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SIMULTANEOUS OPTIMAL INTEGRATION OF PHOTOVOLTAIC DISTRIBUTED 
GENERATION AND BATTERY ENERGY STORAGE SYSTEM IN ACTIVE 
DISTRIBUTION NETWORK USING CHAOTIC GREY WOLF OPTIMIZATION  
 
Goal. The integration of photovoltaic distributed generations in the active distribution network has raised quickly due to their 
importance in delivering clean energy, hence, participating in solving various problems as climate change and pollution. Adding the 
battery energy storage systems would be considered as one of the best choices in giving solutions to the mentioned issues due to its 
characteristics of quick charging and discharging, managing the quality of power, and fulfilling the peak of energy demand. The 
novelty of the proposed work is the development of new multi-objective functions based on the sum of the three technical parameters 
of total active power loss, total voltage deviation, and total operation time of the overcurrent protection relay. Purpose. This paper is 
dedicated for solving the allocation problem of hybrid photovoltaic distributed generation and battery energy storage systems 
integration in the standard IEEE 33-bus and IEEE 69-bus active distribution networks. Methodology. The optimal integration of the 
hybrid systems is formulated as minimizing the proposed multi-objective functions by applying a newly developed metaheuristic 
technique based on various chaotic grey wolf optimization algorithms. The applied optimization algorithms are becoming 
increasingly popular due to their simplicity, lack of gradient information needed, ability to bypass local optima, and versatility in 
power system applications. Results. The simulation results of both test systems confirm the robustness and efficiency of the chaotic 
logistic grey wolf optimization algorithm compared to the rest of the algorithms in terms of convergence to the global optimal 
solution and in terms of providing the best and minimum multi-objective functions-based power losses, voltage deviation and relay 
operation time values. Practical significance. Recommendations have been developed for the use of optimal allocation of hybrid 
systems for practical industrial distribution power systems with the renewable energy sources presence. References 32, tables 4, 
figures 9. 
Key words: photovoltaic distributed generation, battery energy storage system, active distribution network, optimal 
integration, multi-objective functions, chaotic grey wolf optimization algorithm.  
 
Мета. Інтеграція фотоелектричної розподіленої генерації в активну розподільчу мережу швидко зросла завдяки її 
важливості для доставки чистої енергії, отже, участі у вирішенні різних проблем, таких як зміна клімату та забруднення. 
Додавання акумуляторних систем накопичення енергії може бути розглянуто як один з найкращих варіантів вирішення 
зазначених питань завдяки своїм характеристикам швидкої зарядки та розрядки, управління якістю енергії та задоволення 
піку енергетичних потреб. Новизна запропонованої роботи полягає у розробці нових багатоцільових функцій на основі суми 
трьох технічних параметрів сумарних втрат активної потужності, загальних відхилень напруги та загального часу 
спрацьовування реле захисту від перевантаження по струму. Мета. Стаття присвячена вирішенню проблеми розподілу 
гібридних фотоелектричних розподілених систем генерації та інтеграції систем накопичення енергії в стандартні активні 
розподільчі мережі з 33-шинами IEEE та 69-шинами IEEE. Методологія. Оптимальна інтеграція гібридних систем 
сформульована як мінімізація запропонованих багатоцільових функцій шляхом застосування нещодавно розробленої 
метаевристичної методики, заснованої на різних хаотичних алгоритмах оптимізації сірого вовка. Застосовані алгоритми 
оптимізації стають дедалі популярнішими завдяки своїй простоті, відсутності необхідної інформації щодо градієнту, 
можливості обходу локальних оптимумів та універсальності в застосуваннях щодо енергосистеми. Результати. 
Результати моделювання обох тестових систем підтверджують надійність та ефективність хаотичного логістичного 
алгоритму оптимізації сірого вовка в порівнянні з іншими алгоритмами з точки зору збіжності до глобального 
оптимального розв‘язання та з точки зору забезпечення найкращих і мінімальних багатоцільових функцій на основі втрат 
потужності, відхилення напруги та значень часу спрацювання реле. Практичне значення. Розроблено рекомендації щодо 
використання оптимального розподілу гібридних систем для реальних промислових розподільчих енергосистем із наявністю 
відновлюваних джерел енергії. Бібл. 32, табл. 4, рис. 9. 
Ключові слова: фотоелектрична розподілена генерація, акумуляторна система накопичення енергії, активна 
розподільна мережа, оптимальна інтеграція, багатоцільові функції, хаотичний алгоритм оптимізації сірого вовка. 
 

1. Introduction. In the last years, the penetration of 
Renewable Energy Sources (RES) in the Active 
Distribution Network (ADN) has rapidly increased to 
address the problems of climate change and pollution. 
Photovoltaic Distributed Generation (PVDG) often uses 
ADN to access many RESs for their benefits in pollution 
reduction, voltage profile enhancement, and power loss 
reduction. However, large-scale PVDG sources in the 
ADN variations, on the other hand, may cause voltage 
fluctuations in power supply systems, resulting in a loss 
of the quality of power and some other issues that have 
sparked widespread concern. Additionally, increasing PV 
penetration in the future could pose a serious threat to the 
utility ADN reliability and stability. 

The Battery Energy Storage Systems (BESS) has 
emerged as one of most successful solutions for dealing 

with these issues [1]. The BESS has become a popular 
method of smoothing active power variations of 
distribution grid connected PVDG sources at the common 
coupling point in recent years. The BESS enables quick 
charging and discharging, enhancing the versatility of 
ADN, especially those with multiple PVDG sources. In 
practice, the BESS provides ADN with a variety of 
services in several countries [2]. 

Recently, various researchers have been dedicated to 
develop an advanced solution that identifies the best 
locations and sizes for PVDGs and BESSs units to 
improve ADN operation and planning problems, as 
applying the Mixed Integer Linear Programming (MILP) 
to reduce the total cost of energy in ADN [3, 4], and 
MILP algorithm while considering the environmental and 
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economic aspects [5]. Stochastic Mixed Integer Linear 
Programming (SMILP) for overall network cost 
minimization with ADN reconfiguration [6], and the 
Mixed-Integer Second-Order Cone Program (MISOCP) to 
minimize real-time energy gap with uncertainties [7], and 
also using MISOCP to reduce the total cost’s operation 
and BESS cost’s investment considering soft open points 
of ADN [8]. Dynamic programming optimization 
algorithm to maximize the renewable DG consumption 
and BESS benefits [9]. Applying Genetic Algorithm (GA) 
for active power losses minimization [10], and applying 
GA for minimizing the BESS total cost, also the yearly 
cost of voltage-sag events [11], also GA for reducing the 
total net present value from BESS deployment over a 
specified planning horizon [12], and applied multi-player 
distributed optimization game algorithm to maximize the 
cost and benefits of BESS [13].  

Applied Differential Evolutionary (DE) algorithm 
for minimizing the investment and maintenance costs 
considering time-varying load model [14]. Implantation 
of the Group Search Optimizer (GSO) algorithm to 
minimize the system stability index of ADN [15], 
Modified Bat Algorithm (MBA) for minimizing the 
system’s total cost with various irradiances at different 
days [16], Hybrid Gravity Search Algorithm (HGSA) for 
reducing the BESS daily cost of maintenance and 
operation also its initial investment [17], used Teaching–
Learning-Based Optimization (TLBO) algorithm for 
minimization of life cycle cost and gas emissions [18], 
Whale Optimization Algorithm (WOA) for reducing the 
ADN’s power losses [19], Particle Swarm Optimization 
(PSO) algorithm for reducing the active power loss and 
the node voltages deviation indices with the dynamic 
hourly reconfiguration of ADN [20], Natural Aggregation 
Algorithm (NAA) for minimizing the investment and 
operation cost of the system, and the BESS’s residual 
value [21], Harris Hawks Optimization (HHO) algorithm 
to minimize the sum of the bus voltage deviation and 
active power losses [22]. Recently in 2021, applied 
Simulated Annealing (SA) algorithm for utility profit 
maximization from energy arbitrage [23]. 

This paper has applied a new recent meta-heuristic 
which called the Grey Wolf Optimizer (GWO); an 
optimization algorithm inspired based on the hunting 
behavior of grey wolves that lives in wild nature [24]. The 
principal defies of GWO that it is easy to fall into the 
local optimum. Owing to the ergodicity of chaos, in this 
paper is included the theory of chaos into the GWO 
algorithm to strengthen its performance [25].  

Practically, the operational objectives are conflicting in 
nature. Hence, the problem of allocating PVDG and BESS 
becomes a complex multi-objective function problem that 
optimizes multiple conflicting objectives. In this paper, an 
allocation problem of hybrid PVDG–BESS systems is 
formulated to minimize the Multi-Objective Functions 
(MOF) which can be solved by the various versions of 
Chaotic Grey Wolf Optimization (CGWO) algorithms. 

2. Mathematical problem formulation.  
2.1. Multi-objective functions. In this paper, aim to 

optimally locate and size the hybrid PVDG and BESS 
sources into ADN, by minimizing simultaneously the 
technical parameters of Total Active Power Loss (TAPL), 

Total Voltage Deviation (TVD), and Total Operation 
Time (TOT) of Non-Standard Overcurrent Relay (NS-
OCR), which is based on new time-current-voltage 
tripping characteristic 

,
1 2 1
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Starting by, the TAPL of the distribution line, that 
can be expressed by [26, 27] 
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where Rij is the line resistance; Nbus is the bus number; (δi, δj) 
and (Vi, Vj) are angles and voltages, respectively; (Pi, Pj) 
and (Qi, Qj) demonstrate active and reactive powers, 
respectively. 

The second term is the TVD, which is defined as 
[28, 29] 
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The final term, the TOT of NS-OCR, which is 
defined as [30] 
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where Ti is the operation time of relay; TDS is the time 
dial setting; M is the multiple of pickup current and VFM 
represent the fault voltage magnitude; IF and IP represent 
the fault and the pickup current, respectively; A, B, and K 
are the constants of relay, set to 0.14, 0.02, and 1.5, 
respectively; NR is the number of overcurrent relays. 

2.2. Equality constraints can be expressed by the 
balanced powers equations 

G PVDG BESS DP P P P APL    ,             (10) 

G DQ Q RPL  ,                      (11) 

where (QG, PG) represent the total reactive and active 
power from the generator; (QD, PD) represent the total 
reactive and active power of the load; (RPL, APL) are the 
reactive and active power loss, respectively; PPVDG and 
PBESS are the output powers generated from PVDG and 
BESS, respectively. 

2.3. Distribution line constraints would be given as 
inequality constraints 

min maxiV V V  ,                         (12) 

max1 jV V  ,                            (13) 

maxijS S ,                               (14) 
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where Vmin, Vmax are minimum and maximum of bus 
voltage limits; ΔVmax is the maximum of voltage drop 
limits; Sij is the apparent power in the distribution line and 
Smax is the maximum of apparent power. 

2.4. PVDG-BESS units constraints can be 
expressed as follow 

min max
PVDG PVDG PVDGP P P  ,                   (15)   

min max
BESS BESS BESSP P P  ,                   (16) 
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where min
PVDGP , min

BESSP  are the minimum of output power 

injected by PVDG and BESS, respectively; max
PVDGP , 

max
BESSP  are the maximum of output power injected by 

PVDG, and BESS, respectively; NPVDG, NBESS are the 
PVDG and BESS units’ number, respectively; nBESS, 
nPVDG are the locations of PVDG and BESS units at bus i. 

3. Chaotic grey wolf optimization. As long as the 
GWO algorithm could not always perform that well in 
identifying global optimal results, CGWO algorithm was 
developed basing on introducing chaos (chaotic maps) in 
GWO algorithm itself in order to improve its efficiency 
by generating random numbers. 

3.1. Grey wolf optimizer. The GWO is an 
algorithm evolved by Mirjalili [24], basing on the 
inspiration from the leadership hierarchy behaviours and 
the grey wolves hunt mechanism in wild nature, where it 
begins the process of optimization by initiating a plant of 
candidate solutions randomly.  

The three best candidate solutions in each iteration, 
are assumed as alpha, beta, and delta wolves, who take 
the lead toward to promising search space regions. The 
rest of grey wolves are considered as omega and need to 
encircle alpha, beta, and delta to find better solutions. The 
mathematical formulation of omega wolves is expressed 
as [24, 31]. 

Encircling prey: grey wolves encircle prey during 
the hunt. The mathematical model expressed as follows: 
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  

,                    (25) 

   1 .pX t X t A D  
  

,                   (26) 

where A


 and C


 designate the coefficient vectors; 

t designates the current iteration; pX


 is the best 

solution’s position vector obtained so far; X


 is the vector 
of position. 

The vectors A


 and C


 can be calculated using these 
equations 
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,                               (28) 
where a is the decreased linearly from 2 to 0 over the 
iterations course (in exploration and exploitation phases); 
r


 is the vector randomly initiated with uniform 
distribution between 0 and 1. 

Hunting: in GWO, it is supposed that alpha (α), beta 
(β), and gamma (δ) have better knowledge about the 
prey’s potential location, the three best solutions obtained 
firstly so far are saved and obligate the other search 
agents (including the omegas) to update their positions 
according to the best search agent’s position 
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3.2. Chaotic maps. The various chaotic maps [32] 
used are represented by their mathematical equations:  
a. Chaotic Gauss: 
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b. Chaotic Singer: 
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d. Chaotic Sine: 

 1 sin , 4
4k k

a
x x a   .              (39) 

e. Chaotic Logistic:  

 1 1 , 4k k kx ax x a    .          (40) 

4. Simulation and analysis results. The various 
algorithms were tested on the standards test system IEEE 
33-bus and 69-bus ADNs represented in Fig. 1, which 
comprised active and reactive powers of 3715 kW and 
2300 kVar for the first system, 3790 kW and 2690 kVar 
for the second system. Also, under a nominal voltage 
equal to 12.66 kV for both systems. Where every one of 
systems’ buses, would be protected by a NS-OCR. In 
general, it is calculated 32 NS-OCRs for the first system 
and 68 NS-OCRs for the second system. 
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                                                  a                                                                                                   b 

Fig. 1. Single diagram of test systems:  a – IEEE 33-bus;   b – IEEE 69-bus 
 

Figures 2, 3 demonstrate the curves of convergence 
of the applied CGWO algorithms for both cases of 

optimal PVDG and hybrid PVDG-BESS installation in 
both test systems ADNs. 

 

      
                                                      a                                                                                                        b 

Fig. 2. Convergence curves of different CGWO algorithms for the IEEE 33-bus: 
a – PVDG;   b – PVDG-BESS 

 

      
                                                      a                                                                                                        b 

Fig. 3. Convergence curves of different CGWO algorithms for the IEEE 69-bus: 
a – PVDG;   b – PVDG-BESS 

 
By doing the analysis of both convergence curves, 

also for a maximum iterations’ number equal to 150, it 
can be noted that the CGWO_Logistic delivered the best 
minimization of MOF results for both cases of PVDG and 
hybrid PVDG-BESS presence in both test system ADNs, 

comparing to the other algorithms. 
For the case of only PVDG integration, the MOF got 

minimized by the CGWO_Logistic algorithm until 20.670 
for the first test system ADN, and until 39.043 for the 
second system ADN.  
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For the case of hybrid PVDG-BESS, the MOF got 
minimized by the CGWO_Logistic algorithm until 20.668 
for the first system, while for the second system it got 
minimized until 39.037, with noticing a late convergence 
characteristic in both cases studies for the two test 
systems which were in general, more than 100 iterations 
for all cases studies, except for the case of PVDG 
integration in second test system, where the 

CGWO_Logistic algorithm converges around 85 
iterations to attain the best solution. 

Figures 4, 5 illustrate the MOF boxplot results of the 
different applied CGWO algorithms after 20 runs in each 
of them, for both cases studies of optimal PVDG and 
hybrid PVDG-BESS integration, respectively in the two 
test systems ADNs. 

 

 

      
                                                      a                                                                                                        b 

Fig. 4. Boxplot of CGWO algorithms for the IEEE 33-bus: 
a – PVDG;   b – PVDG-BESS 

 

      
                                                     a                                                                                                        b 

Fig. 5. Boxplot of CGWO algorithms for the IEEE 69-bus: 
a – PVDG;   b – PVDG-BESS 

 

For the purpose of improving the comparison and 
better evaluating of the utilized CGWO algorithms, a 
boxplot is presented as shown in Fig. 4, 5. The results 
were obtained while taking into account 20 runs for each 
applied algorithm. It can be noted for all the CGWO 
algorithms that the results are too close to their best and 
minimum MOF for all cases studies of optimal PVDG 
and hybrid PVDG-BESS integration in both test systems 
ADNs.  

Besides, it is clear that the CGWO_Logistic algorithm 
showed efficiency and reliability when providing the 
lowest median and delivering the best and the minimum 
value of MOF in the two test systems for all cases studies. 

Tables 1 and 3 show the optimal locations and sizes 
of both case studies (PVDG and hybrid PVDG-BESS) 
when applying the various CGWO algorithms on the two 

test systems ADNs.  
Tables 2, 4 show the optimized parameters and the 

results obtained when optimally locate and size all cases 
studies (PVDG and hybrid PVDG-BESS) by various 
CGWO algorithms in both test systems ADNs. 

From Tables 1–4 also when based on the 
comparison, it is clear among all the applied CGWO 
algorithms, that the best results and the minimum of 
MOF, was obtained by the CGWO_Logistic algorithm 
which provided the best values for the first test system 
ADN until 20.670 for the case of PVDG and until 20.668 
for the case of hybrid PVDG-BESS. Meanwhile, for the 
IEEE 69-bus ADN the CGWO_Logistic algorithm 
provided the best MOF value of 39.043 for the case of 
PVDG and a value until 39.037 for the case of hybrid 
PVDG-BESS.  
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Table 1 
Optimal location and sizing of all cases for the IEEE 33-bus 

Algorithms 
applied 

Cases 
Optimal 

buses 
Sizes 

(kW) 
PVDG 5-16-30 1446, 388.2, 405.4 

GWO 
Basic PVDG 

BESS 
5-14-24 
20-21-31 

327.8, 492.4, 1001 
-498.1, 516.8, 570.1 

PVDG 5-15-33 1242, 430.7, 408.7 
CGWO 
Gauss 

PVDG 
BESS 

5-13-27 
13-21-31 

2091, 300.0, 458.1 
5.7, 58.8, 477.6 

PVDG 5-14-32 1579, 401.6, 421.8 
CGWO 
Singer PVDG 

BESS 
3-5-33 

13-21-22 
1140, 859.9, 480.7 

457.7, -190.7, 239.7 
PVDG 4-13-32 1935, 470.4, 406.1 

CGWO 
Tent PVDG 

BESS 
13-24-30 
2-5-10 

585.0, 761.7, 601.8 
196.7, 5.5, 4.3 

PVDG 5-15-33 1605, 392.6, 350.1 
CGWO 
Sine 

PVDG 
BESS 

3-25-33 
5-16-25 

361.2, 300.0, 405.4 
1300.3, 372.2, 

319.8 
PVDG 5-16-30 1503, 370.4, 400.2 

CGWO 
Logistic 

PVDG 
BESS 

5-24-30 
3-15-26 

1346, 882.3, 488.9 
-270, 477.5, -353.6 

 

Table 2 
Optimal results of all cases integration for the IEEE 33-bus 

Algorithms 
applied 

Cases 
TAPL 
(kW) 

TVD 
(p.u.) 

TOT 
(sec) 

MOF 

Basic Case 210.987 1.812 20.574 – 
PVDG 95.612 1.088 19.495 20.674 

GWO 
Basic PVDG 

BESS 
83.020 1.077 19.516 20.673 

PVDG 128.474 1.364 19.257 20.677 
CGWO 
Gauss PVDG 

BESS 
104.813 1.079 19.524 20.677 

PVDG 92.112 1.062 19.523 20.674 
CGWO 
Singer PVDG 

BESS 
87.252 1.046 19.541 20.672 

PVDG 93.014 1.060 19.525 20.676 
CGWO 
Tent PVDG 

BESS 
87.510 1.103 19.491 20.671 

PVDG 124.961 1.318 19.293 20.675 
CGWO 
Sine PVDG 

BESS 
86.372 1.058 19.525 20.670 

PVDG 96.115 1.090 19.493 20.670 
CGWO 
Logistic PVDG 

BESS 
87.397 1.066 19.521 20.668 

 

 

Table 3 
Optimal location and sizing of all cases for the IEEE 69-bus 

Algorithms 
applied 

Cases 
Optimal 

buses 
Sizes 

(kW) 
PVDG 47-63-69 448.8, 946.4, 389.2 

GWO 
Basic PVDG 

BESS 
4-12-61 
13-64-68 

1755, 581.5, 691.5 
-143.0, 225.6, 151.0 

PVDG 4-60-69 1410, 1073, 459.7 
CGWO 
Gauss 

PVDG 
BESS 

5-63-69 
3-5-62 

670.5, 433.5, 300.0 
272.1, -1301, 540.2 

PVDG 12-38-62 388.8, 408.6, 974.4 
CGWO 
Singer PVDG 

BESS 
14-49-61 
4-8-56 

315.3, 477.4, 1192 
241.5, 69.8, -444.3 

PVDG 57-61-69 349.4, 772.7, 381.9 
CGWO 
Tent PVDG 

BESS 
12-56-69 
2-52-61 

453.0, 444.8, 326.9 
-550.1, -1200, 959.6 

PVDG 5-61-69 443.2, 982.9, 355.6 
CGWO 
Sine 

PVDG 
BESS 

49-61-69 
8-53-69 

434.1, 1097, 326.9 
2.7, -690.6, 704.7 

PVDG 4-61-69 707.2, 996.8, 348.9 
CGWO 
Logistic 

PVDG 
BESS 

16-50-61 
10-36-59 

320.5, 349.3,1256 
-147.0, 228.8, 280.4 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4 
Optimal results of all cases integration for the IEEE 69-bus 

Algorithms 
applied 

Cases 
TAPL 
(kW) 

TVD 
(p.u.) 

TOT 
(sec) 

MOF 

Basic case 224.945 1.870 38.772 --- 
PVDG 104.063 1.304 37.647 39.045 

GWO 
Basic PVDG 

BESS 
100.870 1.263 37.690 39.044 

PVDG 102.901 1.257 37.697 39.048 
CGWO 
Gauss PVDG 

BESS 
104.972 1.330 37.620 39.045 

PVDG 101.424 1.296 37.657 39.045 
CGWO 
Singer PVDG 

BESS 
98.993 1.280 37.667 39.047 

PVDG 100.252 1.274 37.681 39.046 
CGWO 
Tent PVDG 

BESS 
108.550 1.271 37.675 39.046 

PVDG 101.633 1.304 37.648 39.045 
CGWO 
Sine PVDG 

BESS 
102.082 1.264 37.678 39.045 

PVDG 101.078 1.303 37.649 39.043 
CGWO 
Logistic PVDG 

BESS 
78.497 1.137 37.821 39.037 

 

The rest of the applied algorithms also reveal a good 
efficiency in delivering the best results, but in terms of 
each parameter on its own, where, as example for the 
IEEE 33-bus ADN, the CGWO_Singer algorithm 
delivered the minimum TAPL’s value of 92.112 kW, 
while the CGWO_Tent algorithm delivered the minimum 
TVD’s value of 1.060 p.u. for the case of PVDG, also the 
GWO_Basic algorithm delivered the minimum TAPL’s 
value of 83.020 kW for the case of hybrid PVDG-BESS. 
Meanwhile, for the second test system ADN, as example, 
the GWO_Tent provided the minimum TAPL’s value of 
100.252 kW and the GWO_Basic algorithm provided the 
minimum TOT’s value of 37.647 seconds for the case of 
PVDG, while the GWO_Gauss algorithm delivered the 
minimum TOT’s value of 37.620 seconds for the case of 
hybrid PVDG-BESS. 

Figure 6 demonstrates the comparison of active 
power losses between the basic case and both cases of 

optimal PVDG and hybrid PVDG-BESS presence in both 
test systems ADNs. 

From Fig. 6, and the previous results, it is noted that 
the optimal allocation of PVDG and hybrid PVDG-BESS 
using the CGWO_Logistic algorithm in the two test 
systems, contributed excellently and directly to the 
minimizing of the active power losses in almost all 
branches of both ADNs, especially in branches which 
situated near to the optimally located buses of both cases 
integration in the two test systems, with superior and 
much better results for the second case study with the 
integration of hybrid PVDG-BESS.  

Also, this comparison could be improved when 
basing on the TAPL value, where it is reduced at the first 
system IEEE 33-bus ADN, from value of 210.987 kW at 
the basic case to 96.115 kW for the case of PVDG, and 
until 87.397 kW for the case of hybrid PVDG-BESS. 
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For the second system ADN, the TAPL got reduced 
from 224.947 kW to 101.078 kW for the case of PVDG 

and reduced until 78.497 kW for the case of hybrid 
PVDG-BESS installation. 

 

       
                                                   a                                                                                                           b 

Fig. 6. Active power losses in branches: 
a – IEEE 33-bus;   b – IEEE 69-bus 

 

Figure 7 represents the voltage deviation for all 
cases studies of the optimal integration of PVDG and 

hybrid PVDG-BESS units in the two standards test 
systems ADNs. 

 

      
                                                   a                                                                                                           b 

Fig. 7. Bus voltage deviation: 
a – IEEE 33-bus;   b – IEEE 69-bus 

 

When analyzing Fig. 7, it may be noticed that the 
voltage deviation at the basic case was above the limited 
value of 0.05 p.u. in most buses of the two test systems 
ADNs. Moreover, it may be observed after the optimal 
integration of PVDG and the hybrid PVDG-BESS into 
ADNs by the CGWO_Logistic algorithm, that the voltage 
deviation got minimized under the allowed range in all 
test systems’ buses with superior and better results 
provided by the second case with the integration of hybrid 
PVDG-BESS systems.  

Also, by checking the value of TVD, it is seen for the 
first system, the TVD minimized from 1.812 p.u. to 1.090 p.u. 
for the case of PVDG and until 1.066 p.u. for the case of 
hybrid PVDG-BESS. For the second system, TVD reduced 
from 1.870 p.u. to 1.303 p.u. for the case of PVDG and 
until 1.137 p.u. for the case of hybrid PVDG-BESS. 

Figure 8 represents the bus voltage profiles for all 
cases studies of the optimal integration of PVDG and 

hybrid PVDG-BESS units in the two standard test 
systems ADNs. 

From Fig. 8, it may note that the voltage profiles 
have improved in all buses of both standards test systems 
ADNs after the optimal integration of both cases studies 
of PVDG and hybrid PVDG-BESS units, with much 
better and superior results for the second case of hybrid 
PVDG-BESS. Also, this voltage profiles’ ameliorating 
was especially in the buses which situated close to the 
optimally located buses of both cases studies integration 
into test systems ADNs. 

As mentioned previously in Fig. 7, the minimization 
of the voltage deviation, consequently led to the 
enhancement of the voltage profiles, due to the fact that 
the voltage deviation is represented as the difference 
between the nominal voltage of 1 p.u., and the voltage 
value at the basic case. 
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a 

 
b 

Fig. 8. Voltage profiles of buses: 
a – IEEE 33-bus;   b – IEEE 69-bus 

 

Figure 9 illustrates the primary overcurrent relays’ 
operation time with two different zones of zoom for the 
basic case and after all cases studies integration of PVDG 
and hybrid PVDG-BESS into both standards test systems 
ADNs. 

When comparing to the basic case, it is clear that the 
operation time in most of the primary NS-OCRs had 
considerably minimized after the optimal integration of 
PVDG and hybrid PVDG-BESS into both test systems 
ADNs by the CGWO_Logistic algorithm. Besides, the 
TOT was decreased at the first system IEEE 33-bus ADN 
from 20.574 seconds to 19.493 seconds for the case of 
PVDG and until 19.521 seconds for the case of hybrid 
PVDG-BESS. Also, it is mentioned a clear impact of 
operation time’s minimization in both zones of zoom in 
Fig. 9,a, between NS-OCRs from 12 to 14 and from 23 to 
25, for both cases studies. 

For the IEEE 69-bus ADN, the TOT decreased from 
38.772 seconds to 37.649 seconds for the case of PVDG 
and until 37.821 seconds for the case of hybrid PVDG-
BESS, where that impact of operation time’s 
minimization is obvious in both zones of zoom in Fig. 9,b 
between NS-OCRs from 10 to 13 and from 50 to 54, for 
both cases studies. Hence, according to equation (8), this  

 

 
a 

 

 
b 

Fig. 9. Overcurrent relay operation time: 
a – IEEE 33-bus;   b – IEEE 69-bus 

 
minimization was due to the inverse function between the 
fault current and the fault voltage magnitude covered by 
the NS-OCR and its operation time, where the more IF 
and VFM increased, the NS-OCR will operate quickly to 
clear the faults. 

5. Conclusion. 
In this paper, a study of comparison was carried out 

between the various chaotic grey wolf optimization 
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algorithms to identify the optimal allocation of multiple 
photovoltaic distributed generation and hybrid 
photovoltaic distributed generation and battery energy 
storage systems, into the active distribution networks 
based on solving the multi-objective function which 
represented as reducing simultaneously the three 
technically parameters: total voltage deviation, total 
active power losses and the overcurrent relays’ total 
operation time. 

The simulation results confirm the robustness and 
efficiency of the chaotic logistic grey wolf optimization 
algorithm, compared to the rest of the applied algorithms, 
in terms of providing the best and minimum multi-
objective functions-based power losses, voltage deviation, 
and overcurrent relay operation time’s values, but including 
a late convergence characteristic. The comparison between 
the attained results of simulation for various cases studied 
led toward the conclusion that best results were achieved 
when the photovoltaic distributed generation and battery 
energy storage systems were simultaneously optimally 
allocated, which drove to a significant minimization of 
power losses, ameliorating of the voltage profiles, and 
improvement of the overcurrent protection system in the 
active distribution networks studies. 

Based on the previous discussion, the future work 
will focus on implementing the Distributed Static Var 
Compensator in addition to the battery energy storage 
systems to improve the performance of the studies 
systems, while considering new technical indices, also the 
distributed generation power outputs and the load demand 
variation at the different sessions of the year. 
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