111.14/–0.20 7144/–120.4 7143.62/–120.43 7112/119.5 7111.11/119.54 
3 3896/–2.8 3896.39/–2.82 3972/–123.8 3972.17/123.82 3874/115.7 3875.16/115.70 Y-D 
4 3425/–5.8 3425.54/–5.76 3646/–130.3 3646.38/–130.27 3298/108.6 3297.76/108.58 
2 7113/–0.2 7111.1/–0.2 3896/–2.8 3896.4/–2.82 3425/–5.8 3425.5/–5.76 
3 7144/–120.4 7143.6/–120.4 3972/–123.8 3972.2/–123.82 3646/–130.3 3646.4/–130.28 gY-D 
4 7111/119.5 7111.1/119.54 3875/115.7 3875.2/115.7 3298/108.6 3297.8/108.58 
2 12341/29.8 12341.02/29.81 12370/–90.5 12370.28/–90.48 12302/149.5 12301.78/149.55 
3 3902/27.2 3901.86/27.20 3972/–93.9 3972.54/–93.91 3871/145.7 3871.49/145.74 D-D 
4 3431/24.3 3430.79/24.28 3647/–100.4 3647.53/–100.36 3294/138.6 3293.82/138.62 

 = {1   2   3} = {{ag, bg, cg} or {ab, bc, ca}}; a, b, c: phases, g: ground 
 

Table 3. IEEE 4-bus test feeder voltages comparison (GridLAB-D results) 

1V [Volt/°deg] 2V [Volt/°deg] 3V [Volt/°deg] Connection Node ID 
Proposed method GridLab-D Proposed method GridLab-D Proposed method GridLab-D 

2 7163.72/–0.14 7163.7/–0.14 7110.47/–120.18 7110.5/–120.18 7082.05/119.26 7082/119.26 
3 2305.53/–2.26 2305.5/–2.26 2254.71/–123.62 2254.7/–123.62 2202.91/114.79 2202.8/114.79 gY-gY 
4 2175.02/–4.12 2175/–4.12 1929.82/–126.79 1929.8/–126.8 1832.86/102.85 1832.7/102.85 
2 12350.22/29.60 12350/29.6 12313.83/–90.39 12314/–90.4 12332.68/149.75 12333/149.8 
3 2290.34/–32.39 2290.3/–32.39 2261.65/–153.81 2261.65/–135.8 2214.05/85.18 2213.9/85.2 D-gY 
4 2156.90/–34.24 2156.9/–34.24 1936.16/–157.03 1936.1/–157.0 1849.59/73.39 1849.4/73.4 
2 7111.14/–0.20 CHTC 7143.62/–120.43 CHTC 7111.11/119.54 CHTC 
3 3896.39/–2.82 CHTC 3972.17/123.82 CHTC 3875.16/115.70 CHTC Y-D 
4 3425.54/–5.76 CHTC 3646.38/–130.27 CHTC 3297.76/108.58 CHTC 
2 7111.1/–0.2 CHTC 3896.4/–2.82 CHTC 3425.5/–5.76 CHTC 
3 7143.6/–120.4 CHTC 3972.2/–123.82 CHTC 3646.4/–130.28 CHTC gY-D 
4 7111.1/119.54 CHTC 3875.2/115.7 CHTC 3297.8/108.58 CHTC 
2 12341.02/29.81 12341/29.8 12370.28/–90.48 12370.3/–90.5 12301.78/149.55 12301.7/149.5 
3 3901.86/27.20 3901.8/27.2 3972.54/–93.91 3972.5/–93.9 3871.49/145.74 3871.5/145.7 D-D 
4 3430.79/24.28 3430.7/24.3 3647.53/–100.36 3647.5/–100.4 3293.82/138.62 3293.8/138.6 

 = {1   2   3} = {{ag, bg, cg} or {ab, bc, ca}}; a, b, c: phases, g: ground; CHTC – cannot handle this configuration 
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Second test network. The second network considered 
is the IEEE 13-bus test system which originally contains 
variety of components such as cables and lines with various 
configurations and only one transformer at node 633. As 
shown by Fig. 7, this test system has been modified by 
excluding the regulator at substation and the distributed load 
on line 632-671. A second transformer has been added to the 
line 671-680. The results given by the proposed method have 
been compared to those obtained using GridLAB-D 
program. The results in Table 4 validate the proposed 
method and demonstrate its good level of accuracy. 

 
Fig. 7. IEEE 13-bus test feeders 

 

Table 4. Voltages results of IEEE 13-bus test feeder 

1V [Volt/°deg] 2V [Volt/°deg] 3V [Volt/°deg] Node ID 
Proposed method GridLab-D Proposed method GridLab-D Proposed method GridLab-D 

650 2401.8/0.0 2401.8/0.0 2401.8/–120 2401.8/–120 2401.8/120 2401.8/120 
632 2286.2/–2.06 2286.2/–2.06 2335.7/–122.09 2335.7/–122.09 2306.9/118.29 2306.9/118.29 
671 2201.5/–4.98 2201.6/–4.98 2341.7/–122.68 2341.7/–122.68 2200.6/116.91 2200.6/116.91 
680 256.36/–34.02 256.36/–34.02 259.07/–152.76 259.07/–152.76 262.62/86.09 262.62/86.09 
633 2277.8/–2.15 2278.4/–2.14 2330.2/–122.13 2330.8/–122.14 2301.3/118.27 2300.2/118.29 
634 255.67/–2.93 255.73/–2.92 263.4/–122.65 263.48/–122.67 260/117.74 259.86/117.75 
645 – – 2301.3/–122.28 2301.2/–122.28 2315.2/118.18 2315.1/118.18 
646 – – 2290.4/–122.35 2290.3/–122.36 2318/118.15 2317.8/118.15 
675 2181.6/–5.15 2181.6/–5.15 2344.4/–122.78 2344.4/–122.78 2191.7/117.02 2191.7/117.02 
684 2197.4/–4.99 2197.5/–4.99 – – 2195.7/116.8 2195.7/116.8 
611 – – – – 2190.9/116.64 2190.9/116.63 
652 2180.5/–4.99 2180.3/–5.01 – – – – 

– missed phases 
 

Third test network. The third test feeder is the 
IEEE 37-bus network where voltage regulator and 
distributed load are discarded. As shown by Fig. 8, this 
network includes four down-step transformers located at 
nodes 702, 703, 709 and 737.  

 
Fig. 8. IEEE 37-bus test feeders 

 
Voltage profiles given by both proposed method and 

GridLAB-D are shown by Fig. 9,a,b. Figure 9,a shows 
voltage-profiles for nodes located at transformers 
primary-sides, the line-to-line voltage magnitudes of 
which is between 4.55 kV and 4.58 kV. Figure 9,b, on the 
other hand, gives voltage-profiles for nodes located at 
transformers secondary-sides whose line-to-line voltage 
magnitudes are between 360 V and 480 V. These figures 
show that the voltage profile obtained by the proposed 
method agree with that given by GridLAB-D. 

 

bus ID
 

a 

 

bus ID
 

b 
Fig. 9. Proposed method and GridLAB-D voltage profiles for 

IEEE 37-bus: a – voltages of nodes situated before transformers; 
b – voltages of nodes situated at transformers secondary side 
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Conclusions. In this paper, the well-known matrices 
bus injection to branch current and branch current to bus 
voltage have been modified and led to new matrices. The 
latter support all practical transformer models and 
configuration types. No assumptions are made using these 
new matrices. One can use either real values or per-unit 
system for the network parameters. Based on an elaborate 
flowchart of topological matrix construction, the proposed 
power flow method is validated by comparing the results 
obtained with those given by the GridLAB-D program for 
three IEEE test systems. It has been shown that the 
proposed method is efficient, can handle different 
distribution components and can be extended to large and 
complex balanced and unbalanced distribution networks. 
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