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Purpose. This article proposes a new strategy for Direct Power Control (DPC) based on the use of Artificial Neural Networks
(ANN-DPC). The proposed ANN-DPC scheme is based on the replacement of Pl and hysteresis regulators by neural regulators.
Simulation results for a 1 kW system are provided to demonstrate the efficiency and robustness of the proposed control strategy
during variations in active and reactive power and in DC bus voltage. Methodology. Our strategy is based on direct control of
instant active and reactive powers. The voltage regulator and hysteresis are replaced by more efficient and robust artificial neuron
networks. The proposed control technique strategy is validated using MATLAB / Simulink software to analysis the working
performances. Results. The results obtained clearly show that neuronal regulators have good dynamic performances compared to
conventional regulators (minimum response time, without overshoots). Originality. Regulation of continuous bus voltage and
sinusoidal currents on the network side by using artificial neuron networks. Practical value. The work concerns the comparative
study and the application of DPC based on ANN techniques to achieve a good performance control system of the permanent
magnet synchronous generator. This article presents a comparative study between the conventional DPC control and the ANN-
DPC control. The first strategy based on the use of a PI controller for the control of the continuous bus voltage and hysteresis
regulators for the instantaneous powers control. In the second technique, the PI and hysteresis regulators are replaced by more
efficient neuronal controllers more robust for the system parameters variation. The study is validated by the simulation results
based on MATLAB / Simulink software. References 26, tables 5, figures 19.

Key words: artificial neural network, direct power control, permanent magnet synchronous generator, direct power control
based on the use of artificial neural networks.

Mema. Y cmammi npononyemocs Hosa cmpameeis npsamoeo kepysanns nomydchicmio (DPC), saxa 6a3yemvbcsi HA 8UKOPUCTAHHL
wmyunux Hevpounux mepedic (ANN-DPC). 3anpononosana cxema ANN-DPC 3acnosana na 3amini nponopyitino-inmeepanvrozo (I11)
ma 2icmepe3ucnozo pe2ynamopie na neliponni pecynamopu. Haseoeno pesynsmamu modemiosanns onsa cucmemu nomyosicnicmio 1 kBm
ona OemoHcmpayii eghpexmusHocmi ma HAOIIHOCMI 3aNPONOHOBAHOT cmpameii Kepy8anHs Npu 3MiHI AKMUGHOI ma peakmueHoi
NOMYHCHOCMI, @ MAKOJIC HANPY2U HA WUHi nocmitinozo cmpymy. Memoodonozia. 3anpononosana cmpamezia 6a3yemvcs Ha NPAMOMY
KepysaHHi MUMMmMeSUMY AKMUSHUMU MA PeakmueHuMU nomyxchocmamu. Peeynamop nanpyeu ma zicmepesuchuii pe2yisimop 3amineni
Oinvw eghexmuHUMU MA HAOTUHUMU WIMYYHUMU HEUPOHHUMU Mepedicami. 3anponoHosana MemoouKka KepyanHs nepesipenda 3
suxopucmannam npoepamuoeo 3abesnevenns MATLAB / Simulink ons ananizy pobouux xapaxmepucmux. Pesynemamu. Ompumani
pe3ynbmamuy  HOKA3ylomb, W0 HEUPOHHI pe2ylamopu Maiomb XOpoull OUHAMIYHI XApaKmepucmuky MNOPIGHAHO 3i 36UYAUHUMU
peayasimopamu  (MIiHIMATbHULL Yac 6io2yky, bOe3 euxudie). Opucinanvhicms. Pezymiosanns nocmitiHoi Hanpyeu Ha wiuHi ma
CUHYCOIOQNbHUX CMPYMIE HA CMOPOHI Mepedxci 34 O0ONOMO2010 WMYYHUX HelipoHHux mepedc. Ilpakmuuna winnicms. Poboma
CMOCYEMbCsL NOPIBHANLHO20 OOCTIOJNCEHHS. MA 3ACMOCY8aHHA NPAMOo20 Kepyeants nomyscricmio (DPC) na ocnogi memoois wimyunoi
neiponnoi mepeosici (ANN) Ona OocsenenHs XOopouwiux NOKA3HUKIE cucmeMu Kepy8auHs CUHXPOHHO20 2eHepamopa 3 NOCMIHUMU
MacHimamu. Y yiti cmammi npedcmagneno nopisHAnbHe 00CaioxdceHHs Mmixe 3sudatinum kepysanuam DPC ma xepyeannam ANN-DPC.
Tlepwa cmpameeia 3acnosana na euxopucmanni I1l-pecynamopa 01 Kepy8anHs NOCMINHOIO HANPY2OI0 HA WIUHI MA 2iCIEPe3UCHUX
pe2ynamopie O KepysaHHs MUmmegoro nomyoicnicmio. Y opyeomy memooi I1l- ma eicmepesuchi pecynamopu 3aminiolomecs Oinviu
eekmusHUMU  HEUPOHHUMY  KOHmMponepamu, Ol cmiikumu 00 3MiHU napamempie cucmemu. JJOCHiOdcenHs NiOMEepOHCeHO
Pe3VIbmamamu MoOent08anHsL Ha OCHOSI npoepamuozo 3abesneyennss MATLAB / Simulink. Bion. 26, Tabm. 5, puc. 19.

Kniouogi cnosa: mTydHa HeiipoHHAa Mepeka, NpsMe KepyBaHHsl NOTY:KHICTIO, CHHXPOHHMIi reHepaTop 3 NOCTiiHMMH
Marfiramm, mpsiMe KepyBaHHsI OTYKHICTIO Ha OCHOBI INTYYHHX HEHPOHHUX MeEpPeK.

Introduction. Electric machines are often known by
their windings and their own and complex geometry. In
electrical engineering laboratories, the study of
synchronous machines with permanent magnet generators
is currently a broad research topic. A permanent magnet
synchronous generator (PMSG) which obtains energy
from mechanical energy for generate an electric current
[1]. Synchronous machines with permanent magnets have
experienced a great boom in recent years. This is thanks
to the improvement of the qualities of permanent magnets
more precisely with the help of rare earths, the
development of power electronics and the evolution of
non-linear control techniques. The advantages of this type
of electric machine are numerous, among which we can
cite: robustness, low inertia, high mass torque, high
efficiency, higher maximum speed and low maintenance
cost. In addition, permanent magnets have undeniable
advantages: on the one hand, the inducing flux is created
without loss of excitation and on the other hand, the use
of these materials will make it possible to deviate

significantly from the usual sizing constraints. machines
and therefore increase the specific power significantly [2].
Several control strategies applied to PMSG, for example
vector control [3, 4], direct torque control [5, 6], direct
power control (DPC) and sliding mode control [7, 8]. In
[9] compared a conventional multi-network, in which the
supervision network is replaced by an expert system and a
conventional network. They obtained results similar to
those of authors in [10]. Their results are more effective
when the characteristics are more relevant. In [11] have
taken over the multi-networks used in [9] to assess the
detection of epileptic transients. The results obtained were
compared with those of 4 experts. Even if these results are
insufficient to be used in medical practice, they have
made it possible to demonstrate that it is possible to detect
epileptic transients and that the supervision network
eliminates certain bad decisions. In [10] compared several
multi-network architectures with a conventional neural
network. The neural networks used are error
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backpropagation with an input range of 0 to 1. Each
neural network is trained 3 times to verify the repetition
of the results obtained and to avoid overtraining. The total
sum of the squared errors of the test set is used to evaluate
the training. The main qualities of neural networks are
their capacity for adaptability and self-organization and
the possibility of solving non-linear problems with a good
approximation [12, 13]. The reason for this trend is the
many advantages, which the architectures of artificial
neural network (ANN) have over traditional algorithmic
methods [14].

Related works. We cite a few articles in this area of
research. The article [4] presents a comparative study
between voltage oriented control and DPC. It has been
shown that best power quality features are given by vector
control techniques. On the other hand, direct control offers
the better dynamic response. The work [1] assessed the
performance of DPC, HYN-DPC (Neural hysteresis DPC)
and ANN-DPC. The results obtained confirm that the use
of neuron networks improves the total harmonic distortion
(THD) and minimizes power ripple. Works [15, 16]
proposed the design of sensorless induction motor drive
based on DPC technique. An effective sensorless strategy
based on ANN is developed to estimate rotor’s position
and speed of induction motor. Simulation results confirm
the performance of ANN based sensorless DPC induction
motor drive in various conditions. The article [17]
presents a study between HYN-DTC (Neural hysteresis
Direct Torque Control) and fuzzy logic PI controller
applied to an induction motor. The first method has less
THD. The work [18] proposed a new DPC strategy based
on a second order sliding mode controller of a doubly fed
induction generator (DFIG) integrated in a wind energy
conversion system. In the first step it proposed to use a
five-level inverter based on the neural space vector pulse
width modulation to supply the DFIG rotor side. The
results obtained confirm that the use of neural hysteresis
controller decrease the THD. The article [19] presents an
ANN based DPC of bidirectional 2-level pulse width
modulated (PWM) rectifier. Instead of the traditional PI
controller, ANN controller is used in this paper to reduce
the peak overshoot and ripple in active power. The work
[20] a direct power control strategy for a 2.25 kW DFIG
is proposed and implemented using a controller based on
an ANN with the multilayer perceptron (MLP) structure,
which allows the control of the coupled and nonlinear
system. All the PI controllers and rotor current estimation
block that generated the set of samples for training
process were replaced with success by a single MLP
controller with twenty hidden neurons. The results have
shown that the DPC approach combined with the MLP
controller maintain the features of the DPC and adds the
inherent characteristic of an ANN controller, more
specifically the capability of controlling the coupled and
nonlinear system and to generalize the performance to the
whole range of operation considered in the training data.

Aim. In this paper a DPC strategy for a PMSG is
proposed and implemented using a controller based on an
ANN structure. The ANN controller replaces the PI and
hysteresis controllers.

Research path followed in this article. The
flowchart (Fig. 1) shows the steps followed in this article.

The disadvantages of each technique are cited as well as
the solutions given in the literature. We always opt for a
simple and optimal solution.

Study of DPC
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Fig. 1. Flowchart showing the research steps for this article

1]

PMSG modeling. The mathematical model of the

PMSG obeys certain essential assumptions simplifying:

o the absence of saturation in the magnetic circuit;

o the sinusoidal distribution of the FMM created by
the stator windings;

o hysteresis is neglected with eddy currents and skin
effect;

o the notching effect is negligible;

o the resistance of the windings does not vary with
temperature.

The structure of the PMSG has a three-phase stator
winding. The rotor excitation is created by permanent
magnets at the rotor. These magnets are assumed to be
rigid and of permeability similar to that of air [21, 22]:

d
Ugs =—Relys — Ly Elds +a)quSIqS s (D)

d
Ugs =Rl =Lq— Mg = Lalus + o, 0p 5 ()

where Uy, and U, are the stator voltage components; R; is
the stator resistance; L, and L, are the components of
stator inductances; /,; and I, are the components of stator
current; ¢y is the permanent magnet flux; o, is the electric
pulsation.
The electrical rotation speed is given by:

We =DpW, (3)
where p is the number of pairs of poles; w is the
mechanical speed.
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The electromagnetic torque C, represented by:

3
Ce:E'p'(Df'[qS' “4)
The power equations are provided by:
3
P:E'(UdS'ldS_UqS'IqS); (5)
3
Q=2 WUyslas =Vas 1gs) (6)

where P is the active power; Q is the reactive power.
Uncontrolled rectifier PWM. We have 3 phase line
voltages and the fundamental line currents in [22]:

U,=U,cos2amt ; (7
Uy,=U, cos(Za)t+2Tﬁ); (8)
Uu.=U, cos(Za)t—ZT”) ; 9

1,=1,cosCawt+¢); (10)
Ib:Imcos(Za)t+2Tﬁ+¢); (11)
I.=1, cos(2wt—2%+(p), (12)

where U, I, are the amplitudes of the phase voltage and
current respectively; @ is the rotational frequency; ¢ is the
phase difference [23].

Line to line input voltages of PWM rectifier can be
described as:

Uva = (Sa - Sh)'Udc; (13)
Usp = (S = S Uses (14)
ch = (Sc - Sa)' Udc; (15)

and phase voltages equations give by:
Usa:wljdw (16)
Usb=—2S”_(§“+SC)'UdC; (17)
Uy =25 (§“+Sb)'Udc, (18)

where S,, S;, S, are the switching states of the rectifier;
Uy, 1s voltage rectifier.

DPC of PMSG. DPC appeared to be competitive
with vector control technique. This control method was
proposed in [24]. The DPC control is based on the selection
of a voltage vector in such a way that the errors between
the measured and reference quantities are reduced and
maintained between the limits of the bands hysteresis
[23, 25]. On the other hand, DPC control is an active and
reactive power-based control technique with the advantages
of robustness and rapid control (see Fig. 2) it is possible to
express that of the reference power by [15]:

Pref: Udc'ldc,
where ;. represents the rectifier output current.

Artificial neural network-based DPC. Neural
networks have properties of learning, approximation and
generalization, so they are of interest for the synthesis of
such a command [17, 26]. ANN is a simplified
mathematical formulation of biological neurons. They
have the capacity of memorization, of generalization and
especially of learning which is the most important
phenomenon.

(19)

Q.70

Fig. 2. Block diagram of the DPC

Structure of a neuron. The neuron is the
fundamental cell of a network of artificial neurons. By
analogy with the biological neuron, the neuron must be
able to accomplish the following tasks: collect, process
the data coming from the sending neurons and transmit
the messages to the other neurons. The relation between
the input and the output of the neuron can be given by the
following equation:

S, = F(a); (20)
N

S; = > Wi, j)-x(j), @1
j=0

where the variables N, S;, F, x and W respectively denote
the number of inputs of the neural network, the output
vector of the network, the activation function, the vector
of the inputs of the neural network and the weight matrix.

We present in Fig. 3 the structure of a simple
neuron.

Eall—

Xo=+1

Fig. 3. Structure of a simple neuron

Structure of a single layered neural network.
Layered network is a network whose neurons are
organized in layers, the simplest form is the single layer
network. All input signals are propagated from the input
nodes to the output neural layer.

The number of input (nodes) and output neurons is
generally related to the problem to be solved. The inputs
will be propagated through the matrix of weights W to
then obtain the output response (Fig. 4). The equivalent
equation can be written in the form:

5= e,

where x(i) is the input vector; y(i) is the output vector;
Wi, j) is the weight of the neural network.

(22)
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Fig. 4. Structure of a single layered neural network

ANN activation functions. The activation functions
used in today's connection models are varied. We can
identify three main types of best known functions: Tansig,
Logsig and Pureline.

Artificial neural network (ANN) learning modes.
Learning can be defined as the ability to store information
that can be recalled later. The knowledge of a connection
network is stored in the connection weights which will be
determined during learning. The goal of learning for a
network is to find a set of mimic weights that will error
between the output of the network and the desired result.

Learning methods of neural networks.

e learning by backpropagation of the error;
e learning according to a gradient descent;
e learning according to the Quasi-Newton method.

Direct neural power control of PMSG. Figure 5
depicts the construction of the PMSG's direct neural power
control (ANN-DPC). The PI voltage regulator and the
active and reactive instantancous power hysteresis
regulators are replaced with neural controllers. To generate
the ANN controller by MATLAB / Simulink or we have
chosen 24 hidden layers for the voltage controller and 5
hidden layers for each hysteresis regulator. Figure 5 gives
the block diagram proposed of ANN-DPC.

Rectifier
PWM
U

[
1 ===
U,
iy b
: - s -
A ¢ i Ug
D : RL |
Ve i Tﬁ \_‘
S, 5| S
u e || Estimated instantaneous | TRANSFARALATON
deref power (P, ‘OF CONCORDIA

fallia

ESTIMATE OF LINE
VOLTAGE
Qrer =0

Fig. 5. Block diagram proposed of ANN-DPC
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The activation functions are respectively of the
«tansig» type for the hidden layers and «pureline» for the
output layers (see Table A.3 in Appendix of this article).
An algorithm of carries out the updating of the weights a
biases of this network retropropagation called the
Levenberg-Marquardt (LM) algorithm.

The representation of the internal structure of the
neural voltage controller is shown in Fig. 6.

Figure 7 and 8 illustrates the internal structure of
layers 1 and 2 of the neural voltage controller
respectively.

1l gl O

Input  Process Input 1 Layer 1 af1}
o
g ' Layer 2
O o1 ]

a{1} Process Output 1 Output

Fig. 6. Internal structure of the neural voltage controller
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Fig. 7. Internal structure of layer 1
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Fig. 8. Internal structure of layer 2

The training performance of ANN-DPC is shown on
Fig. 9.
Best Validation Performance is 0.00023065 at epoch 1000

10°1
—Train

10
12 — Validation
e —Test
“ Best
105
1
78 760 762 764 766 768

Mean Squared Error (mse)

| | | | |
0 100 200 300 400 500 600 700 800 900 1000
1000 Epochs

Fig. 9 The training performance of ANN-DPC

The three curves are superimposed. This result is

justified in Fig. 10, where the training regression of ANN-

DPC also is shown.
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Fig. 10 Training regression of ANN-DPC

Simulation and results of DPC. In Fig. 11 the
stator voltage and current of PMSG is shown.
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Fig. 11. The stator voltage and current of PMSG
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In Fig. 12 the rectified voltage DPC is shown.

u, V The rectified voltage DPC

1000 . ; . ; ==\/dc voltage
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500 - b
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Fig. 12. The rectified voltage DPC
In Fig. 13 the active power DPC is shown.
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Fig. 13. The active power DPC

The results obtained when changing the DC bus
reference voltage for the twelve sector control are shown in
the next figures. Figure 14 shows a clear improvement in
THD (7.3 %) compared to conventional DPC (12.71 %).

10¢ O, VAR The reactive power
10 T T T T T

—Q reference
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.

5 I I I I I I
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Fig. 14. The reactive power DPC

In Fig. 15 the line current i, and its harmonic
spectrum are shown.
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Fig. 15. The line current i, and its harmonic spectrum

Simulation and results for ANN-DPC. Figure 16
shows that the DC bus voltage follows its reference
without overshoot with minimal retraining time and
allowable static error.

u, V The rectified voltage ANN-DPC
1000 T T ==\/dc voltage
=Vdc reference
800
600
400
200
ts
0 | 1 | I I |
0 0.5 1 1.5 2 25 3 3.5

Fig. 16. Rectified voltage ANN-DPC

Figure 17 shows that the active energy follows its
reference with the existence of peaks.

4% 10° AW The active power
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Fig. 17. The active power ANN-DPC

Figure 18 shows that reactive energy follows its
reference with a peak passage at start-up.

104 O, VAR The reactive power
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4 4
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2 05 i 15 2 25 3
Fig. 18. The reactive power ANN-DPC
Figure 19 shows that the current is sinusoidal with a
start peak passage.
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Fig. 19. The line current i, and its harmonic spectrum ANN-DPC

Study comparative between DPC and ANN-DPC is
shown on Table 1.

Table 1
Study comparative between DPC and ANN-DPC
Active | Reactive
THD power power
ripple ripple
Classical
Reference test DPC 1271 bad very good
ANN-DPC 7.3 very good| good
Classical
Robustness test DPC 9.34 bad bad
ANN-DPC| 6.86 |very good| very good
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As an example a comparative study with published
results are shown on Table 2.

Table 2
A comparative study with published results
Method TI;ID, Ripple of
% power
1. ANN-DPC (ANN replaces
PI controller) [19] 6.52 bad
2. HYN-DPC (ANN replaces
Hysteresis controller) [1] 3725 good
3. ANN-DPC (ANN replaces
switching table) [1] 31.95 | very good
4. Proposed method — ANN-DPC 6.86 |very eood
(combination of methods 1 and 2) ) Ve

Conclusions.

In this paper, a direct power control (DPC) is
proposed for controlling the PWM rectifier supplied by a
PMSG in terms of rapid control of active and reactive
power. Decoupled active and reactive power control is
achieved without the use of a decoupling system or a
change in coordinates. DC voltage is controlled to a
consistent incentive in all conditions. The application of a
new scheme by replacing the PI and hysteresis regulators
has been applied in order to minimize the THD and a
better control of the instantaneous powers in terms of
speed and ripple rate. The simulation results confirm the
effectiveness of the applied technique:

e the sinusoidal form of the line current;
the current must be in phase with the voltage;
reactive energy compensation
a low THD;
ripple rate of powers;
time response of DC voltage.
Finally, we prove that the method (ANN-DPC) is the
best compared to the classic DPC control.

APPENDIX
Table A.1
PMSG parameters
Parameter Value
Direct stator inductance L,;, H 0.012
Stator quadrature inductance L,, H | 0.0211
Permanent magnet flux ¢, Wb 0.9
Stator resistance Ry, Q 0.895
Inertia J, kg-m” 0.00141
Number of poles 7, 3
Friction force F, N-m/rad-s 0
Table A.2
Rectifier parameter
Parameter Value
Line resistance R;, 2 0.2
Line inductance L, H 0.011
Filtering capacity C, F 0.0047
DC voltage reference Ujyres V. | 600-800
Table A.3
Parameters of Levenberg-Marquardt (LM) algorithm
LM parameters V4 controller|H,, H*
Number of hidden layers 24 5
Learning rate 0.002 0.002
Number of iterations (epochs) 1000 200
Convergence acceleration rate 0.9 0.9
Goal 0 0
Activation function tansig tansig

*H,, H, are respectively hysteresis active and reactive power
controllers.

Conflict of interest. The authors declare that they
have no conflicts of interest.

REFERENCES
1. Ghouizil A., Achour D., Benbouhenni H. Etude comparative
entre la commande DPC, DPC-HYN et DPC-RNA de la GSAP.
Journal of Advanced Research in Science and Technology,
2018, vol. 5, no. 2, pp. 735-752. (Fra). Available at:
https://www.asjp.cerist.dz/en/downArticle/112/5/2/59632
(accessed 15 May 2021).
2. Multon B. Historique des machines électriques et plus
particuliérement des machines a réluctance variable. La Revue 3
E. I Sociéte de [électricité, de [’électronique et des
technologies de ['information et de la communication, 1995, pp.
3-8. (Fra). Available at: https://hal.archives-ouvertes.fi/hal-
00674038/document (accessed 15 May 2021).
3. Hemieda A.M., Farag W.A., Maghoub O.A. Modeling and
control of direct driven PMSG for ultra large wind turbines.
World Academy of Science, Engineering and Technology, 2011,
vol. 59, pp- 918-924. Available at:
https://scholar.cu.edu.eg/sites/default/files/wael_farag/files/mod
eling and control of direct driven pmsg for ultra large win
d_turbines.pdf (accessed 15 May 2021).
4. Allagui M., Hasnaoui O.B.K., Belhadj J. A 2 MW direct
drive wind turbine; vector control and direct torque control
techniques comparison. Journal of Energy in Southern Africa,
2014,  vol. 25,  no. 2, pp- 117-126. doi:
https://doi.org/10.17159/2413-3051/2014/v25i2a2679.
5. Errami Y., Ouassaid M., Cherkaoui M., Maaroufi M.
Variable structure sliding mode control and direct torque control
of wind power generation system based on the PM synchronous
generator. Journal of Electrical Engineering, 2015, vol. 66, no.
3, pp. 121-131. doi: https://doi.org/10.2478/jee-2015-0020.
6. Freire N,. Estima J., Cardoso A. A comparative analysis of
PMSG drives based on vector control and direct control
techniques for wind turbine applications, Przeglad
Elektrotechniczny, 2012, vol. 88, no. la, pp. 184-187.
Available at: http://pe.org.pl/articles/2012/1a/39.pdf (accessed
15 May 2021).
7. Merzoug M.S., Benall H., Louze L. Sliding Mode Control
(SMC) Of Permanent Magnet Synchronous Generators (PMSG).
Energy  Procedia, 2012, wvol. 18, pp. 43-52. doi:
https://doi.org/10.1016/j.egypro.2012.05.016.
8. Mendis N., Muttaqi K.M., Perera S. Management of battery-
supercapacitor hybrid energy storage and synchronous
condenser for isolated operation of PMSG based variable-speed
wind turbine generating systems. IEEE Transactions on Smart
Grid, 2014, wvol. 5, mno. 2, pp. 944-953. doi:
https://doi.org/10.1109/tsg.2013.2287874.
9. Gehlot N.S., Alsina P.J. A comparison of control strategies
of robotic manipulators using neural networks. Proceedings of
the 1992 International Conference on Industrial Electronics,
Control, Instrumentation, and Automation, 1992, vol. 2, pp.
688-693. doi: https://doi.org/10.1109/TECON.1992.254549.
10. Mavrovouniotis M.L., Chang S. Numerical recipes in C.
New York, Cambridge University Press, 1990.
11. Ozdamar O., Yaylali 1., Jayaker P., Lopez C.N. Inversion of
multilayer networks. [Int. Joint. Conf. Neural Networks,
Washington, June 1989, pp. 425-430.
12. Narendra K.S., Mukhopadhyay S. Intelligent control using
neural networks. IEEE Control Systems Magazine, 1992, vol.
12, no. 2, pp. 11-18. doi: https://doi.org/10.1109/37.126848.
13. Watrous R.L. Learning algorithms for connectionist
networks: applied gradien methods of nonlinear optimization.
International Journal of Power Electronics and Drive System,
1988, vol. 8,no. 4, pp. 619-627.
14. Hassan Adel A., Abo-Zaid S., Refky A. Improvement of
direct torque control of induction motor drives using neuro-

Electrical Engineering & Electromechanics, 2021, no. 6

23



fuzzy controller. Journal of Multidisciplinary Engineering
Science and Technology, 2015, vol. 2, no. 10, pp. 2913-2918.
Available at: https://www.jmest.org/wp-
content/uploads/JMESTN42351145.pdf (accessed 5 May 2021).
15. Seyoum D., Rahman M.F., Grantham C. Terminal voltage
control of a wind turbine driven isolated induction generator using
stator oriented field control. Eighteenth Annual IEEE Applied
Power Electronics Conference and Exposition, 2003. APEC '03, pp.
846-852 vol. 2. doi: https://doi.org/10.1109/apec.2003.1179315.
16. Halvaei Niasar A., Rahimi Khoei H. Sensorless Direct
Power Control of Induction Motor Drive Using Artificial Neural
Network. Advances in Artificial Neural Systems, 2015, vol.
2015, pp. 1-9. doi: https://doi.org/10.1155/2015/318589.

17. Benbouhenni H., Boudjema Z. Comparative study between
neural hysteresis, fuzzy PI, and neural switching table for an IM
DTC control. International journal of fuzzy systems and
advanced applications, 2018, vol. 5, pp. 23-34. Available at:
http://www.naun.org/main/NAUN/fuzzy/2018/a082017-063.pdf
(accessed 15 May 2021).

18. Benbouhenni H. Robust direct power control of a DFIG fed
by a five- level NPC inverter using neural SVPWM technique.
TECNICA ITALIANA-Italian Journal of Engineering Science,
2021, vol. 65, no. 1, pp- 119-128. doi:
https://doi.org/10.18280/ti-ijes.650118.

19. Jayachandra B., Mahesh A. ANN Based Direct Power
Control of 2-level PWM Rectifier. 2018 International
Conference on Power Energy, Environment and Intelligent
Control (PEEIC), 2018, pp- 623-627. doi:
https://doi.org/10.1109/peeic.2018.8665617.

20. Andreoli de Marchi R., Sergio Dainez P., Von Zuben F.J.,
Bim E. A neural network controller for the direct power control
of doubly fed induction generator. Eletronica de Poténcia, 2013,
vol. 18, no. 3, pp- 1038-1046. doi:
https://doi.org/10.18618/rep.2013.3.10381046.

21. Boukhechem I., Boukadoum A., Boukelkoul L., Lebied R.
Sensorless direct power control for three-phase grid side
converter integrated into wind turbine system under disturbed
grid voltages. Electrical Engineering & Electromechanics,
2020, no. 3, pp. 48-57. doi: https://doi.org/10.20998/2074-
272x.2020.3.08.

22. Lebied R, Lalalou R., Benalla H., Nebti K., Boukhechem 1.
Ameliorate direct power control of standalone wind energy

How to cite this article:

generation system based on permanent magnet synchronous
generator by using fuzzy logic control. Electrical Engineering &
Electromechanics, 2020, mno. 6, pp. 63-70. doi:
https://doi.org/10.20998/2074-272X.2020.6.09.

23. Djeriri Y., Meroufel A., Massoum A., Boudjema Z. Direct
power control of a doubly fed induction generator based wind
energy conversion systems including a storage unit. Journal of
Electrical Engineering, 2014, vol. 14 , no. 1, pp. 196-203.

24. Noguchi T., Tomiki H., Kondo S., Takahashi I. Direct
power control of PWM converter without power-source voltage
sensors. [EEE Transactions on Industry Applications, 1998, vol.
34, no. 3, pp. 473-479. doi: https://doi.org/10.1109/28.673716.
25. Zolfaghar M., Taher S.A., Munuz D.V. Neural network-based
sensorless direct power control of permanent magnet synchronous
motor. Ain Shams Engineering Journal, 2016, vol. 7, no. 2, pp.
729-740. doi: https://doi.org/10.1016/j.as¢j.2016.01.002.

26. Micu D.D., Czumbil L., Christoforidis G., Simion E. Neural
networks applied in electromagnetic interference problems, Revue
roumaine des sciences techniques. Série Electrotechnique et
Energétique, 2012, vol. 57, no. 2, pp. 162-171. Available at:
http://revue.elth.pub.ro/viewpdf.php?id=338 (accessed 15 May 2021).

Received 25.08.2021
Accepted 20.10.2021
Published 03.12.2021

Kamel Akkouchi 1, PhD,

Lazhar Rahmani *, Professor of Electrical Engineering,
Ryma Lebied 3, PhD,

! Electrical Engineering Laboratory of Constantine (LGEC),
Department of Electrical Engineering,

University of Constantine 1,

25000 Constantine, Algeria.

% Automatic Laboratory of Setif (LAS),

University of Ferhat Abbes Setif,

19000 Setif, Algeria

? Electrotechnical Laboratory Skikda (LES),

University 20 August 1955,

26 Road El Hadaiek 21000, Skikda, Algeria.

e-mail: akkouchi.kamel@umc.edu.dz (Corresponding author),
lazhar-rah@univ-setif.dz,

r.lebied@univ-skikda.dz

Akkouchi K., Rahmani L., Lebied R. New application of artificial neural network-based direct power control for permanent magnet
synchronous generator. Electrical Engineering & Electromechanics, 2021, no. 6, pp. 18-24. doi: https://doi.org/10.20998/2074-

272X.2021.6.03.

24

Electrical Engineering & Electromechanics, 2021, no. 6



