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DYNAMIC ECONOMIC EMISSION DISPATCH USING WHALE OPTIMIZATION 
ALGORITHM FOR MULTI-OBJECTIVE FUNCTION 
 
Introduction. Dynamic Economic Emission Dispatch is the extended version of the traditional economic emission dispatch problem 
in which ramp rate is taken into account for the limit of generators in a power network. Purpose. Dynamic Economic Emission 
Dispatch considered the treats of economy and emissions as competitive targets for optimal dispatch problems, and to reach a 
solution it requires some conflict resolution. Novelty. The decision-making method to solve the Dynamic Economic Emission 
Dispatch problem has a goal for each objective function, for this purpose, the multi-objective problem is transformed into single goal 
optimization by using the weighted sum method and then control/solve by Whale Optimization Algorithm. Methodology. This paper 
presents a newly developed metaheuristic technique based on Whale Optimization Algorithm to solve the Dynamic Economic 
Emission Dispatch problem. The main inspiration for this optimization technique is the fact that metaheuristic algorithms are 
becoming popular day by day because of their simplicity, no gradient information requirement, easily bypass local optima, and can 
be used for a variety of other problems. This algorithm includes all possible factors that will yield the minimum cost and emissions of 
a Dynamic Economic Emission Dispatch problem for the efficient operation of generators in a power network. The proposed 
approach performs well to perform in diverse problem and converge the solution to near best optimal solution. Results. The 
proposed strategy is validated by simulating on MATLAB® for 5 IEEE standard test system. Numerical results show the capabilities 
of the proposed algorithm to establish an optimal solution of the Dynamic Economic Emission Dispatch problem in a several runs. 
The proposed algorithm shows good performance over the recently proposed algorithms such as Multi-Objective Neural Network 
trained with Differential Evolution, Particle swarm optimization, evolutionary programming, simulated annealing, Pattern search, 
multi-objective differential evolution, and multi-objective hybrid differential evolution with simulated annealing technique. 
References 17, tables 3, figures 5.  
Key words: whale optimization algorithm, dynamic economic emission dispatch, ramp rate, multi-objective problem, 
economic emission.   
 
Вступ. Динамічна економна диспетчеризація викидів – це розширена версія традиційної задачі економної диспетчеризації 
викидів, в якій враховується коефіцієнт нарощування для межі генераторів в енергомережі. Призначення. Динамічна 
економна  диспетчеризація викидів розглядала питання економії та викидів як конкурентні цілі для оптимальних задач 
диспетчеризації, і для розв‘язання задачі потрібне певне вирішення конфліктів. Новизна. Метод прийняття рішень для 
розв‘язання задачі динамічної економної диспетчеризації викидів має мету для кожної цільової функції, для цього 
багатоцільова задача трансформується в оптимізацію однієї цілі за допомогою методу зваженої суми, а потім 
контролюється/розв‘язується за допомогою алгоритму оптимізації китів. Методологія. У цій роботі представлена 
нещодавно розроблена метаевристична методика, заснована на алгоритмі оптимізації китів для розв‘язання задачі 
динамічної економної диспетчеризації викидів. Основним натхненням для цієї методики оптимізації є той факт, що 
метаевристичні алгоритми стають популярними з кожним днем завдяки своїй простоті, відсутності вимог до інформації 
про градієнт, легкості обходу локальних оптимумів та можливості бути використаними для ряду інших задач. Цей 
алгоритм включає в себе всі можливі фактори, які забезпечать мінімальні вартість та викиди задачі динамічної економної 
диспетчеризації викидів для ефективної роботи генераторів в енергомережі. Запропонований підхід добре працює для 
розв‘язання задач і наближення рішення до найкращого оптимального. Результати. Запропонована стратегія перевірена 
шляхом моделювання на MATLAB® для 5 стандартних тестових систем IEEE. Чисельні результати демонструють 
можливості запропонованого алгоритму для встановлення оптимального рішення задачі динамічної економної 
диспетчеризації викидів за кілька прогонів. Запропонований алгоритм демонструє хорошу ефективність порівняно з 
нещодавно запропонованими алгоритмами, такими як багатоцільова нейронна мережа, навчена з використанням 
диференціальної еволюції, оптимізація рою частинок, еволюційне програмування, імітаційний відпал, пошук за шаблоном, 
багатоцільова диференціальна еволюція та багатоцільова гібридна диференціальна еволюція з імітаційним методом 
відпалу. Бібл. 17, табл. 3, рис. 5. 
Ключові слова: алгоритм оптимізації китів, динамічна економна диспетчеризація викидів, швидкість наростання, 
багатоцільова задача, економна емісія. 
 

1. Introduction. Power plants based on fossil fuel 
emit health hazardous gases into the surrounding 
environment. Air pollution due to these gases can not only 
affect human life but can compromise the animals and 
birds life. It also damages visibility, material quality, and 
causing global warming [1]. With increasing 
environmental concern, consumer demands high quality 
power with safe electricity, at lowest possible rates and 
with lowest possible pollution. Dynamic Economic 
Emission Dispatch (DEED) provide a solution to these 
problem by scheduling the renewable and backup power 
sources based on the forecast load demand to reduce cost 
and emission of the operating generator [2, 3]. 

DEED is dynamic in nature due to non-linear nature 
of power system and its loads. This non-linear or dynamic 

problem is normally solved by discretizing the whole 
dispatch time interval into smaller time interval in which 
the load is serve as constant and in steady state. To 
control and achieve the lowest cost and emission ratio, the 
individual time interval must be dispatched so that to 
minimize the cost and emission at that time subjected to 
static constraint with additional time limit known as 
dynamic constraint. DEED is serve as an accurate method 
to solve economic dispatch (ED) problem but at same 
time it is the most difficult method due to lengthy 
measurements [4]. 

Nowadays, meta-heuristic optimization algorithms 
are gaining popularity in engineering and technology field 
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due to its simplicity and easy to implement concept. No 
gradient information is required for their implementation. 
Not only can they circumvent regional optimizations, but 
they can also be applied to numerous fields [5]. 

In recent years, probabilistic search algorithms e.g. 
genetic algorithms (GA), simulated annealing (SA), and 
evolutionary programming (EP) are efficiently utilized to 
solve power network optimization issues. These methods 
aren’t based on 1st and 2nd differences in the objective 
function of optimized problem [6, 7]. 

1. Literature review. In [8] solved the multi-
purpose economic emission dispatch problem using a new 
technique called Dance Bee Colony with dynamic step 
size taking into account the valve point effect. The 
proposed algorithm was applied to the 6 unit and 40 unit 
systems, respectively. He observed that the proposed 
method could also solve the combined economic emission 
dispatch problem. In [9] studied DEED, which contains 
uncertainties in the development process. In addition to 
the classic dynamic economic emissions dispatch factor, 
reliability and efficiency constraints have been 
specifically considered to contain the disturbances of 
uncertainty. As a result, a fine and reserve emission 
function has been added to the multipurpose function as 
well as a fine and reserve cost function. To obtain 
quantitative results, we discussed the characterization of 
various sources of uncertainty based on statistical theory, 
and this optimization problem was solved numerically by 
an improved particle cluster optimization algorithm. In 
[10] announced the multi-elite guided hybrid differential 
evolution using a simulated annealing technique for 
dynamic economic emission dispatch (MOHDE-SAT). 
This incorporates orthogonal initialization methods into 
differential evolution, expanding population diversity 
early in the population. 

In addition, we can use modified mutation operators 
and archive preservation mechanisms to control the rate 
of convergence, and adaptively monitor population 
diversity as evolution progresses using simulated 
annealing techniques and entropy diversity methods to 
adequately avoid early convergence problems. 

Applied to 5 and 10 unit systems. In [11] versatile 
DEED using the PSO variant was announced. Tested PSO 
variants include standard PSO (SPSO), worst-case 
avoidance PSO (PSO AWL), and progressively increasing 
directional neighbors (PSO GIDNs). Researchers tested 
the performance of various variants of PSO AWL against 
variants of SPSO for DEED problems and concluded that 
PSO AWL outperformed SPSO for all implemented 
topologies. 

Applied to 10 units. In 2018 a new multipurpose 
neural network trained with MONNDE (Differential 
Evolution) was presented in [12]. The MONNDE 
framework applies to the problem of Dynamic Economic 
Emission Dispatch (DEED) and is equally optimal 
compared to other state-of-the-art algorithms in terms of 
24-hour cost and emissions. Researchers also compared 
the performance of fully connected and partially 
connected networks and found that dynamically 
optimizing the topology of a neural network performed 
better in an online learning environment than simply 
optimizing the network weights. 

It is clear from the literature that the problem of 
economic emission dispatch is solved with many 
classical, meta-heuristic and hybrid techniques. 

Another newly developed technique called Whale 
Optimization Algorithm (WOA) is proposed. This method 
has not yet been implemented in the DEED problem, but 
it could be a very attractive idea to use this algorithm for 
the DEED problem. Our focus is on applying WOA to 
standard test systems. 

This paper develops efficient and reliable 
evolutionary programming based on WOA to solve the 
DEED problem. Here the objective functions, namely cost 
and emissions, are modeled. The proposed strategy is 
validated by simulating MATLAB® against 5 IEEE 
standard test system. Numerical results for a sample test 
system are presented to demonstrate the capabilities of the 
proposed approach to create a well-distributed Pareto 
optimal solution of the dynamic economic emission 
dispatch problem in a single run. The proposed algorithm 
is also compare with the recently proposed algorithms 
such as Multi-Objective Neural Network trained with 
Differential Evolution (MONNDE), particle swarm 
optimization (PSO), evolutionary programming (EP), 
simulated annealing (SA), Pattern search (PS), multi-
objective differential evolution (MODE), and multi-
objective hybrid differential evolution with simulated 
annealing technique (MOHDE-SAT). 

2. Problem formulation. The DEED problem is 
flexible mathematical programming problem that consists 
of goals and constraints to achieve lowest cost and 
emission at a time. To achieve the above goal, the system 
equality and inequality constraints should be met. Steps 
involving in DEED problem are given below. 

2.1. Objectives function of DEED problem. 
Objectives function of DEED problem consists of fuel 
cost and emission functions. 

2.1.1 Economy. The cost function F1 shows the 
hourly cost of power generators and is given as: 
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where N refers to power generators numbers. 
Equation (2) shows the cost hourly non-convex cost 

function of power generators: 
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where m is the present hour; ai, bi, ci, ei and fi are all 
constant factors related with each generator i; Pmin,i is the 
minimum power output of a generator i at m time and Pmin 
is the minimum power of a generator. 

2.1.2 Emission. The emission function F2 that 
determine the total hazardous pollutant produce due to 
operation of all generators per hours as shown in equation: 
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where the emission function E determines the amount of 
injurious pollutants produce by power generators for 24  hours. 

Equation (4) shows the harmful pollutants of non-
convex function 
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   iiiiiiiiii PPPPE  exp2  ,          (4) 

where i, i, i, i and i are the emission constant factors 
related with each generator i. 

2.2 Constraints. DEED constraint consists of 
equality and inequality constraints. 

2.2.1 Balance Constraints. All solution is substance 
to real power equality constraint. Balance constraint is 
define as the total output power must be equal to 
summation of actual power demand and losses due to 
transmission lines as shown in equations (5) and (6) 
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where Bi,j, Bi0 and B00 are the loss coefficients of 
generators.  

2.2.2 Inequality constraints. 
2.2.2.1 Operating limit for each power generator. 

It determines the possible upper and lower power output 
of each generator in a network. The operating limits for 
each generator are defined as: 

maxmin
iimi PPP  ,                          (7) 

where max
iP and min

iP  are the maximum and minimum 

power output of each generator respectively. 
2.2.2.2 Ramp rate limits of generating unit. The 

ramp limits of any generator determine the increase or 
decrease of maximum allowed output power between 
specific two limit steps. It can be define by follow 
equations: 

imiim URPP   )1( ,                          (8) 

iimmi DRPP  )1( ,                          (9) 

where URi is the up ramp limit of a generator while DRi 
are down ramp limit for a generator. 

3. Principle of Whale Optimization Algorithm. 
WOA is inspire from the humpback whale hunting, which 
is also called bubble net feeding. This algorithm 
emphasizes the method of intelligent hunting mechanism 
of that particular whale. They hunt in a groups (size up to 
12 whales), while the group leader is finding the group of 
fish to hunt [13]. Figure 1 shows the Bubble-net feeding 
behavior of humpback whales to hunt small fishes.  

 
Fig. 1. Bubble-net feeding behavior of humpback whales [14] 

 

The group of humpback whale goes under water and 
start to blow bubble while leader whale create larger size 
bubble in shape of «9». The fishes trapped in 9 shape trap 
due to its irregular swimming. Now the group of whale 
comes out with their mouths open and start hunting the 
trapped fishes inside the spiral bubbles. This technique of 
feeding is the unique behavior of this particular whale. In 
this research work, the bubble feed mechanism is modeled 
and implemented for solving the DEED problem. 

The WOA approach starts with a function containing 
set of random solutions. The search agent update its 
position or location at each iteration based on randomly 
selected searches or best solution obtained. An «a» 
parameter is used in this method, whose value is normally 
reduced from 2 into 0 to achieve exploration and its 
utilization. Their value is adjusted every time to achieve 
best possible solution, finally the WOA is terminated 
when the solution meet the desire criteria. 

4. Proposed whale optimization algorithm. The 
WOA is based on humpback whale hunting technology. 
Whales are mostly considered predators. Their favorite 
prey is hunting small group of fishes. The best thing about 
the humpback whale is their method of preying. 

WOA algorithm involves steps such as encircling 
prey, bubble net feeding method, exploration phase and 
finally its implementation. 

4.1 Encircling prey. Humpback whales can identify 
the position if prey and encircle them. Usually the 
location of optimal design is known, so the WOA 
algorithm that the current position is the best solution of 
targeted prey. After that starts to search for other best 
solution. If new best solution fined then the previous one 
updated with new best search agent. The encircling prey 
process can be expressed by equations: 

   ;* tXtXCD  ,                          (10) 

    DAtXtX  *1 ,                          (11) 

where the term t shows the up-to-date iteration; A  and C  

are constant vectors, *X  is the position vector of the best 

solution obtained up-to-dated; X  is the location vector. 

It is important that *X  should be updated in each 
iteration if there is a better solution. 

The vectors A  and C  are considered as shown in 
equations: 

raA  2 ,                                  (12) 

rC 2 ,                                    (13) 

where vector a  is linearly decreased from 2 to 0 in 
individual iterations (both in exploration and exploitation 

phases) and r  is a random vector in [0, 1]. 
4.2 Exploitation phase. It is also called Bubble-net 

attacking method. This step consists of two processes. 
4.2.1 Shrinking encircling mechanism. Shrinking 

encircling mechanism is accomplished by reducing the 

value of operator a . This behavior is achieved by 

decreasing the value of a . Due to this A  will also 
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decreased in fact. A  is an interval [– a , a ] having 

random value between ± a . The new location of search 
agent is selected between reference location of agent and 
location of present best agent. 

4.2.2 Spiral updating position. The spiral position 
is lie between the whale position and its prey that causes 
the helix shaped movement of whale as shown in follow 
equation: 

     tXleDtX lb *2cos'1    ,              (14) 

where    tXtXD  *'  and indicates the distance of the 

i-th whale to the prey (best solution obtained so far); b is a 
constant for defining the shape of the logarithmic spiral; 
l is a random number in [−1, 1]. 

Humpback whales swim around the prey within a 
shrinking circle and along a spiral-shaped path 
simultaneously. The mathematical model spiral behavior 

has a probability of 50 % because the value of operator a  
decide whether the movement will be circular or spiral. 
Follow equations shown this spiral behavior: 

    5.01 *  PifDAtXtX ,              (15) 

      5.02cos'1 *   PiftXleDtX lb  ,  (16) 

where P is a random number in [0, 1]. 
In addition to the bubble-net method, the humpback 

whales search for prey randomly. 
4.3 Search for prey (exploration phase). This is an 

exploration phase where humpback whales randomly 

search for each other position. So, A  having random 
value of greater or less than ±1 forces the search agent to 
move far from reference position of reference whale. The 
exploration phase in this case can be calculated by follow 
equations: 

XXCD rand  ,                       (17) 

  DAXtX rand 1 .                    (18) 

In the exploration phase according to a randomly 
chosen search agent instead of the best search agent found 
so far. 

4.4 Implementation of WOA. The implementation 
of WOA is represented through flow chart in Fig. 2. 

 

 
Fig. 2. The flowchart of proposed WOA 

 

5. The simulation of the proposed multi-
objective algorithm. The analyses were performed 
including minimum cost and emission ratio for operation 
of generators in a power network to show the improved 
performance of proposed algorithm. Furthermore, the 
effectiveness of proposed algorithm is checked by 
comparing with recently proposed algorithms such as 
MONNDE, PSO, EP, SA, PS, MODE, and MOHDE-
SAT. All the analysis were done using MATLAB® (2018 
Version) on an Intel (R) Core (TM) i5-2520M processor 
2.50 GHz with a RAM 4.00 GB. Subsequent sections 
show the test system parameters and results after analysis. 

5.1 Test system and its parameters. The proposed 
algorithm is tested on IEEE 5 units. The parameter of 
IEEE 5 units is shown in Table 1. 

 
Table 1 

Test System 1: 5 units IEEE data 

Unit 
Pmin, 
MW 

Pmax, 
MW 

UR, 
MW/h 

DR, 
MW/h 

a, 
$/h 

b, 
$/MWh 

c, 
$/MW^2h 

e, 
rad/MW 

f, 
lb/h 

, 
lb/MWh 

, 
lb/MWh 

, 
b/MW^2h 

, 
lb/h 

, 
1/MW 

1 10 75 30 30 25 2.0 0.0080 100 0.042 80 –0.805 0.0180 0.6550 0.02846 

2 20 125 30 30 60 1.8 0.0030 140 0.040 50 –0.555 0.0150 0.5773 0.02446 

3 30 175 40 40 100 2.1 0.0012 160 0.038 60 –1.355 0.0105 0.4968 0.02270 

4 40 250 50 50 120 2.0 0.0010 180 0.037 45 –0.600 0.0080 0.486 0.01948 

5 50 300 50 50 40 1.8 0.0015 200 0.035 30 –0.555 0.0120 0.5035 0.02075 
 

5.2 Results and comparisons. Table 2 shows the best 
fuel cost and emission for 24 hours for given load. The 
value of P1-P5 is selected by WOA such that load demand 
is fulfilled and give best fuel cost and emission result. 

The 5 units test system is simulated for 8 trails 
having 500 search agents for 100 iterations. Table 3 
presents the best cost, best emission and total cost-
emission against 0.5 weight for 5 units. The results shown 
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in Table 3 are obtained from MONNDE, PSO, EP, SA, 
PS, MODE, MOHDE-SAT and proposed technique. The 
percentage change of other techniques with respect to 
proposed algorithm shows the effectiveness of proposed 
WOA. The proposed WOA has 4.94 % better 
performance than MONNDE, 8.8 % than PSO, 6.85 % 
than EP, 6.9 % than SA, 2.35 % than PS, 0.218 % than 
MODE, and 1.411 % than MOHDE-SAT.  

Table 2 
DEED results for 24 hrs 

Load Hour P1 P2 P3 P4 P5 Fuel Cost Emission 
410 1 17.70 106.91 112.46 40 136.54 1317.87 510.62 
435 2 45.71 98.84 118.13 40 136.30 1438.52 505.75 
475 3 75 103.50 119.50 40 141.74 1515.83 579.21 
530 4 75 98.79 127.53 89.81 144.58 1847.63 610.53 
558 5 75 103.41 118.83 125.94 141.13 1697.07 643.38 
608 6 75 98.51 130.10 168.47 143.39 2038.01 735.64 
626 7 75 100.18 114.38 205.46 139.05 1832.18 806.98 
654 8 75 102.71 133.92 209.16 141.95 2005.68 862.69 
690 9 75 108.91 166.54 208.41 140.79 2153.24 944.19 
704 10 73.88 106.36 171.88 209.76 152.17 2226.74 989.75 
720 11 75 102.64 174.99 227.19 150.71 2329.29 1048.01 
740 12 75 98.54 172.96 211.59 192.96 2380.45 1142.23 
704 13 75 117.91 172.33 204.43 144.36 2261.61 985.77 
690 14 75 104.04 166.28 213.28 141.05 2143.43 946.84 
654 15 75 99.92 140.69 205.44 141.66 2037.19 854.35 
580 16 75 99.24 111.07 155.44 146.10 1886.79 691.40 
558 17 75 105.60 118.75 126.29 138.68 1709.21 642.50 
608 18 75 101.05 126.35 168.89 144.21 2038.31 739.96 
654 19 75 96.31 142.14 211.06 138.20 2023.64 856 
704 20 75 113.52 171.41 211.85 142.31 2209.86 987.26 
680 21 75 93.37 169.87 211.95 139.17 2092.81 918.93 
605 22 75 105.93 129.87 161.95 139.68 2043.15 729.03 
527 23 59.21 94.35 113.33 124.72 141.03 1615.60 583.67 
463 24 45.06 97.89 111.04 74.72 138.70 1631 513.30 

14577  46475.10 18827.99 
 

Table 3 
Performance comparison of WOA with other algorithms 

Technique 
Best cost 

($) 
Best emission 

(lbs) 
Total 

(0.5 weight) 
Change % 
w.r.t WOA 

MONNDE 
[12] 

49135 18233 33684.24 4.94 

PSO [15] 50893 20163 35528 8.80 
EP [16] 48628 21154 34891 6.85 
SA [10] 48621 21188 34904.5 6.90 
PS [17] 47911 18927 33419 2.35 

MODE [10] 47330 18116 32723 0.218 
MOHDE-
SAT [10] 

48214 18011 33112.5 1.411 

Proposed 
WOA 

46475.09 18827.98 32651.53 – 

 

Figure 3 shows the graphical comparison of total 
cost and emission of proposed algorithms and other 
algorithms for 5 units. This clearly shows that the 
proposed WOA has the minimum total cost and emission 
than other algorithms. 

Percentage improvement of proposed WOA with 
respect to other algorithms is shown in Fig. 4. 

Figure 5 shows the variation of best cost among 
8 trails (500 search agent and 100 iterations). Total cost 
and emission for each trail is 32761.39457, 32691.25187, 
32870.03513, 32843.87755, 32824.84763, 33220.30359, 
32651.54342, and 32745.05286, respectively. The best 
cost and emission is obtain at trail 7, which is 
32651.54342. 
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Fig. 3. Graphical comparison of total cost and emission vs. 

techniques 
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Fig. 4. Percentage improvement of proposed WOA vs. other 

techniques 
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Fig. 5. Variation of best cost among 8 trails 

 
Conclusion. 
This paper presents a newly developed metaheuristic 

technique based on Whale Optimization Algorithm to 
solve the Dynamic Economic Emission Dispatch 
problem. The main inspiration for this optimization 
method is the fact that Metaheuristic algorithms are easy 
to implement, no gradient information requirement, easily 
bypass local optima, and can be used for a variety of other 
problems. The proposed strategy is validated by 
simulating on MATLAB® for 5 IEEE standard test 
system. Numerical results for the 5 IEEE test system are 
presented to show the capabilities of the proposed 
algorithm to establish an optimal solution of the Dynamic 
Economic Emission Dispatch problem in a several runs. 
The proposed Whale Optimization Algorithm for 5 unit 
has 4.94 % better performance than Multi-Objective 
Neural Network trained with Differential Evolution, 8.8 
% than Particle swarm optimization, 6.85 % than 
evolutionary programming, 6.9 % than simulated 
annealing, 2.35 % than Pattern search, 0.218 % than 
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multi-objective differential evolution, and 1.411 % than 
multi-objective hybrid differential evolution with 
simulated annealing technique. 
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