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Multi-objective optimal power flow based gray wolf optimization method

Introduction. One of predominant problems in energy systems is the economic operation of electric energy generating systems. In
this paper, one a new evolutionary optimization approach, based on the behavior of meta-heuristic called grey wolf optimization is
applied to solve the single and multi-objective optimal power flow and emission index problems. Problem. The optimal power flow
are non-linear and non-convex very constrained optimization problems. Goal is to minimize an objective function necessary for a
best balance between the energy production and its consumption, which is presented as a nonlinear function, taking into account of
the equality and inequality constraints. Methodology. The grey wolf optimization algorithm is a nature inspired comprehensive
optimization method, used to determine the optimal values of the continuous and discrete control variables. Practical value. The
effectiveness and robustness of the proposed method have been examined and tested on the standard IEEE 30-bus test system with
multi-objective optimization problem. The results of proposed method have been compared and validated with hose known
references published recently. Originality. The results are promising and show the effectiveness and robustness of proposed
approach. References 35, tables 3, figures 6.
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Bcemyn. Oowiero 3 201061ux npobaem enepeemutHux cucmemax € eKOHOMIYHA eKCHAYamayis Cucmem UpOOHUYMEa enekmpoenepeii.
YV yiti cmammi ooun mosuil nioxio 0o eeontoyitinoi onmumizayii, 3acHo8aHUll HA NOBEJiHYI MemaespUCMUKU, AKA HA3UBAEMbCA
onmumizayicio cipo2o 606Kd, 3ACMOCOBYEMbCA Ol BUPIUEHHA 00HO- Ma 6a2amoKpumepianbHux 3a60anb ONMUMANLHO20 NOMOKY
nomyostcHocmi ma indexcy eukuoig. Ilpoonema. Onmumanvruli ROMIK NOMYHCHOCIMI - Ye HeIHIIHI ma HeonyKIi 3a0ayi onmumizayii 3
Oyorce oomedicennamu. Memorw € minimizayia yinboeoi QyHKyYii, HeoOXIOHOI 0n1a HAUKpawoeo OAnaHcy Midc 8UpOOHUYMEOM ma
CHOJICUBAHHAM eHepell, AKa npedcmagieHa y 6uensioi HeliHiiHOl QYHKYIl 3 YPaxyeaHHsM o0OMedceHb PIGHOCMI ma HePIGHOCHIL.
Memodonozia. Arcopumm onmumizayii cipoco 806Ka - ye HAMXHEHHUU NPUPOOOIO KOMNWAEKCHULL MemoO Onmumizayii, wo
BUKOPUCIOBYEMbCA OIS BUSHAYEHHS ONMUMANLHUX 3HAYEHb Oe3nepepeHUX | OUCKPemHUX 3MIHHUX, wo ynpaenaioms. IIlpakmuuna
yinnicmo. Epexmusnicmvs ma HAOHICMb 3aNPONOHOBAH020 Memody Oyau nepesipeni ma npomecmosani Ha cmanoapmuiti 30-
wunniti mecmosii cucmemi IEEE i3 3a60annam 6azamokpumepianvhoi onmumizayii. Pezynomamu 3anpononogarnozo memooy 6yau
3icmaegneni ma niOmMeepoX*ceHi HewjoodaeHo onyoniKosanumu eioomumu nocunanuamu. Opuzinanenicms. Pe3ynemamu ¢
bazamoodiyaouUMU Ma NOKA3VIMy epeKmusHicms ma HAdIlIHICMb 3anponoH08ano2o nioxody. biodm. 35, radmn. 3, puc. 6.

Knrouosi cnosa: onrumizanisi, eHepreTHYHi Mepexki, ONTHMAJbHUN MOTIK MOTYKHOCTI, iHeKC BUKHIIB, ONTHMI3alisi METOAOM
ciporo BoBKa.

Introduction. The optimal power flow (OPF)
problem has a long history of development of more than
60 years. Since the OPF problem was first discussed by
Carpenter in 1962, then formulated by Dommel and
Tinney in 1968 [1].

Power plants coal-fired contribute a large quantity of
polluting gases to the atmosphere, as they produce large
amounts of carbon oxides CO, and some toxic and
dangerous gases such as emissions of sulfur oxides SO,
and nitrogen oxides NOy [1, 2].

Over the past few years, various methods have been
implemented to solve the OPF and emission index (EI)
problems such as: quadratic programming method (QP)
[3], Newton and quasi-Newton methods [4, 5], linear and
non-linear programming methods [6, 7], and nonlinear
internal point methods (IPM) [8].

Several methods of optimization are formulated in the
last two decades such as: artificial bee colony (ABC) [9],
bacterial foraging algorithms (BFA) [10], artificial neutral
networks (ANN) [11], harmony search (HS) [12], Cuckoo
search algorithm (CSA) [13], evolution programming (EP)
[14], differential evaluation (DE) [15], tabu search (TS)
[16], simulated annealing (SA) [17], gravitational search
algorithms (GSA) [18], genetic algorithms (GA) [19],
particle swarm optimization (PSO) [20], ant colony
optimization (ACO) [21], firefly algorithm (FFA) [22],
sine-cosine algorithm (SCA) [23], modified imperialist
competitive algorithm (MICA) [24], moth swarm algorithm
(MSA) [25], electromagnetism-like mechanism method
(ELM) [26], wind driven optimization (WDO) method
[27], machine learning [28], teaching-learning-studying-
based optimization algorithm [29], and more recently grey

wolf optimizer (GWO) [30, 31]. Variants of these
algorithms were proposed to handle multi-objective
functions in electric power systems.

The proposed GWO approach is tested and
illustrated by numerical examples based on IEEE 30-bus
test system.

Problem formulation. The OPF and EI are
nonlinear optimization problems, represented by a
predefined objective function £, subject to a set of equality
and inequality constraints [27, 32]. Generally, these
problems can be expressed as follows:

min f (x, u), €))
subject to
h(x,u)=0; 2
gx,u)<0; 3)
Xmin <X < Xmax and Upin SU S Upay )

where f(x, u) is a scalar objective function to be optimized,;
and g(x, u) are, respectively, the set of nonlinear equality
constraints represented by the load flow equations and
inequality constraints consists of state variable limits and
functional operating constraints; x and u are the state and
control variables vectors respectively; Xmin, Xmax> Ymin> Ymax
are the acceptable limits of the variables.
Hence, x and u can be expressed as given

=15, Wb {e,. 06,6, St S, I

where Pg, Qg, Vi, and S; are the generating active power
at slack bus, reactive power generated by all generators,
magnitude voltage of all load buses and apparent power
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flow in all branches, respectively; n,, n;, and n,, are,
respectively, the total number of generators, the total
number of load buses and the total number of branches.

The set control parameters are represented in terms
of the decision vector as follows:

ut:{PGZ,...,PG”g,|VG1|,...‘VG O Oy Ty :(6)

where Pg is the active power generation excluding the
slack generator; Vg is the generators magnitude voltage;
T is tap settings transformers; Q. is the reactive power
compensation by shunt compensator; ny and n.,, are the
total number of transformers and the total number of
compensators units, respectively.

Cost without valve-point optimization. The
objective function of cost optimization f; of quadratic cost
equation for all generators as given below:

ng com

ﬂg

ﬂg
fi =min Y C(Py) =min Y ay +b; Py +c4 Pay , (7)
k=1 k=1
where f; is the total generation cost in ($/h); P and n, are
the active power output generated by the i™ generator and
the total number of generators; a;, by, ¢, are the cost
coefficients of the generator .

Cost with valve-point optimization. Generally,
when every steam valves begins to open, the valve-point
shows rippling. However, the characteristics of input-
output of generation units make nonlinear and non-
smooth of the fuel costs function. To consider the valve-
point effect, the sinusoidal function is incorporated into
the quadratic function. Typically, this function is
represented as follows

g
. 2
fz = mmZ[ak +kagk +Ckng]+
=1 ®)
+‘dk sin(ek (Pgtgin —Pg )],
where d; and e, are the cost coefficients of unit with
valve-point effect.
Active power loss optimization. The active power

loss function f; in MW to be minimized can be expressed
as follows:

1
2 2
fy= ZG,W- [Vk +V7 =2V, cosby |, )
k=1

where ¥V and V; are the magnitude voltage at buses k and
Jj» respectively; Gy, is the conductance of line &j; 6 is the
voltage angle between buses & and j; n,, is total number of
buses.

Emission optimization. The emission function is
the sum of exponential and quadratic functions of real
power generating. Using a quadratic equation, emission of
harmful gases is calculated in (ton/h) as given below

g
f4:min210_2(ak +ﬂkng+7kPg2k)+ 10
“ (10)

+§kexp0%f§kl
where f; is the emission function in (ton/h); ax, S, ¥ Si
A, are the emission coefficients of the generator .
All multi-objective functions using aggregation
weighting function. The function used in the case of
weighted aggregation is given as

A s
minF:Za)ifi with @; >0 and Za)i =1, (11
i=1 i=1

n
/.
where Za)i =landi=1:ny, @, is the weighting
i=1
factor; n,1is the number of objective function considered.
Equality constraints. These equality constraints are
the sets of nonlinear load flow equations that govern the
power system, i.e.:

ng = Pk + Pdk;

Ok = Ocomk = 9k + Qak>
where Py and Qg are, respectively, the scheduled active
and reactive power generations at bus k; Pj, O, are the
active and reactive power injections at bus k; Py, QOu,
Ocomi are the active and reactive power loads at bus £ and
the reactive power compensation at bus .

Inequalitie constraints. The inequality constraints
g(x, u) are represented by the system operational and
security limits, listed below:
e Active and reactive power generations limits:

(12)

Péﬁm <Py < P(g,mkax where k =1,...,n, ; 13)
lelcin <Oy < g}(ﬁx where k = L..,ng; (14)
¢ Voltage magnitudes and angles limits:
Vit <V <V where k =1,...,n; s)
glini“ <O <O where k=1,...,np; (16)
e Tap settings transformers limits:
Tkming T, < T where k =1,...,ny ; (17

e Reactive power compensation limits:

OComk < Ocomk < Qeomk Where k=1,.....ncop 5 (18)
o Security constraint limits:

SkjSS,g}ax where k=j=1,...,n,

19)
where nr, ncom, T and Qc,, are the total number of
transformers, the total number of compensator, the

transformers tap  settings, the reactive power

X

compensation; S,g-ml is the maximum apparent power

between buses & and ;.

Grey wolf optimization (GWO) is a typical swarm-
intelligence based meta-heuristic algorithm proposed by
Mirjalili et al. in 2014 [33] which is inspired from the
leadership hierarchy and hunting mechanism of Grey
Wolves in nature. In nature, Gray Wolf (Canis lupus)
belongs to Canidae family. It is considered as a top level
of predators and residing at the top in the food chain.

The population hierarchies of grey wolves are
separated by 4 layers which are named as, alpha () is the
fittest solution. Beta (/) is the second optimum solution and
delta (o) is the third one. Omega (®) is the candidate
solutions that are left over [30]. Generally, the populations of
grey wolves have average crowd size of 5-12 and the cluster
organizes compactly through the hierarchy [30].

The position of the wolves is considered as the
variables to be optimized and the distance between prey
and grey wolves determine the fitness value of the
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objective function. The movement of each individual is
influenced by 4 processes, namely [30]:
1. Searching for prey (exploration);
2. Encircling prey;
3. Hunting;
4. Attacking prey (exploitation).
The following sub-section explained these operators.
A. Social hierarchy. The grey wolves diverge from
each other position for searching a victim. Make use of
-
Ay, with random values to compel the search agent to

N
diverge from the victim. The component C,, provides
random weights for searching prey in the search space.

B. Encircling prey. As mentioned above, grey wolves
encircle prey during the hunt. ¢, fand ¢ estimate the position
of the 3 best wolves and other wolves updates their positions
using the positions of these 3 best wolves. Encircling

N
behavior can be represented by D,, . When the wolves do

hunting, they tend to encircle their prey. The following
equations depicted the encircling behavior [33, 34].

- > - -

Dy =|Cy Xp(t)—X(2)| 5 (20)

- - -> -

X(@+1) = Xp(t)— Apr.Dyy (1)
-

where ¢ is the current iteration; X is the position vector

- -
of gray wolf;, Xp is the position of the prey; A;, and
-
Cys are the coefficient vectors calculated using the
following expressions [30, 33]:
- > o o
Ay =2a.r1—a

- -
and Cy, =2p, (22)

- -
where »1 and 72 are random vectors between 0 and 1
-
and a is set to decreased from 2 to 0 over the course of
iterations. The 3 best solutions so far are saved and then
the other search agents (omega wolves) update their
positions according to the current best position [31, 34].
C. Hunting. Conservation of regional habitat
connectivity has the potential to facilitate recovery of the
grey wolf. After encircling, o wolf guides for hunting.
Later, £ and 6 wolves join in hunting [33]. It is tough to
predict about the optimum location of prey. These
situations are expressed in the following expressions [33]:

- e -
DMasza-Xa(t)—X(t); (23)
- - - -
Dyp =|Cyp- X p(t) = X(1)|; (24)
- > - -
Dys =|Cys- Xs(t) = X(1)|; (25)
- N
Xig =Xo= A1 Dyras
e
Xlﬂ :Xﬂ_AMZDMﬂ’ (26)
- - o5 -

X5 =Xs—Ay3Dys -

The best position of grey wolf is calculated taking
average sum of positions and given as
— - -
X lat X 1 ﬂ+ X I
-
D. Attacking prey. The grey wolves stop the
hunting by attacking the prey when it stops moving. It

N
depends on the value of a. A4, is a random value in the

N
X+ = 27)

interval [2a, 2a]. In GWO, search agents update their
positions based on the location of &, £ and J and attack
towards the prey [32, 33]. However, GWO algorithm is
prone to stagnation in local solutions with these operators.
It is true that the encircling mechanism proposed shows
exploration to some extent, but GWO needs more
operators to emphasize exploration [33, 34].

Simulation and results. The 5 generators system,
IEEE 30-bus system is used throughout this work to test
the proposed algorithm. This system consist 30 buses, 6
generators units and 41 branches, 37 of them are the
transmissions lines and 4 are the tap changing
transformers. One of these buses is chosen like as a
reference bus (slack bus), the buses containing generators
are taken the PV buses, the remaining buses are the PQ
buses or loads buses. It is assumed that 9 capacitors
compensation is available at buses 10, 12, 15, 17, 20, 21,
23, 24 and 29. The network data, the cost and emission
coefficients of the five generators are referred in [35]. The
one-line diagram IEEE 30-bus system is shown in Fig. 1.

]

Fig. 1. One-line diagram of IEEE 30-bus system

The total loads of active and reactive powers are
283.4 MW and 126.2 MV A, respectively, with 24 control
variables. The basis apparent power used in this paper is
100 MVA. The simulation results of load flow problem of
test system are summarized in Table 1.

A. Case 1: Cost optimization without valve-point
effect. The cost function f; given in (7) is optimized.
Therefore, in this case, the cost has resulted in 801.65 $/h,
which is considered 8.301 % lower than the initial case
(load flow). Figure 2 shows the convergence of cost using
GWO algorithm. Table 1 summarizes the optimal control
variables of this case.

B. Case 2: Cost optimization with valve-point
effect. The cost function f; is optimized. Therefore, in this
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case, the cost has resulted in 836.73 $/h, which is
considered 4.288 % lower than the initial case. The
convergence characteristic of cost for this case is
introduced in Fig. 2. The optimal control variables of this
case are presented in Table 1.

C. Case 3: Active power loss optimization. The
optimal control variables of this case are introduced in
Table 1. Figure 3 shows the trend for convergence
characteristics of active power losses using GWO
algorithm. The active power loss minimization has
dramatically decreased to 5.072 MW.

Table 1
Results of case 1, 2 and 3 for test system
) Optimal values
Control variables Base Case 1 | Case?2 Case 3
P, MW 40 46.53 36.57 66.930
Pgs, MW 0 21.71 17.06 50
Pz, MW 0 18.36 18.44 13.533
P, MW 0 15.03 12.64 22.466
Psi3, MW 0 15.26 12.45 29.854
V1, pu 1.060 1.085 1.087 1.071
V2, pu 1.045 1.066 1.064 1.061
Vs, pu 1.050 1.035 1.032 1.040
Vs, pu 1.070 1.038 1.036 1.040
V11, pu 1.090 1.088 1.047 1.068
Vi3, pu 1.090 1.022 1.027 1.064
Ocomios MVAT 0 2.372 1.185 2.083
O omiz, MVAr 0 0.330 | 4.804 2.198
O.omis» MVAr 0 3.462 3.158 0.934
O.omi7» MVAT 0 1.139 | 4.612 1.319
Oom0, MVAT 0 1.667 3.320 0.864
Ocomr1» MVAT 0 2.321 2.095 1.756
O om23» MVAT 0 1.962 | 2.136 1.516
O omr4» MVAT 0 4.765 3.672 1.586
O om0, MVAT 0 3.180 | 2.985 3.012
Ts.9 0.978 1.046 1.000 0.985
Ts-10 0.969 0.971 0.995 0.975
Tais 0.966 | 0.974 0.996 0.991
Ts708 0.932 0.993 0.999 0.973
Cost, $/h 874.22 | 801.65 | 836.73 —
Losses, MW 17.56 — — 5.072
Emission, ton/h 4.100 — — —
Slack, MW 260.96 | 17543 | 196.4 | 105.687
CPU time, s 19.820 | 79.710 | 83.77 91.791

D. Case 4: Emission optimization. In this case, the
emission reduction yielded 0.215 ton/h. The optimal
control variables settings for this case are detailed in
Table 1. The convergence characteristics of emission is
shown in Fig. 4.

E. Case 5: Cost and active loss optimization. The
control variables of this case are tabulated in detail in
Table 2. The cost and the power losses has resulted in
814.45 $/h and 7.4 MW, respectively. The convergence
result of this case is presented in Fig. 5.

F. Case 6: Cost and emission optimization. The
control variables of this case are tabulated in detail in
Table 2. The cost and emission has resulted, respectively,
in 801.88 $/h and 0.267 ton/h. Figure 6 shows the
convergence algorithm obtained in case 5.

G. Case 7: Cost, active power loss and emission.
The control variables of this case are presented in detail in
Table 2. The cost optimization obtained in this case is
presented in Fig. 2.
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Table 3
Comparison of obtained results for cases 5, 6 and 7

o Methods Cost, Losses, | Emission,
sl | l Methods | Reference $/h MW $/ton
ol i | Case 5
L Proposed - 814.45 7.40 0.2524
sol 'L ] MSA [25] 859.191 | 4.540 _
. '._‘ | ABC [9] 854.913 4.982 -
1\ PSO [20] 878.873 7.810 -
700} v : DE [15] 820.880 | 5.594 —
2ol ‘-l | Case 6
“ Proposed — 801.88 — 0.267
7201 RN ] GA [19] 320.166 _ 0271
o LT T T T  Merations MICA [24] 865.066 - 0.222
20‘ 40 60 80 100 1.20 140 160 180 200 Case 7
Fig. 6. Convergence algorithm for case 7 Proposed — 823.00 6.038 0227
Table 2 GA [19] 793.605 8.450 0.187
Results of cases 4, 5, 6 and 7 for test system IABC [9] 851.611 4.873 0.223
Control variables Optimal values ABC [9] 854.916 | 4.982 0.228
Case4 | CaseS | Case 6 | Case 7 DE [15] 867.980 5.563 0.266
Pgo, MW 76.762 | 60.385 | 47.081 | 53.489 obtained results validate the advantage of the proposed
Pos, MW >0 26.084 | 20.674 | 30.009 approach over many other methods used to solve the optimal
Pgs, MW 26.991 | 15.136 | 21.764 | 34.998 power flow in terms of solution quality. It is concluded that
P, MW 30 20436 | 13.838 | 18.426 the proposed method has the ability to obtain near global
Pe13, MW 40 23.063 | 15.590 | 23.746 solution with stable convergence characteristics. Thus, the
:ﬁl’ pu }8‘3% }822 1822 }82(3) may be recommended the proposed approach as a promising
Vz’ pE 1' 003 1' 034 1' 033 1' 032 algorithm for solving some more complex engineering
VS’ pu 0' 995 1' 038 1' 040 1' 039 problems. The versatility of optimization is illustrated by
V8, pu 1' 004 1‘ 008 1' 069 1‘ 082 various tests by changing the parameters of proposed
Vlbpu 1'011 1' 049 1'0 15 1'051 approach such as number of population size and control
0 13>I\I/’IV o 2.887 3' 674 2' 438 2.28 6 parameter ¢y coefficient. The simulation results
QZ::E: MVAT 2:193 3:1 n 1:277 1: 114 demonstrated the effectiveness and robustness of the
O.omiss MVAT 1.092 | 2.047 | 2774 | 1.749 proposed methodology.
Ovomizs MVAT 1771 | 2.508 | 1.688 4259 Conﬂlct. of mt'erest. The authors declare that they
O MVAT | 3213 | 2539 | 2294 | 2561 | haveno conflicts of interest.
Ocom21, MVAT 2.972 1.584 1.297 3.274 REFERENCES
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