An improved search ability of particle swarm optimization algorithm for tracking maximum power point under shading conditions

Introduction. Extracting maximum possible power from solar energy is a hot topic of the day as other sources have become costly and lead to pollution. Problem. Dependency on sunlight for power generation makes it unfeasible to extract maximum power. Environmental conditions like shading, partial shading and weak shading are the major aspect due to which the output of photovoltaic systems is greatly affected. Partial shading is the most known issue. Goal. There have been many proposed techniques and algorithms to extract maximum output from solar resources by use of photovoltaic arrays but every technique has had some shortcomings that couldn’t serve the complete purpose. Methodology. Nature inspired algorithms have proven to be good to search global maximum in a partially shaded multiple peak curve which includes particle swarm optimization, artificial bee colony algorithm, and flower pollination algorithm. Methods. Particle swarm optimization algorithm is best among these in finding global peaks with less oscillation around maximum power point, less complexity, and easy to implement nature. Particle swarm optimization algorithm has the disadvantage of having a long computational time and converging speed, particularly under strong shading conditions. Originality. In this paper, an improved opposition based particle swarm optimization algorithm is proposed to track the global maximum power point of a solar photovoltaic module. Simulation studies have been carried out in MATLAB/Simulink R2018a. Practical value. Simulation studies have proved that opposition based particle swarm optimization algorithm is more efficient, less complex, more robust, and more flexible and has better convergence speed than particle swarm optimization algorithm, perturb and observe algorithm, hill climbing algorithm, and incremental conductance algorithm. References 24, tables 4, figures 12.

Key words: conventional particle swarm optimization, maximum power point, opposition based particle swarm optimization algorithm.

1. Introduction. With increasing demand of renewable source of energy, solar energy is getting more and more attention because of its easy and never ending availability. But operating PV panel at MPPT is a challenging task. So accomplishing this task can make use of PV panels very effective and it will largely reduce the use of non-renewable sources which will have such a huge impact on mankind’s lifestyle that it can save a huge amount of money and world resources. However high installation cost and getting lower efficiency are still the challenges that are faced nowadays by researchers [1, 2]. Solar energy plays a vital role in the development of a country. Compared to other renewable sources solar energy generation shows a significantly more dynamic development. Research studies shows that the installed capacity of solar power plants in 2016 was 315 GW [3-6]. For extracting MPPT, there are face several challenges such as temperature and irradiance affects the P-V characteristics of photovoltaic cell. For delivering maximum power to load several conventional algorithms were to tackle MPPT. For instance P&O MPPT method [7], IC MPPT method [8], modified hill climbing method [9], frictional short-circuit current approach [10], ripple correlation control method [11] and sliding mode controller [12] were used. The specialty of these...
algorithms is that these give good response for uniform irradiance of solar panel but under PSC these algorithms fails to track the global MPPT.

Goal. This paper present a hybrid technique used to track global max power point very efficiently by using improved particle swarm optimization algorithm. For improving search ability of PSO algorithm, PSO is hybridized with OBL [13], for getting high tracking efficiency, convergence speed and power output. PSO is an outstanding choice for problems of nature of non-linear optimization [14]. To check the robustness of this hybrid techniques, two different PV configurations are employed.

The PV system consists of PV panels, MPPT controller, DC-DC converter and load (Fig. 1). The output of the PV panels is fed to the converter as well as to the controller. The controller uses its input to regulate the duty cycle of the converter for maximum power point operation.

![Fig. 1. Block diagram of PV system](image)

This paper is organized as follows. In Section 2 there is description of P-V characteristics under PSC. In Section 3 methodology is describe. In Section 4 test system is presented while in Section 5 simulation results are discussed. In Section 6, comparison is discussed and paper is concluded in Section 7.

2. PV cell's modeling with single-diode equivalent circuit

2.1. Characteristics of solar cell.

Equivalent circuit of PV cell is shown in the Fig. 2 and the output in the form of current is given by:

\[
I_{pv} = I_{ph} - I_0 \left[\exp \left(\frac{q \left(U_{pv} + I_{pv} R_S \right)}{A K T} \right) - 1 \right] - \frac{U_{pv} - I_{pv} R_S}{R_P} \tag{1}
\]

where \(I_{pv} \) is the output current of cell; \(I_{ph} \) is the photocurrent; \(I_0 \) is the reverse saturation current; \(q \) is the charge of an electron; \(U_{pv} \) is the work voltage of a PV cell; \(K \) is the Boltzmann constant; \(A \) is the ideality factor; \(R_S \) and \(R_P \) are the series and parallel resistances; \(T \) is the cell temperature [15].

The different parameters of proposed PV module are shown in Table 1.

![Fig. 2. Single-diode equivalent circuit of PV cell](image)

2.2. Effect of PSC on PV characteristics.

In this paper, two different PV configurations are used to check the robustness of proposed technique. The first configuration is 4S2P, which consists of 8 PV modules. Four modules are organized in one string with power of 249 W. The overall power extracted is 1992 W. Second configuration is 3S1P, which consists of 3 PV modules that are arranged in one string. The overall power extracted by second configuration is 747 W [16]. Power extracted by different pattern of PSC is shown in Table 2. The PV configuration (4S2P) proposed in this paper is shown in Fig. 3.

![Fig. 3. Proposed PV configuration (4S2P)](image)

3. Methodology.

3.1. PSO algorithm.

PSO is an outstanding choice for problems of nature of non-linear optimization. PSO method is inspired by the behavior of swarms, insects and flocks [17]. In the previous decade, PSO is mostly the utmost favored optimization method for MPPT applications. In PSO, the initial particles (duty cycles) are chosen randomly in domain of the bounding limits. These particles are spread in whole search domain. The best among them in each iteration is known to be \(P_{best} \) and the finest in all repetitions is recognized as \(G_{best} \). Further, position and velocity of the particles/units are modified in each repetition and the

Table 1

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Variables</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum power</td>
<td>(P_{MPPT})</td>
<td>250 W</td>
</tr>
<tr>
<td>Open circuit voltage</td>
<td>(V_{oc})</td>
<td>30 V</td>
</tr>
<tr>
<td>Short circuit current</td>
<td>(I_{sc})</td>
<td>8.3 A</td>
</tr>
<tr>
<td>Current of (P_{max})</td>
<td>(I_{MPPT})</td>
<td>8.83 A</td>
</tr>
<tr>
<td>Voltage of (P_{max})</td>
<td>(V_{MPPT})</td>
<td>36.8 V</td>
</tr>
<tr>
<td>(I_{ph}) coefficient of temperature</td>
<td>(K_I)</td>
<td>((0.065±0.015)%/^{\circ}C)</td>
</tr>
<tr>
<td>(V_{oc}) coefficient of temperature</td>
<td>(K_V)</td>
<td>((-0.32±0.05)%/^{\circ}C)</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>4S2P-configuration</th>
<th>3S1P-configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>G11=1 kW/m² G21=1 kW/m²</td>
<td>G1= 1 kW/m²</td>
</tr>
<tr>
<td>G12=1 kW/m² G22=1 kW/m²</td>
<td>G2= 1 kW/m²</td>
</tr>
<tr>
<td>G13=1 kW/m² G23=1 kW/m²</td>
<td>G3= 1 kW/m²</td>
</tr>
<tr>
<td>G14=1 kW/m² G24=1 kW/m²</td>
<td></td>
</tr>
<tr>
<td>G11=1 kW/m² G21=1 kW/m²</td>
<td>G1= 1 kW/m²</td>
</tr>
<tr>
<td>G12=900 W/m² G22=800 W/m²</td>
<td>G2= 900 W/m²</td>
</tr>
<tr>
<td>G13=600 W/m² G23=700 W/m²</td>
<td>G3= 900 W/m²</td>
</tr>
<tr>
<td>G14=500 W/m² G24=1 kW/m²</td>
<td></td>
</tr>
</tbody>
</table>
procedure keeps continuing till it reaches the best position. The motion of PSO particles in arbitrary search domain space are demonstrated in Fig. 4. The velocity and position updates are provided in:

\[X_{i}^{t+1} = X_{i}^{t} + V_{i}^{t+1} ; \]
\[V_{i}^{t+1} = W \cdot V_{i}^{t} + C_{1} \cdot r_{1} \cdot (P_{i}^{t} - X_{i}^{t}) + C_{2} \cdot r_{2} \cdot (G_{i}^{t} - X_{i}^{t}) , \]

where \(W \) is the inertial weight; \(X \) is the position; \(V \) is the velocity; \(C_1 \) and \(C_2 \) are the inertia constants; \(t \) is the iteration count.

Equation (4) represents fitness function:

\[P(D_{k}^{i}) > P(D_{k}^{i-1}) . \]

3.2. Opposition Based Learning (OBL). In 2005 Tizhoosh proposed the OBL technique [18] in the field of machine learning. He found that it is easier to find global maxima through opposite solution rather than random solutions and it is 50 % highly probable than original random solutions. OBL produces opposite solutions of original random solutions in each iteration and finds the fitness value of every solution and it is opposite. The one with the lower fitness is retained and other is discarded. The best among current solution space is selected and its opposite is sent to next iteration. This opposition based technique can increase the random search ability of random search methods. It has been used in PSO [19] and differential evolution algorithm [20] to improve their random search domain. The opposite point is defined as follow. Let \(q(x_{1}, x_{2}, ..., x_{n}) \) is a point in an \(n \)-dimensional space, \(x_{1}, x_{2}, ..., x_{n} \in \mathbb{R} \), \(x_{i} \in [a_{i}, b_{i}] \). The opposite point \(q^{*}(x_{1}, x_{2}, ..., x_{n}) \) of \(q \) is defined as

\[x_{i}^{*} = a_{i} + b_{i} - x_{i} = 1...n . \]

The opposition based optimization is defined as follow. Let \(q(x_{1}, x_{2}, ..., x_{n}) \) is a point in \(n \)-dimensional space and \(\tilde{q}(x_{1}, x_{2}, ..., x_{n}) \) is its opposite. For objective fitness function \(f(q) \), if \(f(q^{*}) < f(q) \) \(q^{*} \) is kept otherwise \(q \) is kept unchanged.

3.3. PSO with OBL. PSO algorithm was presented by Eberhart R. and Kennedy J. in 1995 [21] and is based on the behavior of folk of birds. The present state of a particles that are in continues movement in the possible solution space is described by two variables, the position \(x_{i} \) and the velocity of movement \(v_{i} \). The state of each particle in \(n \)-dimensional solution space, is determined by the position vector \(X_{i} = [x_{1}, x_{2}, ..., x_{n}] \) and velocity vector \(V_{i} = [v_{1}, v_{2}, ..., v_{n}] \). At the start, the particles are dispersed randomly over the whole possible solution space. Its implementation in PSO is depicted in Fig. 5.

4. Test systems. Simulation studies for different cases of the PSO and PSO-OBL techniques have been carried out in MATLAB/Simulink R2018a. The system proposed for simulations is shown in Fig. 6. PV module is used followed by a DC-DC buck converter and load. MPPT block is consisting of an MPPT controller and PWM generator. Current and voltage from PV module are presented as input to MPPT controller which produces duty cycles accordingly to run DC-DC converter.

In Fig. 7 PV array configuration of 3S1P is shown, in which a single rail of three series connected modules in used to check partial shading effect.
Different cases of partial shading considered for 3S1P are shown in Table 2. Three different modules are given separate values of irradiance and their output P-D curve is generated which generates a 3-peaks curve corresponding to values of irradiance being given as an input. Similarly, 4S2P is shown in Fig. 8 and its different cases for partial shading are shown in Table 2.

5. Simulation results.

5.1. Simulation results of PSO and PSO-OBL for 4S2P configuration. Figures 9, 10 show simulation results of 4S2P configuration for PSO-OBL in different cases of partial shading as shown in Table 2. The number of iterations used for PSO is 25 while number of iterations used for PSO-OBL is 100 which helps creating opposite candidate solutions and effectively tracks GMPP.

5.1.1. Results of pattern no. 1. In pattern no. 1 the rated power is 1992 W and the power extracted from simulation is also 1992 W. The calculated results show that tracking efficiency will be 100 % and the convergence speed will be 1.021. The P-V curve of rated power and extracted power is shown in Fig. 9.

5.1.2. Results of pattern no. 2. In pattern no. 2 the rated power is 1321 W and the power extracted from simulation is 1320 W. The calculated results show that tracking efficiency will be 99.81 % and the convergence speed will be 1.008. The P- V curve of rated power and extracted power is shown in Fig. 10.

5.2. Simulation results of PSO for 3S1P configuration. The parent technique (PSO) implementation for 3S1P has shown promising results as agreeing with work [22]. The characteristic curves for different patterns of 3S1P and corresponding P-V curves using PSO are shown in Fig. 11, 12.

5.2.1. Results of pattern no. 3. In pattern no. 3 the rated power is 747 W and the power extracted from simulation is also 747 W. The calculated results show that tracking efficiency will be 100 % and the convergence speed will be 1.01. The P-V curve of rated power and extracted power is shown in Fig. 11.

5.2.2. Results of pattern no. 4. In pattern no. 4 the rated power is 688.2 W and the power extracted from simulation is 688 W. The calculated results show that tracking efficiency will be 100 % and the convergence speed will be 1.015. The P-V curve of rated power and extracted power is shown in Fig. 12.
6. Comparison among PSO and PSO-OBL. After performing simulation studies of PSO and PSO-OBL, one can see the clear improved efficiency and effective tracking of GMPP in less t/n ratio (where t/n is the maximum amount of time (or, more specifically, steps) that a function takes to run). This proves that PSO-OBL is better in all conditions as compared to PSO because PSO doesn’t perform as well as PSO-OBL and especially when it comes to strong shading PSO-OBL totally outperforms PSO and proves itself to be best to use as MPPT algorithm in all environmental conditions. Tables 3, 4 provide the comparison of both the techniques.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Case</th>
<th>Algorithm</th>
<th>t/n</th>
<th>Power</th>
<th>Convergence speed</th>
<th>Oscillations at GMPP</th>
<th>Efficiency</th>
<th>BEST algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>4S2P</td>
<td>Pattern 1</td>
<td>PSO</td>
<td>0.027</td>
<td>1992</td>
<td>0.6826</td>
<td>0</td>
<td>100</td>
<td>PSO-OBL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSO-OBL</td>
<td>0.010</td>
<td>1992</td>
<td>1.021</td>
<td>0</td>
<td>100</td>
<td>PSO-OBL</td>
</tr>
<tr>
<td></td>
<td>Pattern 2</td>
<td>PSO</td>
<td>0.027</td>
<td>1317.5</td>
<td>0.6769</td>
<td>0</td>
<td>99.73</td>
<td>PSO-OBL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSO-OBL</td>
<td>0.010</td>
<td>1320</td>
<td>1.008</td>
<td>0</td>
<td>99.81</td>
<td>PSO-OBL</td>
</tr>
<tr>
<td>3S1P</td>
<td>Pattern 3</td>
<td>PSO</td>
<td>0.027</td>
<td>743.1</td>
<td>0.6917</td>
<td>0</td>
<td>99.72</td>
<td>PSO-OBL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSO-OBL</td>
<td>0.010</td>
<td>747</td>
<td>1.01</td>
<td>0</td>
<td>100</td>
<td>PSO-OBL</td>
</tr>
<tr>
<td></td>
<td>Pattern 4</td>
<td>PSO</td>
<td>0.027</td>
<td>688</td>
<td>0.6811</td>
<td>0</td>
<td>99.97</td>
<td>PSO-OBL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSO-OBL</td>
<td>0.010</td>
<td>688</td>
<td>1.015</td>
<td>0</td>
<td>99.97</td>
<td>PSO-OBL</td>
</tr>
</tbody>
</table>

7. Conclusions. Environmental conditions limit the functionality of photovoltaic module. A lot of methods have been proposed in literature to address this problem but it never achieved goal due to number of reasons. Partial shading is most known issue. Nature inspired algorithms have proven them to be good to search global maximum in a partially shaded multi peak curve which includes particle swarm optimization, artificial bee colony, flower pollination algorithm etc. Particle swarm optimization is best among these in finding global peak with less oscillation around maximum power point, less complexity and easy to implement nature. Particle swarm optimization has disadvantage of having long computational time and converging speed particularly under strong shading conditions. In this paper, hybrid technique is used to track global max power point very efficiently by using improved particle swarm optimization algorithm. This technique is effective in all shading conditions. Simulation results shows that opposition based particle swarm optimization algorithm is less complex, more efficient, robust, flexible and have better convergence speed than particle swarm optimization and other techniques. Since shading is an unpredictable process so to predict the accuracy and to expect a 100 % output is still an uncertain thing. The increasing demand of energy and ever increasing advancement in technology is making more and more space to bring improvement to maximum power point tracking as well as the improve the transient response of the system [23, 24]. So power extraction with more accuracy in less amount of time is still a scope.
Conflict of interest. The authors declare that they have no conflicts of interest.

REFERENCES

Received 09.12.2021
Accepted 23.03.2022
Published 20.04.2022

Hamdan Saeed 1, MS Scholar, Tahir Mehmood 2, Professor, Fadia Ali Khan 3, Lecturer, Muhammad Shahzab Shah 4, MS Scholar, Mian Farhan Ullah 1, Lecturer, Hamid Ali 1, 1 Department of Electrical Engineering, University of Engineering and Technology, Taxila, Pakistan, e-mail: hamdan.saeed@students.uettaxila.edu.pk, tahir.mehmood@uettaxila.edu.pk, mshahzab.Shah@students.uettaxila.edu.pk, enghamidali94@gmail.com 2 Department of Mechatronics Engineering, Wah Engineering College, University of Wah, 47040, Wah Cantt, Quaid Avenue, Pakistan, e-mail: fadia.sohalb@wecuw.edu.pk 3 Department of Electrical Engineering, Wah Engineering College, University of Wah, 47040, Wah Cantt, Quaid Avenue, Pakistan, e-mail: farhan.ullah@wecuw.edu.pk (Corresponding Author)

How to cite this article: