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Introduction. This research work focuses on the design and experimental validation of fault detection techniques in grid-connected solar 
photovoltaic system operating under Maximum Power Point Tracking mode and subjected to various operating conditions. Purpose. Six 
fault scenarios are considered in this study including partial shading, open circuit in the photovoltaic array, complete failure of one of 
the six IGBTs of the inverter and some parametric faults that may appear in controller of the boost converter. Methods. The fault 
detection technique developed in this work is based on artificial neural networks and uses discrete wavelet transform to extract the 
features for the identification of the underlying faults. By applying discrete wavelet transform, the time domain inverter output current is 
decomposed into different frequency bands, and then the root mean square values at each frequency band are used to train the neural 
network. Results. The proposed fault diagnosis method has been extensively tested on the above faults scenarios and proved to be very 
effective and extremely accurate under large variations in the irradiance and temperature. Practical significance. The results obtained 
in the binary numerical system allow it to be used as a machine code and the simulation results has been validated by MATLAB / 
Simulink software. References 21, tables 5, figures 7. 
Key words: artificial neural network, discrete wavelet transform, fault diagnosis, photovoltaic system. 
 

Вступ. Ця дослідницька робота присвячена розробці та експериментальній перевірці методів виявлення несправностей у 
підключеній до мережі сонячній фотоелектричній системі, що працює в режимі відстеження точки максимальної потужності 
та піддається різним умовам експлуатації. Мета. У цьому дослідженні розглядаються шість сценаріїв відмови, включаючи 
часткове затінення, обрив кола у фотогальванічній батареї, повна відмова одного з шести IGBT інвертора та деякі 
параметричні відмови, які можуть виникнути в контролері перетворювача, що підвищує. Методи. Методика виявлення 
несправностей, розроблена у цій роботі, полягає в штучних нейронних мережах і використовує дискретне вейвлет-перетворення 
для отримання ознак для ідентифікації основних несправностей. Застосовуючи дискретне вейвлет-перетворення, вихідний струм 
інвертора в часовій області розкладається на різні смуги частот, а потім середньоквадратичні значення в кожній смузі частот 
використовуються для навчання нейронної мережі. Результати. Запропонований метод діагностики несправностей був всебічно 
протестований на вказаних вище сценаріях несправностей і виявився дуже ефективним і надзвичайно точним при великих 
коливаннях освітленості і температури. Практична значимість. Результати, отримані в двійковій системі числення, 
дозволяють використовувати її як машинний код, а результати моделювання були підтверджені програмним забезпеченням 
MATLAB/Simulink. Бібл. 21, табл. 5, рис. 7. 
Ключові слова: штучна нейронна мережа, дискретне вейвлет-перетворення, діагностика несправностей, фотоелектрична 
система.  

Abbreviations 
ANN Artificial neural network MPPT Maximum power point tracking 
CNN Convolutional neural networks PLL Phase lock loop 
CWT Continuous wavelet transform PSO Particle swarm optimization 
DWT Discrete wavelet transform PV Photovoltaic 
HF High frequency RMS Root mean square 
HPF High-pass filter SVPWM Space vector pulse width modulation 
LF Low frequency VOC Vector oriented control 
LPF Low-pass filter WT Wavelet transform 

 

Introduction. Global energy demand is rising at a 
fast pace and CO2 emissions have reached their highest 
record in recent years; which has prompted the 
industrialized world to search for alternative energies 
resources to overcome the declining fossil fuel reserves. 
Solar PV energy is one of the most promising renewable 
energies sources [1]. Therefore, PV power generation has 
become so mainstream and usually is distributed in some 
distant and cruel environments, and because some faults 
are inevitable during the long-term operation of the PV 
system it has become clear that PV system require to be 
better protected against faults [2, 3]. Also the electrical 
faults and interconnected power system increases the cost 
and emission ratio very high [4]. 

Detecting faults of the PV components and fix it is 
necessary to avoid economic losses and big incidents that 
may established in this systems, thus ensuring secure and 
robust systems [5]. Moreover, more time and costs are 
suffered when malfunction is failed to be detected in a 
timely manner in the system. Therefore, to ensure a high-
quality system for prolonged, it is essential to recognize the 
times and locations of faults and failures immediately [5]. 

Since diagnosing faults is essential to the PV systems, 
over the past few years researchers have become 
increasingly interested in diagnosing complex system faults. 
A large number of fault diagnostic methods and several 
approaches have been proposed by researchers. In [6] a new 
PV array fault diagnosis technique capable of automatically 
extracting features from raw data for PV array fault 
classification was proposed. That technique shows good fault 
diagnosis precision on both noisy and noiseless data. In [7], a 
technique for the rapid detection and isolation of faults in the 
DC micro-grids without deactivating the entire network has 
been introduced. The technique is based on sampling branch 
current measurements then using WT to capture the features 
from the network current signals. The authors in [8] 
presented a new approach to effectively classify and detect 
PV system faults using deep two-dimensional (2-D) CNN to 
extract features from 2-D scalograms generated from PV 
system data. In [9], the authors propose a recurrent neural 
network-based long short-term memory approach for the 
detection of high impedance fault in PV integrated power 
system. In [10], a CNN was combined with a chaotic system 
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and the DWT and applied to the diagnosis of insulation 
faults in cross-linked polyacetylene power cables. The 
method presented in [11] is based on the combination of an 
ANN with WT and leads to an accurate fault location 
strategy in bipolar current source converter based high 
voltage DC transmission system. In [12], a design of a 
monitoring system using a perceptron multilayer ANN for 
the detection of rolling element-bearings failure was 
proposed. The authors in [13] applied WT to extract the 
features of fault signals then used them for training an ANN 
that can classify and detect faults in DC microgrid. 

Many techniques are used to detecting the faults in 
the PV systems, from the above we note that fault 
detection is directly dependent on signal current or 
voltage which is sensed using sensors and sampled for 
further process. Next, effective and different feature 
extraction techniques are used in the discussed fault 
detection methods to obtain the most versatile and 
effective features possible. 

The objective of this work is to create an artificial 
neural network observer that can detect and classify faults 
in photovoltaic system. By using DWT on real data of PV 
system under different operating conditions with and 
without faults in order to extract the features then learn 
and train the ANN with these features. 

Materials and methods. The experimental grid-
connected PV system used in this study is depicted in Fig. 1 
and its presentation with the proposed fault detection method 
– in Fig. 2.  

 
Fig. 1. Depict implemented grid-connected PV system [14] 

 
Fig. 2. Presentation of implemented grid-connected PV system 

with the proposed fault detection method 
 

A typical grid-connected PV system implemented in 
the laboratory is used to verify the fault detection 
performance of data dependent methods against real faults in 
practical conditions and MPPT mode. The output of the PV 
array is created by the programmable Chroma 62150H-

1000S Solar Array emulator which allows modifies the 
effects of peripheral conditions (irradiance G and 
temperature T), and as a grid emulator The programmable 
AC source Chroma 61,511. A DSpace 1104 environment 
implement the control algorithm and used also for data 
acquisition. Based on the grid-side signals, VOC based on 
SVPWM is used to control the active and reactive powers. 
The inverter output voltage is synchronized with the grid 
voltage through the PLL. For safety and protection purposes, 
the AC load is used when real faults are applied. To extract 
maximum power from the PV array, a MPPT controller 
based on PSO technique is used [14]. 

Therefore, this system was used to create and collect 
real faulty data for fault detection experimental validation; 
we refer interested readers to [15, 16] for more details on 
settings of this system. the PV array voltage VPV and current 
IPV and DC voltage Vdc as shown in Fig. 1, are real-time 
measured signals with a sampling time of Ts = 100 µs [14]. 

The minimum set of variables associated with faults 
is: {IPV, VPV, Vdc, I, fI, V, fV}, where fI, fV are current and 
voltage frequency. It used for observing the PV system. 

The real-time measured and estimated signals form a 
data matrix Y of 7 columns: 

Y = [IPV  VPV  Vdc  I  fI  V  fV]T.                (1) 
This work considers the detection of the 6 factual 

faults listed in Table 1 that were injected into the PV 
system. The faults are of different types and locations and 
are injected manually in separate experiments to ensure an 
entire analysis. Each trial lasts about 10 to 15 s where in the 
fault is applied around the 7th to 9th s. Degradation faults 
are not considered in this work, as their detection requires 
long-term data at large sampling time intervals [14]. 

Table 1 
Realistic injected fault in the PV system [14] 

Fault Type Description 
F1 Inverter fault Complete failure in one of the six 

IGBTs 
F2 Feedback sensor 

fault 
One phase sensor fault 20% 

F3 PV array 
mismatch 

10 to 20% non homogeneous partial 
shading 

F4 PV array 
mismatch 

15% open circuit in PV array 

F5 MPPT controller
fault 

–20% gain parameter of PI controller in
MPPT controller of the boost converter

F6 Boost converter 
controller fault 

+20% in time constant parameter of PI 
controller in MPPT controller of the 
boost converter 

 
Proposed fault detection strategy. The proposed 

fault detection method is described by the flowchart of 
Fig. 3. The fault diagnosis algorithm uses the inverter 
output current signals for feature extraction approach 
based on the DWT. The aim of signal processing is to 
extract the features of the signal from several angles 
through several transform methods to aid in signal 
analysis and processing. The wavelet function is a new 
foundation for expressing signals and a good method for 
analyzing the signal from different resolutions [10]. 

Feature extraction using wavelet transform. 
Feature extraction is the most important part in the 
proposed fault detection and classification process.  



44 Electrical Engineering & Electromechanics, 2022, no. 6 

 
Fig. 3. Flowchart of the proposed fault detection system 

 

Better features lead to improved system performance 
and reliability, because the accuracy of a system depends 
on the quality and robustness of the feature extraction 
process. Wavelet transform is a mathematical tool for 
temporal frequency analysis and has been used in several 
fault detection applications. It is based on the 
transformation of the temporal signal into a series of 
parameters called approximation and detail representing 
the slow and fast changes in the signal, respectively. The 
wavelets are defined as follows [17]: 
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where a and b are the scale factor and position factor 
respectively. 

Wavelet transform is divided into CWT and DWT 
[10]. The DWT algorithm translates and dilates the 
wavelet according to discrete values. Therefore, a and b 
will be discretized as follows [18]: 
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where a0 > 1, b0 > 0; a0 and b0  Z; m and n are the 
integers permitting the control of the dilation and the 
translation of the original wavelet [17]. 

The DWT algorithm is used to eliminate noise in the 
original signal and also to decompose the time domain 
signal into different frequency groups. The original signal 
f(t) passes through two complementary filters: a HPF and 
a LPF appear as two signals defined as the approximation 
signal A and the detail signal D as shown in Fig. 4. 

 
Fig. 4. DWT implementation procedure 

 
 

The approximation is the large-scale and the low 
frequency part of the signal and the detail is the small-
scale and high frequency part of the signal [18].  

Through DWT, the input signals which consist of LF 
and HF components can be decomposed into frequency 
bands. Then, through down-sampling, the first level of 
wavelet transform can be obtained [10]. 

For a reliable and fast analysis, a prior knowledge of 
the signal levels N to be processed is necessary. The 
following equation gives this required parameter [17]: 
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where fs is the supply frequency; fe is the sampling 
frequency. Note that Nlevels should be an integer. 

The appropriate decompositions number can 
calculated based on the knowledge of fs and fe. In our 
case, considering a supply frequency of 50 Hz and a 
sampling frequency of 10 kHz, the number of 
decomposition levels required is [17]: 
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Table 2 presents the different frequency bands acquired 
by the discrete wavelet decomposition. Figure 5 shows the 
DWT that implemented to decompose the current signal (ia) 
in MATLAB/Simulink environment to obtained the Details. 

Table 2 
Frequency bands obtained by multi-level decomposition 

Levels Approximations Details 
J=1 A1 0-5000 D1 5000-10000 
J=2 A2 0-2500 D2 2500-5000 
J=3 A3 0-1250 D3 1250-2500 
J=4 A4 0-625 D4 625-1250 
J=5 A5 0-312.5 D5 312.5-625 
J=6 A6 0-156.25 D6 156.25-312.5 
J=7 A7 0-78.125 D7 78.125-156.25 
J=8 A8 0-39.0625 D8 39.0625-78.125 
J=9 A9 0-19.5313 D9 19.5313-39.0625 

 

 

 
Fig. 5. DWT implemented in MATLAB / Simulink environment 
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Figure 6,a shows the inverter output current (ia) in 
healthy case, and in Fig. 6,c in faulty case (F1). 

Different details extracted from the obtained inverter 
output current signal by the DWT technique for the 
healthy case in Fig. 6,b and the faulty case in Fig. 6,d (F1) 
is displayed below. By comparing healthy case details and 
faulty case (F1) Details of the PV system state as depicted 

in Fig. 6,b and Fig. 6,d a remarkable variation in details 
amplitude is observed. 

Note that these statements are valid for the other 
faulty cases when we compare it with the healthy case. 

The variation in those details provides some 
useful information in the signal to extract and use it to 
train ANN. 

 

t, s 

Amplitude

a) 

d) 

Amplitude 

t, s
b) 

ia, A 

t, s
c)

t, s

ia, A

 
Fig. 6. Inverter output current (ia) and its details in healthy and faulty cases 

 

Fault table based on extracted features. The next 
process is to create a fault table according to feature 
values under each fault by using the RMS of each detail: 


i

ix
n

RMS 21
,                         (6) 

where xi denotes the measurements and n is the number of 
measurements. 

We should carefully observed these feature values 
because these values will use for training. Using this fault 
Table 3, an ANN is trained and then used to identify the faults. 

Table 3 
Fault table based on extracted features 

 D1RMS D2RMS D3RMS D4RMS D5RMS D6RMS D7RMS D8RMS D9RMS 
Healthy 0.0167 0.0040 0.0038 0.0042 0.0058 0.0798 0.4734 0.1243 0.0142 

F1 0.0132 0.0034 0.0037 0.0092 0.0229 0.2653 1.5706 0.4442 0.1148 
F2 0.0172 0.0042 0.0041 0.0044 0.0061 0.0808 0.4832 0.1268 0.0132 
F3 0.0173 0.0053 0.0040 0.0042 0.0075 0.0624 0.3529 0.0925 0.0094 
F4 0.0162 0.0042 0.0034 0.0037 0.0056 0.0637 0.3744 0.0981 0.0109 
F5 0.0172 0.0045 0.0045 0.0049 0.0091 0.0869 0.4644 0.1219 0.0127 
F6 0.0173 0.0045 0.0045 0.0048 0.0094 0.0900 0.4759 0.1250 0.0108 

 
Artificial neural network. The Artificial neural 

network system has proven its capability in a variety of 
engineering applications such as estimation, process 
control and diagnostics [19]. 
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ANN is modeled on the human brain and nervous 
system. It requires to train and calculate hidden layer 
weights according to the inputs and required outputs 
before using it in a specific system. It consists of the input 
layer, hidden layer or layers, and an output layer. Weights 
of hidden nodes are calculated during the training process 
to provide the exact output in case of same or nearly equal 
input combinations. Back-propagation technique is used 
for weight training of neural network; this method 
calculates the gradient of a loss function with respect to 
all weights in the network so that the gradient is fed to the 
optimization method which uses it to update weights in an 
attempt to minimize loss function [20]. 

The ANN architecture employed in this work          
is shown in Fig. 7. It consists of the input layer with         
9 neurons, one for each RMS detail, a hidden layer with 
10 neurons, and an output layer with 4 neurons referring 
to the sign of the fault we want to detect. The back-
propagation technique used for training is based on 
Levenberg-Marquardt algorithm. The sigmoid activation 
function is used for hidden and output layers. 

 

 
Fig. 7. ANN Structure 

 

Table 4 represents the corresponding sign to each fault; 
the sign consist of 4 variables in binary numerical system 
which indicates to fault number ("F"n) in decimal numerical 
system. The objective of using the binary numerical system 
as target output is to use it as machine code. 

Table 4 
Fault sign 

 y1 y2 y3 y4 Decimal N° 
Healthy 0 0 0 0 0 

F1 1 0 0 0 1 
F2 0 1 0 0 2 
F3 1 1 0 0 3 
F4 0 0 1 0 4 
F5 1 0 1 0 5 
F6 0 1 1 0 6 

 

Results and discussion. First of all, the ANN must 
be trained with healthy and faulty data. Then this trained 
neural network is used for fault detection system. 

MATLAB/Simulink neural network toolbox is used to 
train the neural network according to the extracted features 
shown in Table 3 and the sign given in Table 4. The training 
process is simple and easy to perform using the MATLAB 
toolbox. The trained neural network can be easily converted 
to Simulink blocks or a MATLAB function which can be 
readily integrated in our designed system. 

At the end of the training process, the model 
obtained consists of the optimal weight and the bias 
vector. The minimum performance gradient was set and 
training will stop when any one of conditions is met. 

An automatic learning of the ANN is performed until a 
mean squared error of 2.1884ꞏ10–22 is obtained at epoch 13. 

Table 5 represents the obtained results in 
MATLAB/Simulink environment; it shows that the 
results are similar to the target output in Table 4. 

Table 5 
Tests results 

Healthy

 

=► 0

F1 

 

=► 1

F2 

 

=► 2

F3 

 

=► 3

F4 

 

=► 4

F5 

 

=► 5

F6 

 

=► 6

 
Conclusion. In this research work, we presenting a 

study of diagnostic technique for PV system based on real 
data, using wavelet transform and artificial neurons 
network. This study aims to find a solution to an effective 
and robust detection faults in the PV system such as 
partial shading, an open-circuit of the PV array of the 
system, a complete failure in one of the six IGBTs of the 
inverter and some parametric faults. 

This technique shows a good performance. 
Furthermore, the simplicity of this proposed algorithm 
also shortens the response time, that's why it can detect 
the faults with high speed and accuracy. 

Appendix. Reference [21] represents the grid-
connected PV system faults data that are collected from 
lab experiments of faults in a PV microgrid system. There 



Electrical Engineering & Electromechanics, 2022, no. 6 47 

are 16 data files in ‘.mat’ form and also ‘.csv’ form. 
Experimental data files are available in [21]. 
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