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OVERHEAD POWER LINES MAGNETIC FIELD REDUCING IN MULTI-STORY 
BUILDING BY ACTIVE SHIELDING MEANS 
 
Aim. Reducing of magnetic flux density of magnetic field in multi-storey building, generated by overhead power lines to the 
sanitary standards level by active shielding means. The tasks of the work are the synthesis, Computer simulation and experimental 
research of three-circuits system of active shielding, which includes three shielding coils. Methodology. When synthesizing the 
system of active shielding of magnetic field, are determined their number, configuration, spatial arrangement and of shielding coils 
as well as the shielding coils currents and resulting magnetic flux density value in the shielding space. The synthesis is based on 
the multi-criteria game decision, in which the payoff vector is calculated on the basis on quasi-stationary approximation solutions 
of the Maxwell equations. The game decision is based on the stochastic particles multiswarm optimization algorithms. Results. 
Computer simulation and experimental research of three-circuit system of active shielding of magnetic field, generated by 
overhead power lines with phase conductors triangle arrangements in multi-storey building are given. The possibility of initial 
magnetic flux density level reducing in multi-storey building to the sanitary standards level is shown. Originality. For the first time 
to reducing of magnetic flux density of magnetic field in multi-storey building the synthesis, Computer simulation and experimental 
research of three-circuit system of active shielding of magnetic field generated by single-circuit overhead power line with phase 
conductors triangular arrangements carried out. Practical value. Practical recommendations from the point of view of the 
practical implementation on reasonable choice of the spatial arrangement of three shielding coils of three-circuit system of active 
shielding of the magnetic field generated by single-circuit overhead power line with phase conductors triangular arrangements in 
multi-storey building are given. References 41, figures 15. 
Key words: overhead power lines with phase conductors triangle arrangements, magnetic field, system of active shielding, 
Computer simulation, experimental research. 
 
Цель. Снижение уровня индукции магнитного поля внутри многоэтажного дома, генерируемого одноцепной воздушной 
линией электропередачи до уровня санитарных норм. Задачами работы являются синтез, компьютерное моделирование 
и экспериментальные исследования трехконтурной системы активного экранирования, содержащей три экранирующие 
обмотки. Методология. При синтезе системы определены – количество, конфигурация, пространственное 
расположение экранирующих обмоток, а также токи в экранирующих обмотках и результирующие значения индукции 
магнитного поля в пространстве экранирования. Синтез трехконтурной системы активного экранирования основан на 
решении многокритериальной стохастической игры, в которой векторный выигрыш вычисляется на основании решений 
уравнений Максвелла в квазистационарном приближении. Решение игры находится на основе алгоритмов 
стохастической мультиагентной оптимизации мультироем частиц. Результаты. Приводятся результаты 
компьютерного моделирования и экспериментальных исследований трехконтурной системы активного экранирования 
магнитного поля внутри многоэтажного дома, генерируемого воздушной линией электропередачи. Показана 
возможность снижения уровня индукции исходного магнитного поля внутри многоэтажного дома до уровня 
санитарных норм. Оригинальность. Впервые для снижения уровня индукции магнитного поля внутри многоэтажного 
дома до уровня санитарных норм, проведены синтез, компьютерное моделирование и экспериментальные исследования 
трехконтурной системы активного экранирования магнитного поля, генерируемого одноцепной воздушной линией 
электропередачи с треугольным подвесом проводов. Практическая ценность. Приводятся практические рекомендации 
по обоснованному выбору, с точки зрения практической реализации, пространственного расположения трех 
экранирующих обмоток трехконтурной системы активного экранирования магнитного поля, от генерируемого внутри 
многоэтажного дома магнитного поля одноконтурной воздушной линии электропередачи с треугольным подвесом 
проводов. Библ. 41, рис. 15. 
Key words: воздушные линии электропередачи с треугольным расположением фазных проводов, магнитное поле, 
система активного экранирования, компьютерное моделирование, экспериментальное исследование. 
 

Introduction. Overhead power lines often run near 
residential buildings. These lines generate a power 
frequency magnetic field (MF) in residential buildings, 
the level of which often exceeds sanitary standards [1, 2]. 
To normalize the level of the magnetic field, it is most 
effective and economically feasible to use active 
screening methods [3, 4]. In an active shielding system 
(SAS), a compensating magnetic field is generated using 
shielding coils [5-18]. 

The number, spatial arrangement of shielding 
windings and their ampere turns are determined by the 
type of power transmission line and currents in the 
conductors of power transmission lines, as well as the 
spatial location of the shielding zone and its size, as well 
as the level of induction, which must be provided by 
means of active shielding. The simplest system is the 

single-circuit system, which contains only one – single 
shielding coil. With the help of such a system, it is 
possible to effectively screen a weakly polarized 
magnetic field, in which the space-time characteristic 
has the form of a highly elongated ellipse, which 
approaches a straight line. 

However, the greatest difficulty for active shielding 
is a highly polarized magnetic field. The shape of the 
space-time characteristic of such a magnetic field 
approaches a circle. In particular, such a magnetic field is 
generated by a single-circuit power line with a triangle-
shaped arrangement of wires. Active shielding of such a 
magnetic field requires at least two shielding coils. 

In Ukraine, in the zones of old buildings, there are 
mainly five-storey residential buildings. In this case, 
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single-circuit 110 kV power lines with wires in the 
shape of a triangle pass most often near these residential 
buildings. 

Most of the research focuses on reducing the 
magnetic field in one-story houses or even in a separate 
room at home [5-19]. Therefore, an urgent task is to reduce 
the magnetic field in the entire multi-storey building. 

The aim of the work is reduce the level of magnetic 
flux density of the magnetic field in multi-storey building 
generated by single-circuit overhead power line by active 
shielding means. The tasks of the work are the synthesis, 
Computer simulation and experimental research of three-
circuits system of active shielding.  

Statement of the research problem. Let us 
consider the synthesis of system of active shielding of a 
magnetic field in a multi-story building. The magnetic 
field in a multi-story building is generated by a single-
circuit overhead power transmission line with a spatial 
arrangement of wires in the shape of a triangle. In Fig. 1 
are shown the layout of an overhead transmission line, a 
multi-story building, in which it is necessary to reduce 
the level of the initial magnetic field to sanitary 
standards of Ukraine. 
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Fig. 1. The location of 110 kV overhead power line, 

three shielding coils and shielding space in multi-story building 
 

Let us introducing the vector of unknown parameters 
the components of which are the number and coordinates 
of shielding coils as well as parameters of the regulator 
[19-23] and vector of uncertainty parameters [24-28]. 
Then the calculate of vector of unknown parameters of 
system of active shielding and of vector of uncertainty 
parameters in the form of a solution of multi-criteria 
game. The components vector payoff in this game is 
levels of magnetic flux density at points of the shielding 
space. These components are nonlinear functions of the 
vectors of unknown parameters and uncertainty 
parameters and are calculated on basis of Maxwell 
equations quasi-stationary approximation solutions [3]. 
First player is vector of unknown parameters and its 
strategy is minimization of vector payoff. Second player 
is vector of uncertainty parameters and this strategy is 
maximization of the same vector payoff [29]. 

Therefore, the solution of multi-criteria game is 
calculated from the condition of minimum value of vector 
payoff for the vector of unknown parameters but the 
maximum value of vector payoff for the vector 
uncertainty parameters. This technique corresponds to the 

standard worst-case robust systems synthesis approach 
[27, 28]. 

To find multi-criterion game solution from Pareto-
optimal set solutions taking into account binary 
preference relations [29-32] used particle multiswarm 
optimization algorithm [33-41], in which swarms number 
equal number of vector payoff components. 

Computer simulation results. Consider the result 
of synthesis of SAS of MF with circular space-time 
characteristic created by three-phase single-circuit 
overhead power line 110 kV with phase conductors 
triangular arrangements in a multi-story building, as it is 
shown in Fig. 1. In order to reduce the level of magnetic 
flux density of the initial magnetic field throughout the 
entire multi-story building to the level of sanitary 
standards of Ukraine, in this case, it is necessary to use 
three shielding windings, as it is shown in Fig. 1. 

In Fig. 2 are shown lines of equal level of module of 
the resultant magnetic flux density with the system of 
active shielding is on. As follows from this figure, the 
level of magnetic flux density of the resulting magnetic 
field in the entire space of a multi-storey building does 
not exceed the level of 0.5 μT, which corresponds to the 
sanitary standards of Ukraine. Note that in the center of 
the multi-storey building under consideration, the level of 
magnetic flux density of the resulting magnetic field does 
not exceed 0.2 μT. Therefore, in this part of the space, 
using an system of active shielding, the induction level of 
magnetic flux density of the initial magnetic field can be 
reduced by more than 20 times. 
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Fig. 2. Isolines of the resultant magnetic flux density 

with the system of active shielding is on 
 

In Fig. 3 are shown the space-time characteristics of 
the magnetic flux density vector of magnetic field 
generated by: 1) overhead power line; 2) all three shielding 
coils and 3) the resultant magnetic field with the system of 
active shielding. 

In Fig. 4 are shown the dependences of the of levels 
of the magnetic flux density of the initial magnetic field 
and the resultant magnetic field when the system of active 
shielding is on as a function of the distance from the 
extreme conductor of the power line. As can be seen from 
this figure, the system of active shielding is reduced the 
level of the magnetic flux density of the initial magnetic 
field by more 10 times from 4.25 μT to 0.4 μT and 
therefore the shielding factor is more 10. 
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Fig. 3. Comparison between space-time characteristics of 
magnetic flux density without and with system of active 
shielding with all three shielding coils and only all three 

shielding coils 
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Fig. 4. Comparison of magnetic flux density level between with 

and without system of active shielding 
 

Now let us consider the shielding efficiency of the 
original magnetic field when only one single firs shielding 
coil is used at optimal values of the regulator of this coil. 

In Fig. 5 are shown the space-time characteristics of 
the magnetic flux density vector of magnetic field 
generated by: 1) overhead power line; 2) only one single 
firs shielding coils and 3) the resultant magnetic field with 
the only one single firs shielding coils. 

In Fig. 6 are shown the dependences of the of levels 
of the magnetic flux density of the initial magnetic field 
and the resultant magnetic field when the only single first 
shielding coil of system of active shielding is on as a 
function of the distance from the extreme conductor of the 
power line. 

As can be seen from this figure, with only one single 
first shielding coil of the active shielding system, the level of 
magnetic flux density of the initial magnetic field is 
increased in 1.19 times in the considered space from 4.25 μT 
to the level of 5 μT due to overcompensation. 

Now let us consider the shielding efficiency of the 
original magnetic field when only one single second 
shielding coil is used at optimal values of the regulator of 
this coil. In Fig. 7 are shown the space-time characteristics 
of the magnetic flux density vector of magnetic field 

generated by: 1) overhead power line; 2) only one single 
second shielding coils and 3) the resultant magnetic field 
with the only one single second shielding coils. 
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Fig. 5. Comparison between space-time characteristics of 
magnetic flux density without and with system of active 

shielding with only single first shielding coil 
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Fig. 6. Comparison of magnetic flux density between with and 

without system of active shielding with only single first 
shielding coil 
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Fig. 7. Comparison between space-time characteristics 

of magnetic flux density without and with system of active 
shielding with only single second shielding coil and only single 

second shielding coil 
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In Fig. 8 are shown the dependences of the of levels 
of the magnetic flux density of the initial magnetic field 
and the resultant magnetic field when the only single 
second shielding coil of system of active shielding is on 
as a function of the distance from the extreme conductor 
of the power line. As can be seen from this figure, with 
only one single second shielding coil of the active 
shielding system, the level of magnetic flux density of the 
initial magnetic field is increased in 1.28 times in the 
considered space from 4.25 μT to the level of 5.4 μT due 
to overcompensation. 

15 16 17 18 19 20 21 22 23 24 25
1.5

2

2.5

3

3.5

4

4.5

5

5.5
Field before (red) and after (blue) optimization 

1 

2 

x, m 

B
z,

 µ
T

 

Field before (1) and after (2) optimization 

 
Fig. 8. Comparison of magnetic flux density between with and 

without system of active shielding with only single second 
shielding coil 

 
Now let us consider the shielding efficiency of the 

original magnetic field when only one single third shielding 
coil is used at optimal values of the regulator of this coil. 
In Fig. 9 are shown the space-time characteristics of the 
magnetic flux density vector of magnetic field generated by: 
1) overhead power line; 2) only one single third shielding 
coils and 3) the resultant magnetic field with the only one 
single third shielding coils. 
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Fig. 9. Comparison between space-time characteristics of 
magnetic flux density without and with system of active 

shielding with only single third shielding coil and only single 
third shielding coil 

 

In Fig. 10 are shown the dependences of the of 
levels of the magnetic flux density of the initial magnetic 

field and the resultant magnetic field when the only single 
third shielding coil of system of active shielding is on as a 
function of the distance from the extreme conductor of the 
power line. 
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Fig. 10. Comparison of magnetic flux density between with and 

without system of active shielding with only single third 
shielding coil 

 
As can be seen from this figure, with only one third of 

the winding of the active shielding system, the level of the 
magnetic flux density of the initial magnetic field is 
reduced in 1.35 times in the considered space from 4.25 μT 
to the level of 3.25 μT. 

Now let us consider the shielding efficiency of the 
original magnetic field when only both first and second 
shielding coils are used at optimal values of the regulator of 
these coils. In Fig. 11 are shown the space-time characteristics 
of the magnetic flux density vector of magnetic field 
generated by: 1) overhead power line; 2) only both first and 
second shielding coils and 3) the resultant magnetic field 
with the only both first and second shielding coils. 
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Fig. 11. Comparison between space-time characteristics of 
magnetic flux density without and with system of active 

shielding with only both first and second shielding coils and 
only both first and second shielding coils 

 

In Fig. 12 are shown the dependences of the of 
levels of the magnetic flux density of the initial magnetic 
field and the resultant magnetic field when the only both 
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first and second shielding coils of system of active 
shielding are on as a function of the distance from the 
extreme conductor of the power line. 
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Fig. 12. Comparison of magnetic flux density between with and 

without system of active shielding with only both first and 
second shielding coils 

 
As can be seen from this figure, with only both first 

and second shielding coils of the active shielding system, 
the level of magnetic flux density of the initial magnetic 
field is reduced in 1.35 times in the considered space from 
4.25 μT to the level of 3.25 μT. 

Experimental research. For experimental research, 
a laboratory model of a three-coil system of active 
shielding of a magnetic field generated by an air power 
line in a multi-storey building has been developed. 

In Fig. 13 is shown a general view of the layout of 
the synthesized laboratory model of a three-coil system of 
active shielding. 

 

 
Fig. 13. Picture of three shielding coils spatial arrangement 

of system of active shielding laboratory model 
 

To adjust the model of the system of active 
shielding, the space-time characteristic of the magnetic 
field was experimentally measured using two measuring 
windings and oscilloscope [31, 32]. 

As an example, in Fig. 14 are shown oscillograms of 
the output signals of the sensors (a) and experimentally 
measured space-time characteristics (b) of the output 
magnetic field. 

In Fig. 15 are shown comparison of magnetic flux 
density between measurements (solid lines) and 
simulations (indicated by +) with and without system of 
active shielding. 
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Fig. 14. Oscillograms of the output signals of the both sensors 
(a) and experimentally measured space-time characteristics (b) 

of the magnetic field 
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Fig. 15. Comparison of magnetic flux density between 

measurements (solid lines) and simulations (+) with and without 
system of active shielding 

 
Note that from a comparison of the spatio-temporal 

characteristics shown in Fig. 9 and Fig. 11 follows that the 
space-time characteristic of the resulting magnetic field 
remaining after the operation of the only first and second 
shielding coil is a highly elongated ellipse. The major axis 
elongated ellipse spatio-temporal characteristics practically 
coincides with the space-time characteristics of the 
magnetic field generated by only one third shielding coil. 

As a result, with the help of the third shielding coil, 
the major axis of the space-time characteristic of the 
resulting magnetic field, which remains after the 
operation of the only first and second shielding coils, 
is compensated effectively. Due to such compensation,    
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a sufficiently high shielding factor of 10.75 is provided in 
the system with the simultaneous operation of all three 
shielding coils. 

As can be seen from Fig. 15 the experimental value 
of the induction level does not exceed 0.5 μT. The 
deviation of the experimental value of the induction level 
from the calculated one is due, firstly, to the deviation of 
the geometric dimensions of the shielding windings from 
their calculated values, and, secondly, to the inaccuracy of 
adjusting the parameters of the regulators. 

Conclusions. 
1. For the first time, to reduce the initial magnetic field 

in multi-storey building generated by a high-voltage 
power line by active shielding means, the three-circuits 
system of active shielding which contains three shielding 
coils was designed. 

2. As a result of computer simulation of the 
synthesized system, it is shown that with the help of the 
synthesized system, the level of magnetic flux density of 
the magnetic field in a multi-storey building generated by 
a high-voltage power line is reduced by more than 10 
times. At the same time, the level of magnetic flux density 
of the resulting magnetic field in multi-storey building 
does not exceed the sanitary standards of Ukraine. 

3. To set up a laboratory model of a three-circuit 
system of active shielding, a computer simulation of the 
effectiveness of shielding the initial magnetic field in a 
multi-storey building using separate windings was carried 
out. It is shown, that when only one coil is in operation, 
the level of the magnetic flux density increases by a factor 
of 1.2–1.5 due to overcompensation. When only two 
windings work, it is not possible to ensure the sanitary 
standards of Ukraine in terms of the magnetic flux density 
level in the multi-storey building. 

4. As the results of experimental studies of a laboratory 
model of a three-circuit system of active shielding of a 
magnetic field in a multi-storey building generated by a 
high-voltage power line are presented, it has been 
established that the shielding factor is more than 4 units. 
The deviation of the experimental value of the level of 
magnetic flux density from the calculated one is due, 
firstly, to the deviation of the geometric dimensions of the 
shielding windings from their calculated values, and, 
secondly, to the inaccuracy of adjusting the parameters of 
the regulators. 
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