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PENETRATION OF NON-UNIFORM ELECTROMAGNETIC FIELD 
INTO CONDUCTING BODY  
 
The study is based on the exact analytical solution for the general conjugation problem of three-dimensional quasi-stationary field at 
a flat interface between dielectric and conducting media. It is determined that non-uniform electromagnetic field always decreases in 
depth faster than uniform field. The theoretical conclusion is confirmed by comparing the results of analytical and numerical 
calculations. The concept of strong skin effect is extended to the case when penetration depth is small not only compare to the 
characteristic body size, but also when the ratio of the penetration depth to the distance from the surface of body to the sources of the 
external field is small parameter. For strong skin effect in its extended interpretation, the influence of external field non-uniformity to 
electromagnetic field formation both at the interface between dielectric and conducting media and to the law of decrease field in 
conducting half-space is analyzed. It is shown, at the interface the expressions for the electric and magnetic intensities in the form of 
asymptotic series in addition to local field values of external sources contain their derivatives with respect to the coordinate 
perpendicular to the interface. The found expressions made it possible to generalize the approximate Leontovich impedance 
boundary condition for diffusion of non-uniform field into conducting half-space. The difference between the penetration law for the 
non-uniform field and the uniform one takes place in the terms of the asymptotic series proportional to the small parameter to the 
second power and to the second derivative with respect to the vertical coordinate from the external magnetic field intensity at the 
interface. References 25, figures 8. 
Key words: three-dimensional electromagnetic field, electromagnetic field formation, exact analytical solution, skin effect.  
 
Дослідження засноване на точному аналітичному розв’язку загальної задачі спряження тривимірного квазістаціонарного 
поля на межі розділу діелектричного і електропровідного середовищ. Встановлено, що неоднорідне електромагнітне поле 
завжди зменшується в глибині швидше, ніж однорідне. Теоретичний висновок підтверджується зіставленням результатів 
аналітичних і чисельних розрахунків. Поняття сильного скін-ефекту поширюється на випадок, коли глибина проникнення 
мала порівняно не тільки з характерними розмірами тіла, але також коли відношення глибини проникнення до відстані від 
поверхні тіла до джерел зовнішнього поля є малим параметром. Для сильного скін-ефекту в його розширеної інтерпретації 
проаналізовано вплив неоднорідності зовнішнього поля на формування електромагнітного поля на межі і на закон 
зменшення поля в провідному півпросторі. Показано, що на межі вирази у вигляді асимптотичних рядів крім локальних 
значень поля зовнішніх джерел містять їх похідні по координаті, перпендикулярної граничної поверхні. Отримані вирази 
дозволили узагальнити наближену імпедансну граничну умову Леонтовича для дифузії неоднорідного поля в провідний 
півпростір. Відмінність законів проникнення для неоднорідного і однорідного полів має місце в членах асимптотичного 
ряду, пропорційних малому параметру в другому ступені і другій похідній по вертикальній координаті від напруженості 
зовнішнього магнітного поля у граничній поверхні. Бібл. 25, рис. 8. 
Ключові слова: тривимірне електромагнітне поле, формування електромагнітного поля, точний розв’язок задачі, 
скін-ефект. 
 
Исследование основано на точном аналитическом решении общей задачи сопряжения трехмерного квазистационарного 
поля на границе раздела диэлектрической и проводящей сред. Установлено, что неоднородное электромагнитное поле все-
гда убывает по глубине быстрее, чем однородное. Теоретический вывод подтверждается сопоставлением результатов 
аналитических и численных расчетов. Понятие сильного скин-эффекта распространяется на случай, когда глубина про-
никновения мала по сравнению не только с характерными размерами тела, но также когда отношение глубины проникно-
вения к расстоянию от поверхности тела до источников внешнего поля является малым параметром. Для сильного скин-
эффекта в его расширенной интерпретации проанализировано влияние неоднородности внешнего поля на формирование 
электромагнитного поля на границе и на закон убывания поля в проводящем полупространстве. Показано, что на границе 
выражения в виде асимптотических рядов для напряженностей полей помимо локальных значений поля внешних источни-
ков содержат их производные по координате, перпендикулярной граничной поверхности. Полученные выражения позволили 
обобщить приближенное импедансное граничное условие Леонтовича для диффузии неоднородного поля в проводящее по-
лупространство. Отличие законов проникновения для неоднородного и однородного полей имеет место в членах асимпто-
тического ряда, пропорциональных малому параметру во второй степени и второй производной по вертикальной коорди-
нате от напряженности внешнего магнитного поля у граничной поверхности. Библ. 25, рис. 8. 
Ключевые слова: трехмерное электромагнитное поле, формирование электромагнитного поля, точное решение 
задачи, скин-эффект. 
 

Introduction. The interaction of electromagnetic 
field with conducting medium is the subject of study in 
many technical and electrophysical applications. 
Examples include equipment for high frequency induction 
heat treatment of metals [1-3], installations for processing 
of metals under the action of high intensity 
electromagnetic field and high density currents [4-6], 
devices for electromagnetic forming or high-speed 
forming technology using pulse magnetic field [7-9]. A 
strong skin effect occurs in conducting elements of this 

equipment, in which the current and electromagnetic field 
are concentrated in a thin skin layer. The features of the 
electromagnetic field penetration into a conducting body, 
including its decrease in depth, depend not only on the 
electrical conductivity, the relative magnetic permeability 
of the medium and the field frequency, but also on the 
geometric properties of boundary surfaces and the 
character of the field distribution at the surface. Also, in 
the mentioned devices the wavelength of the 
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electromagnetic field is usually much larger than any 
characteristic dimensions of the system and the processes 
can be considered quasi-stationary, in which wave 
phenomena can be neglected.  

These two circumstances determine the main 
limitations – it is considered the formation of a quasi-
stationary electromagnetic field in systems with strong 
skin effect. Under the indicated limitations as it note in 
[10], the use of simplified approaches to the calculation of 
specific problems, and their use in the development of a 
number of numerical methods are of methodological and 
practical importance. Despite the long history of 
development, the study of the formation of 
electromagnetic field with strong skin effect remains an 
actual task. 

Approximate calculation methods are often used to 
determine the electromagnetic field with strong skin 
effect. For body of infinite conductivity the penetration 
depth is equal to zero 0, and it is sufficient to use a 
mathematical model in which the tangential component of 
the electric field intensity and the normal component of 
the magnetic field intensity are equal to zero at the 
surface of the conducting body [11, 12]. The finite 
penetration depth is taken into account in approximate 
mathematical models using the concept of the impedance 
boundary condition formulated by M. Leontovich [13]. It 
is assumed that locally the electromagnetic field 
penetrates into a metal body in the same way as a uniform 
field penetrates into a conducting half-space. The local 
values of the electromagnetic field at the interface 
correspond to the model body with perfect conductivity. 

Based on the perturbation method, it became 
possible to calculate the fields inside and outside of 
conductors with a curved surface [14]. Using integral 
equations for curved surfaces, the solution of the problem 
in the second-order approximation was obtained in [15]. 
The expansion in a power series in a small parameter 
proportional to the depth of field penetration includes the 
Leontovich condition as a first-order approximation. The 
field penetration depth for such conductors dependents on 
the average surface curvature [16]. For curved 
conductors, first- and second-order corrections to the field 
distribution corresponding to the diffusion of uniform 
field into conducting half-space are found in [17]. 

The concept of surface impedance makes it possible 
to use it in modeling problems of electrodynamics, taking 
into account the geometric and physical properties of real 
boundary surfaces. Detailed results of research in this 
direction are given in a number of reviews. For example, 
in [18] the experience of many years of research on the 
application of the impedance approach in mathematical 
modeling is systematized. The article describes the types 
of structures for which methods of theoretical 
determination of the values of surface impedances are 
known. The generalized boundary conditions for the 
analytical determination of the electromagnetic field 
characteristics at the interface between media with two-
dimensional inhomogeneities are analyzed in [19]. A 
comprehensive analysis of studies of the skin effect in 
problems of electrodynamics is presented in the book [10] 
where, among other things, the systematic method for 
constructing boundary conditions of any order based on a 

perturbation approach is considered, general approaches 
to the numerical methods application are formulated such 
as the boundary integral equations method, the finite 
element method, and the finite difference method, and 
also specific examples of calculations are presented. 

In most of the cited papers, mathematical models of 
the diffusion of non-uniform electromagnetic field are 
limited of a small penetration depth value or insignificant 
field non-uniformity at the body surface. The exact 
solution of the problem of the diffusion of non-uniform 
field into conducting half-space is presented in [17] for 
the specific case of a field created by a thin rectilinear 
conductor with a current directed parallel to the interface 
between the media. The exact solution made it possible to 
justify the limitations under which the impedance 
boundary condition is valid for the considered non-
uniform field. 

In [20], we obtained a complete analytical solution 
to the problem of the penetration of a three-dimensional 
quasi-stationary electromagnetic field created by external 
sources in the form of current contours of arbitrary 
configuration located near conducting half-space. There 
are no restrictions on field non-uniformity in the obtained 
solution. For the same mathematical model, an analytical 
solution is found for the electromagnetic field also in the 
dielectric half-space [21]. The exact solution made it 
possible to obtain some justified results of the 
electromagnetic field formation. In particular, the main 
property is that in a conducting half-space the current 
density and electric field intensity do not contain 
components perpendicular to the boundary surface for any 
system of initial currents and arbitrary dependence of 
currents on time. In addition, in a short report, it is noted 
as a general property that a non-uniform electromagnetic 
field is decreased in a conducting medium faster than a 
uniform field [22]. Analytical expressions are also 
obtained for the field intensities at the interface between 
the media, consequence of which is the generalization of 
the Leontovich approximate impedance boundary 
condition to the case of penetration of a non-uniform 
electromagnetic field into conducting medium [23]. The 
cited works contain separate parts of the problem of non-
uniform field penetration into a conducting medium and 
do not sufficiently represent the solution of the problem 
for an arbitrary three-dimensional quasi-stationary 
electromagnetic field and for any properties of the media. 

The purpose of this work is to generalize the results 
of studying the penetration of a three-dimensional non-
uniform electromagnetic field into conducting half-space, 
which unlike many well-known studies, is based on exact 
analytical solution of the problem for an external field 
created by sources in the form of an arbitrary system of 
contours with alternating currents without restrictions on 
the properties of the media and the field frequency. The 
following objectives are to achieve the aim: substantiation 
of the consequence that a non-uniform electromagnetic 
field decreases in depth always faster than an uniform 
field; investigation of the distribution of a non-uniform 
electromagnetic field at the interface between dielectric 
and conductive media; estimation of the influence of field 
non-uniformity on its distribution in the skin layer in the 
case of strong skin effect. 
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Mathematical model and analytical solution of 
the three-dimensional problem. The present work 
differs from most of the previous studies in that it is based 
on a complete analytical solution of the three-dimensional 
problem of the electromagnetic field in an enough general 
formulation [20, 21] and this allows to obtain a number of 
substantiated general consequences. Note that numerical 
methods, which also make it possible not to limit the 
penetration depth, presuppose a specific formulation of 
problems, and conclusions usually do not go beyond the 
performed calculations. 

Mathematical model for a single contour with 
current. The analytical solution is obtained for the linear 
problem of conjugation at a plane interface between 
dielectric and conducting media of the three-dimensional 
quasi-stationary field. The solution satisfies Maxwell's 
equations and boundary conditions including the equality 
of the normal components of the conduction current 
density in a conducting medium and the displacement 
current density in a dielectric medium. It is based on the 
well-known analytical solution of the problem for an 
emitting current dipole near the interface. A closed 
contour l located in a nonconducting nonmagnetic 
medium with a relative dielectric permittivity e, without 
loss of generality, was represented by a serial system of 

dipoles with a constant initial current 0I  along the 

contour. A conducting body is modeled as a half-space 
with electrical conductivity  and relative magnetic 
permeability , in which eddy currents are induced. 

The element of the external current contour is shown 
in Fig. 1 as a segment of curve in the upper half-space 
z > 0. The position of the field source point on the contour 
M relative to the observation point Q is determined by 
vector r. The axis z  is oriented perpendicular to the 
interface surface in the direction of the single vector ez. 
For an arbitrary spatial contour, the unit tangent vector to 
the contour t = t|| + t has nonzero projections onto the 
vertical direction t = (tez)ez and onto the interface 
between the media t|| = t – (tez)ez. 

 
Fig. 1. Element of arbitrary spatial contour l with current 0I  

located near conducting half-space 
 

For the system under consideration all 
characteristics of the electromagnetic field in conducting 
and dielectric media are found in the form of expressions 
for the complex-value amplitudes of the vector and scalar 
potentials, the intensities of the electric and magnetic 
fields. (Complex-value amplitudes we will mark with a 
dot over the corresponding symbols). Since the linear 

problem is considered, it can easily be extended to the 
general case of an arbitrary external field created by the 
corresponding system of current contours and to an 
arbitrary dependence of currents on time I0(t) using the 
Fourier transform. 

Electromagnetic field in conducting half-space. The 
expression for electric intensity in conducting half-space 
at point Q(,,z) is the following [20] 
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where  is cyclic frequency, i is imaginary unit, 0 is 
permeability of vacuum. Here the local cylindrical 
coordinates (,,z) with its unit basis vectors (e, e, ez) 
are used (Fig. 2). The center of the coordinate system is 
located at point M0 intersection of the vertical axis with 
the interface. The angle  is defined relative to the axis 
directed along the unit vector e|| = t||/|t|||. The values of 
local coordinates depend on the position of the source 
point M during integration along the contour. 

The functions T1(,,z) and T2(,,z) in (1) are as 
follows 
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where 22 pq   , 0ip   is propagation 

constant, w() =  + q/, J0() and J1() are Bessel 
functions of the first kind of zero and first orders. Since 
the decrease of the field with respect to depth is 
considered, the functions that depend on the coordinate z 
are distinguished by a separate factor in (2). 

 
Fig. 2. Geometric parameters for determining the values of the 

electromagnetic field intensities at the point Q(,,z) in 
conducting half-space z < 0 

 

The expression for the magnetic field intensity iH  

in conducting half-space follows from the Maxwell 

equation HE 
0i  

    



























l

zzzi dl
z

T

z

TTI 21
||

1
||

00 sin
4 





eeteeetH


 .(3) 

As follows from (1), the projection of the electric 
field intensity to the direction perpendicular to the plane 
interface between the media is always equal to zero 

0 zi eE . On the other hand, in this medium all 
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components of the magnetic field intensity in the general 
case can have nonzero values. 

To study other general features of the electromagnetic 
field formation associated with the penetration of non-
uniform field into conducting half-space, it is advisable to 
introduce dimensionless parameters, whose values are due 
to the form of expressions (2). In this case, we use 

dimensionless integration variable  0     

and take into account that 
δ

z
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here the parameter Sr2   is proportional to the 

ratio of the penetration depth  to the distance rS from the 
field source at a point M on the contour to the body 
surface at a point Q0 (Fig 2). The denominator w1() in 
the integrands (4) is written as 
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Expressions (1) and (3) describe the penetration of 
the electromagnetic field of arbitrary contour with current 
into conducting half-space and in the general case they 
differ from approximate description of the penetration of 
uniform field. Both the values of the intensity of the 
electric and magnetic fields on the boundary surface z = 0, 
and the law of their decrease depending on the coordinate 
z are differed. Usually, in approximate models, the initial 
value is the tangential component of the magnetic field 

intensity H  at the boundary, the local value of which 

for a body of arbitrary shape is found from the solution of 
the external problem under the assumption of the perfect 
skin effect 0 [11]. The local value on the body surface 

H  is taken as the value of the uniform field. Its 

penetration into conducting half-space is described by the 

known distribution of the electric iE  and magnetic iH  

intensities: pz
i

pz
i ee 


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  HHEE  ,  [24]. The field 

vectors are related by the Leontovich approximate 

impedance boundary condition    HeE   z , where 

the surface impedance  0i  in this case 

connects the values of the field vectors not only at the 
interface between dielectric and conducting media 

 HE  , , but also in the entire conducting half-space 

ii HE  , . In the general case of non-uniform 

electromagnetic field penetration, expressions (1) and (3) 
show the difference both from the values of the electric 

E  and magnetic H  intensities at the boundary surface 

with perfect skin effect, and the law of their decrease 
depending on the coordinate z. 

Electromagnetic field in dielectric half-space. The 

expressions for electric eE  and magnetic eH  intensities 

in dielectric half-space where the current contour is 
located are determined by single function Ge [21] 
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where function Ge using dimensionless values are 
determined by following improper integral 
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The geometric quantities included in expressions 
(7) – (9) are shown in Fig. 3. The elements tdl of the 
initial contour and t1dl of the mirror reflection contour 
relative to the interface are located at the points M and M1 
respectively. Projections of tangent vectors onto the 
vertical axis are equal in absolute value and opposite in 
their direction (t1z = – tz), and the projections t|| and t1|| 
onto the plane of interface between media are equal in 
their lengths and directions t1|| = t||, i.e. t = t|| + tz, t1 = t1|| + 
+ t1z = t|| – tz. Vectors r = (zM – z)ez +  and r1 = (zM1 – z)ez + 
+  = – (zM + z)ez +  (the vector  is the projection of 
vector r or vector r1 onto interface) determine positions of 
points M and M1 relative to the observation point Q. The 
angle 1 shows the orientation of the vector r1 relative to 

the vertical axis. The parameter  11 2r   is 

connected with distance r1 between points M1 and Q. 

 
Fig. 3. Location the contour element tdl and its mirror reflection 

t1dl relative to the observation point Q 
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The first and second terms in (7) and (8) describe the 
solution of the problem for perfect skin-effect when 0 
[20]. At a value of the penetration depth other than zero 
the impact of electro-physical properties of the medium is 
taken into account by the third term. 

The electromagnetic field (7) and (8) at an arbitrary 
point of the dielectric half-space is created by all sources, 
including the current of the initial contour, eddy currents 
in conducting medium, sources of magnetization of the 
medium and electric charges at the interface between the 
media. We can say that this total field decreases from the 
value at the interface during its diffusion into conducting 
body. The presence of the third term in (7) and (8) 
determines the difference between the tangential 
components of the field intensities on the surface from 

their values  HE  , , which correspond to the field in the 

approximate model of the perfect skin effect. 
General feature of decrease of non-uniform 

electromagnetic field in the conducting half-space. The 
availability of the exact solution to the general problem 
allows, first of all, to analyze the features of the 
penetration of non-uniform field into a conducting half-
space without restrictions on the values of the electro-
physical parameters and the field frequency. 

As it follows from (2) and (4), the distribution of any 
component of the electric and magnetic field intensities in 
the skin-layer, depending on the coordinate z, is 
associated with exponential function K(z/,) (5) in the 

integrands. The factor   21 i  in the exponent 

affects to the field decrease law. If the influence of the 

second term   2i  is absent, it corresponds to the 

decrease law of the uniform field. Since 

   11Re
2









 i , the decrease of the non-

uniform electromagnetic field created by the current 
contour is always faster than that of the uniform field. 
Taking into account the principle of superposition, this 
conclusion will be valid for any system of initial closed 
contours and therefore is valid in the general case of 
arbitrary external field. 

Thus, faster decrease of non-uniform 
electromagnetic field as compared to uniform field is 
general feature of the electromagnetic field formation at 
its diffusion into conducting half-space. A qualitative 
explanation of the found feature can be based on the 
analysis of the inhomogeneous field formation under the 
action of «standard» external sources and it is the subject 
of additional research. 

Let us consider the influence of the parameter  on 
the field penetration law, that is, the effect of the distance 
between the external field sources and the body surface in 
comparison with the penetration depth (at  = 1). The 
parameter  also characterizes the field non-uniformity, 
since the closer the current contour is to the surface, the 
more non-uniform field is at its surface. This is reflected 
in the influence of the parameter  on the dependences of 
the functions f1(z/,,) and f2(z/,,) with respect to 
coordinate z in (4). 

Let, for example, the sources of the external field are 
remote at a considerable distance from the surface of a 
conducting body and, accordingly, for all points of the 
contour <<1. In this case, in (4), due to the presence of 
the exponential function exp(–cos/), the value of the 
integrands turns out to be insignificant when cos > . 
That is, the value of improper integrals (4) at small values 
 is mainly determined by the behavior of the integrand 
near the lower limit of integration  = 0. This means that 
when integrating in (4), the influence of the factor 

  21 i  will slightly differ from the case when 

this factor is equal to one. Therefore, if <<1, then the 
decrease in the field from its local value on the surface at 
the point Q0 will be close to the decrease in the uniform 
field. 

If the parameter  is not small the influence of the 

factor   21 i  is much more. In this case, the 

elements of the contour as a source of the external field 
are located closer to the interface between the media and 
the decrease of the electromagnetic field will occur 
according to a different law with larger decrease rate in 
depth. 

A specific example when the penetration depth 

  02  is comparable to the dimensions of the 

contour illustrates the general conclusion of three-
dimensional field decrease. An additional argument for 
the validity of the conclusion can also be a comparison of 
the results of calculating the decrease of non-uniform 
electromagnetic field, performed using the obtained 
analytical expressions and using the numerical method in 
the Comsol package [22]. 

The calculation was performed for a circular contour 
located in a plane perpendicular to flat interface, as shown 
in Fig. 4. The radius of the contour is R = 0,05 m, the 
minimum distance from the contour to the interface is 
h0 = 0,02 m, the electrophysical properties of the medium 
are as follows:  = 1,  = 105 1/(m). In contrast to the 
analytical method, in the numerical calculation, the 
current contour was selected in the form of a conductor 
with a square cross-section 2r2r at r = 0,004 m. In the 
numerical calculation, the problem was solved in a 
limited area, the dimensions of which significantly exceed 
the contour radius. Different values of the field 
penetration depth and, accordingly, the values of the ratio 

/R or   02max hm    are obtained by 

choosing the field frequency. 

 
Fig. 4. Electromagnetic system with a circular current contour 

located in the plane perpendicular to the interface 
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The results of calculating the electric and magnetic 
field intensities are shown in Fig. 5,a-c. In the upper 
group of figures, arrows show the distribution of the 
induced current density ji = Ei in the vertical plane 
passing through the center of the circular contour. The 
results of these calculations, performed by the numerical 
method, confirm the theoretical conclusion about the zero 
value of the vertical components of the electric field 
intensity and current density. The curves in the figures 
below show the change with depth for component of the 
amplitude of the electric field intensity, normalized to the 

value of the field at the surface  0*  zEEE xxx
 . 

The coordinate value in conducting medium is normalized 

to the value of the field penetration depth. The dotted 
lines show the decrease of the uniform field. Solid lines 
correspond to analytical calculations, individual points 
marked with squares correspond to the results of 
numerical calculations. The bottom row of figures shows 
dependences for different components of the magnetic field 
intensity, also normalized to the amplitude values of the 
corresponding field components at the surface of the 
conductive medium  0*  zHHH ikikk

 , where k = x, y, z. 

Note, in contrast to the electric field, the vertical 
component of the magnetic field intensity in conducting 
half-space in this case of a three-dimensional field is not 
equal to zero. 

 

 
Fig. 5. Depth distribution of the normalized amplitudes for the components of the electric *

xE  and magnetic *
xH , *

yH , *
zH  

intensities in conducting half-space for non-uniform three-dimensional field created by the specific system in the form of circular 
current contour near the flat interface between media 

 

It is seen that with a decrease in the penetration depth 
 in comparison with the radius of the contour R or with the 
distance h0, the penetration law both electric and magnetic 
fields approaches the slowest decrease of uniform field. 
Immediately below the contour at x = 0, y = 0, where the 
contour section most closely approaches to the interface, 
decrease is more pronounced than at x = R. This is 
explained by the fact that at x = R, the contour sections 
are at greater distance from the surface, and therefore the 
non-uniformity of the external field distribution near the 
surface is less than in the case when x = 0. 

Dashed curve in Fig. 5,b for vertical component of 
magnetic field has a conditional meaning, since in the 
approximate model of the diffusion of uniform field the 
component of the magnetic field intensity normal to the 
surface is equal to zero. However, for diffusion of a three-
dimensional non-uniform field, this component is 
nonzero. 

For the considered system on the plane x = 0, the 

field component xH  is equal to zero, and therefore in 

Fig. 5,c the corresponding curve is missing. 
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Penetration of non-uniform electromagnetic field 
in the case of strong skin effect. The general feature of 
faster decay of non-uniform field in comparison with 
uniform one is the basis for analyzing the decrease of the 
field, when introduced parameter is small  < 1 and not 
necessarily going to zero. This parameter depends on the 
position of the source point M on the contour. This 
section deals with arbitrary electromagnetic systems for 
which the maximum value m = max() of all  is a small 
parameter. 

Comparison of decay of non-uniform and uniform 
fields. To confirm that the penetration law of non-uniform 
field is approached the exponential decrease of uniform 
field, let us compare the functions f1(z/,,) and 
f2(z/,,) in (4), taking into account the factor 

  21 i  in the exponent with the same functions 

f10(z/,,) and f20(z/,,), but provided that the factor is 
taken to be equal to one, which corresponds to decrease of 
uniform field. For the electric field intensity, these 
functions are related to the directions of the current 
parallel and perpendicular to the interface. For the 
magnetic field intensity, the corresponding functions that 
follow from (3) can be similarly considered. 

Let us first consider changes in functions f1(0,,) 
and f2(0,,) at the surface (z = 0). The dependences of the 
modules of these functions on the value /h = tan at 
 = 1 and various values of the small parameter  < 1 are 
shown in Fig. 6. 

 
Fig. 6. Changes in the functions |f1(0,,)| and |f2(0,,)| at the 

interface depending on the relative distance /h = tan for small 
values of the parameter  < 1 and  = 1 

 
It can be seen that sections with different directions 

of the current are involved in different ways in the 
creation of the tangential component of the electric field 
intensity on the body surface. The horizontal component 
of the current gives the largest value of integrand in (1) 
just below the current element. The largest value from the 
vertical component of the current is realized at a certain 
distance from the point M0 in the radial direction at a 
distance  approximately equal to the height at which the 
contour element is located. 

The curves in Fig. 7,a show values of the modules of 
functions dependents on the depth for direction of the 
current parallel to the interface at  = 1: solid lines 
correspond to the function |f1(z/,,|, dashed lines 
correspond to the function |f10(z/,,|. The results are 
given for the case  = 0 where the function |f1(0,,| at the 

surface takes the largest values. The curves for different 
values of the small parameter  are obtained by choosing 
the corresponding values of the height h above the surface 
on which the contour element is located. A comparison 
confirms the statement about the insignificant influence of 
the functional dependence of the integration variable in 
the exponential function. The quantitative values of the 

deviation that arise when the factor   21 i  is 

replaced by one are shown in Fig. 7,b in the form of a 
relative deviation value 1 = ||f1| – |f10||/|f1|. 

 
Fig. 7. Comparison of the decrease of non-uniform and uniform 
fields for functions f1 and f10 corresponding to the direction of 

the current parallel to the interface between media for the small 
value of the parameter  < 1 and  = 1 

 
Similar results are also valid for the term of the 

integrand in the contour integral (1) related to the vertical 
direction of the current. Comparative values of functions 
f2(z/,,), f20(z/,,) and the values of their relative 
deviation 2 = ||f2| - |f20||/|f2| are shown in Fig. 8. In this case, 
the observation point is selected near the maximum value 
of the function |f2(0,,)| at the interface at  = h, ( = /4). 

 
Fig. 8. Comparison of the decrease of non-uniform and uniform 
fields for functions f2 and f20 corresponding to the direction of 
the current perpendicular to the interface for the small value of 

the parameter  < 1 and  = 1 
 

From the presented calculations, it can be seen that 
with decrease in the value of the small parameter , the 
error from replacing the factor in the exponential by one 
rapidly decreases, approximately inversely proportional to 
the 2. Similar results turn out to be valid for the magnetic 
field intensity. 

The following conclusion can be made from this. 
With a strong skin effect, when the maximum value of the 
introduced parameter m is small, the electromagnetic 
field decrease from the local value on the surface, 
approximately according to the penetration law of 
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uniform field. Since the penetration law depends on the 
value of the parameter m, the concept of strong skin 
effect can be extended from the point of view of the 
possibility of using the penetration law of uniform field. 
The skin effect can be considered strong when the product 
of the relative magnetic permeability and the penetration 
depth µ is small not only with respect to the 
characteristic dimensions of conducting body, but also of 
the entire electromagnetic system, including the distance 
from the surface of body to the external sources. 

Taking into account the boundary conditions 
(   ieieiez HHHHEE  ,,:0 |||||||| ) and the 

expressions for the field intensities in the dielectric half-
space (7) – (9), the approximate expressions in the 
conducting half-space take the following form 
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where the components of the magnetic field intensities at 
the dielectric surface are as follows 
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The expressions (10) – (12) presented as two factors 
are approximate only in relation to the dependence on the 
coordinate z. On the surface at z = 0, they take into 
account the non-uniformity of the electromagnetic field 
and give the values of the field intensities without 
restrictions on the value of the parameter  = 1. 

The next two questions are related to the introduced 
extended concept of the strong skin effect. First, what is the 
difference at the interface between the intensities of the 

non-uniform field  0ziE  and  0ziH  in (10) – (12) 

from the values of the tangent components E  and H  

for the model of the perfect skin effect. Second, what is 
the error of replacing the penetration law of non-uniform 
field with the penetration law of uniform one, depending 
on the value of the small parameter. 

Non-uniform electromagnetic field at the interface 
between media. For small values 1, at an arbitrary point 
of the dielectric half-space, including at the interface 
between the media the expressions (10) and (11) can be 
simplified. In this case the function Ge can be represented 
by an asymptotic series, limited by a certain number of 
terms N [25] 
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where an() are the Taylor series coefficients of the 

function   





0
11

n

n
n iaw  . 

The use of asymptotic expansion (13) for field 
intensities (1), (3) or (7), (8) on the surface made it 
possible to find approximate values of the field at the 
boundary and to establish some general features of the 
field formation. Finding the corresponding relations is 
given in [23]. 

Firstly, in the found analytical expressions, the 
electromagnetic field on the surface is determined only by 
the known distribution of the field of external sources at 
the boundary 
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here, it is taken into account pir  11 ; it is 

accepted a-1 = –1; 0H  is the magnetic field intensity of 

external sources in dielectric medium at the interface. If 
the external field is created by a single current contour, 
then 
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From (14) – (16) it can be seen that the 
electromagnetic field is determined not only by its local 
value on the surface, which corresponds to n = 0. It also 
depends on the derivatives of the field with respect to the 
coordinate, that is, on the non-uniformity of the external 
field at the interface between the media. In this respect, 
the electromagnetic field at the boundary differs from the 

values E  and H  in the perfect skin effect model. The 

difference is associated with the field of eddy currents in 
conducting medium, the distribution law of which 
depends on the degree of remoteness of the external field 
sources in comparison with the penetration depth. The 
component of the magnetic field intensity normal to the 
boundary, which is absent in the perfect model, is 
determined only by the derivatives with respect to the 
coordinate z of the same external field component. 

Secondly, the found expressions (14) – (16) made it 
possible to generalize the Leontovich impedance 
boundary condition for the case of diffusion of non-
uniform electromagnetic field into conducting medium. 
The impedance boundary condition, which establishes the 
relation between the tangential components of the electric 
and magnetic field intensities at the interface, for 
individual terms of the asymptotic series is the following 

    nznnn aa ||||1 HeE    .              (18) 

It follows from (18) that the Leontovich approximate 
impedance boundary condition is valid only for the first 
two terms of the asymptotic series. The deviation takes 
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place starting from n = 2 (2), for which (18) gives 

   2||
2

2|| 211 HeE   z . The requirement for 

fulfilling assumption in the approximate impedance 
boundary condition that the normal field component is 
equal to zero is more stringent. It holds only for the zero 
term of the asymptotic series and it is violated already at 1. 

Influence of the small parameter value to the field 
penetration low with the strong skin effect. Let us perform 
a quantitative assessment of the influence of the small 
parameter value  to the change in the penetration law of 
the electromagnetic field into conducting half-space. The 
analysis is carried out based on the expansion of 
expressions (4) in the asymptotic series, where for small  
the Taylor series expansion of the factor in the integrand 
is used near the zero value of the integration variable . 

Unlike (9), for the asymptotic expansion of improper 
integrals (4), it is necessary to use not only the expansion 

in a power series of the function  1
1
w , but also the 

expansion of the exponential function (5). Taking into 
account, except one, next term in the expansion of the 

factor   21 i , approximate expression for 

exponential function (5) will be as follows 
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where it is considered that the ratio z/ does not exceed 
several units. 

Taking into account (19), the functions f1(z/,,) 
and f2(z/,,) in (4) can be approximately represented as 
following (below we use the combined designation 
f1,2(z/,,) for the two functions) 

   

























 








,0,

2

1
2,,02exp,, 2,122,12,1 k

z
if

z
i

z
f ,(20) 

where k1,2(0,,) differ from f1,2(0,,) by the presence of 

factor  2i  in the integrands (4). 
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k1,2(0,,) and f1,2(0,,) can be represented as expansion in 
asymptotic series, similarly Ge to (15) for z = 0 
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To obtain the final expressions, it is sufficient to use 
expressions (14) – (16) of the expansion into asymptotic 
series of the electric and magnetic intensities at the 
interface. In this case, for the additional term containing 

k1,2(0,,), the same expressions will be valid, in which 
the values of the degree of functions and derivatives 
change from n to n+2. Besides, since in (20) only one 
additional term of the series is taken into account, the 
functions k1,2(0,,) must also contain only one term of 
the expansion. With the same exactness the functions 
f1,2(0,,) can contain no more than three terms of the 
series. As a result, using the value of the field intensity at 
the interface (14), the expression in which the difference 
from unity for the factor in the exponential function is 
taken into account will be as following 
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Similarly, using the values of the components of the 
magnetic field intensities at the boundary (15), (16) and 
the expansion of the exponential function (19), we can 
also write approximate expressions for the decrease of the 
non-uniform magnetic field in the conducting half-space 
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For the components of the electromagnetic field 

ii EE  ||  and ||iH , directed parallel to the interface 

between the media, the deviation from the penetration law 
of uniform field takes place for the terms of series 
proportional to the second-order derivative of the field 
intensities at the surface. The deviation for the component 
of the magnetic field intensity perpendicular to the 

surface iH  occurs for the term of series proportional to 

the third-order derivative. This is due to the absence of 
local value of the field at the surface in (18) which 
already contains a common factor proportional to the 
value . 

As follows from (23) – (25), the deviation of the 
penetration law of non-uniform electromagnetic field in 
conducting medium from the penetration law of uniform 
one appears when the small parameter is taken into 
account in the second power 2. This conclusion is in 
agreement with the calculation results shown in Fig. 7,b 
and 8,b. In addition, it follows from (23) – (25) that the 
maximum value of the modulus of the additional term 
takes place at the maximum value of the function 

      zzpzpz exp2exp  , which is realized at –z = . 

This value also agrees well with the ratio z/ in Fig. 7,b 
and 8,b when the deviation reaches its maximum value. 

As can be seen from (23) – (25), for all components 
of the electromagnetic field with strong skin effect, the 
deviation of the penetration law of non-uniform 
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electromagnetic field from the penetration law of uniform 
one is determined by the value of the same parameter 
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Estimate (26) takes into account only the difference 
between the field penetration laws. The total relative error 
associated with the use of the model of perfect skin effect 
will be much more, since this model also does not take 
into account the field non-uniformity at the interface. 

Conclusions. 
The exact analytical solution of the three-

dimensional problem of quasi-stationary electromagnetic 
field in the system «current contour of arbitrary 
configuration – conducting half-space» allows to obtain 
some general substantiated consequences of the field 
formation. These consequences, considered in the paper, 
are as follows. 

1. It has been established that non-uniform 
electromagnetic field, upon penetration into conducting 
half-space, decreases in depth always faster than uniform 
field. Quantitative characteristic of the field decrease rate 
can be considered the parameter proportional to the ratio 
of the penetration depth of uniform field to the distance 
from external sources to the interface between dialectic 
and conducting media. With decrease in this parameter, 
the field is decreased slower, tending to the slowest 
decrease of uniform electromagnetic field, when the 
quantitative parameter tends to zero. 

2. From the point of view of the possibility of using the 
penetration law of uniform field the concept of a strong 
skin effect can be extended. The skin effect can be 
considered strong when the penetration depth is small not 
only with respect to the characteristic dimensions of 
conducting body, but also of the entire electromagnetic 
system, including the distance from the surface of body to 
the external sources. In this case, the introduced 
quantitative parameter is small. 

3. In the case of strong skin effect in its extended 
interpretation the non-uniformity of the electromagnetic 
field affects both the values of the field intensities at the 
interface between the media and the field penetration law 
into conducting body. The effect of field non-uniformity 
at the boundary surface is expressed in the fact that the 
electric and magnetic field intensities, in addition to local 
values, contain derivatives of the external sources field 
with respect to the coordinate perpendicular to the 
interface. The found analytical expressions for the field 
intensities in the form of asymptotic series make it 
possible to generalize the Leontovich impedance 
boundary condition to the diffusion of non-uniform field 
into conducting half-space. The mathematical model of 
the uniform field penetration into conducting medium to 
study the penetration of the non-uniform electromagnetic 
field is valid up to the introduced small parameter in the 
first degree. At the same time, the use of exponential 
decrease of the uniform field from its value at the 
boundary, determined with regard for its non-uniformity, 
is valid up to the small parameter already in the second 
power. The same limitation is valid when using the 
Leontovich approximate impedance boundary condition. 

Further theoretical work is possible in the direction 
of a more general description of the non-uniform field of 
sources, not being limited to external sources in the form 
of current contours. The development of the theory is also 
possible in the direction of the formulation of boundary 
value problems, taking into account the known, as it 
shown, field at the interface between media. The found 
features of the field formation can make a practical 
importance when simulating processes, for example, by 
integral methods in devices with three-dimensional 
electromagnetic fields. The peculiarities of the 
distribution of the non-uniform electromagnetic field on 
the surface and in the skin layer of conducting body imply 
the study of its influence on the energy and force 
characteristics, the distribution of the Poynting vector and 
the Maxwell stress tensor. 
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