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OVERHEAD POWER LINES MAGNETIC FIELD REDUCING IN MULTI-STORY
BUILDING BY ACTIVE SHIELDING MEANS

Aim. Reducing of magnetic flux density of magnetic field in multi-storey building, generated by overhead power lines to the
sanitary standards level by active shielding means. The tasks of the work are the synthesis, Computer simulation and experimental
research of three-circuits system of active shielding, which includes three shielding coils. Methodology. When synthesizing the
system of active shielding of magnetic field, are determined their number, configuration, spatial arrangement and of shielding coils
as well as the shielding coils currents and resulting magnetic flux density value in the shielding space. The synthesis is based on
the multi-criteria game decision, in which the payoff vector is calculated on the basis on quasi-stationary approximation solutions
of the Maxwell equations. The game decision is based on the stochastic particles multiswarm optimization algorithms. Results.
Computer simulation and experimental research of three-circuit system of active shielding of magnetic field, generated by
overhead power lines with phase conductors triangle arrangements in multi-storey building are given. The possibility of initial
magnetic flux density level reducing in multi-storey building to the sanitary standards level is shown. Originality. For the first time
to reducing of magnetic flux density of magnetic field in multi-storey building the synthesis, Computer simulation and experimental
research of three-circuit system of active shielding of magnetic field generated by single-circuit overhead power line with phase
conductors triangular arrangements carried out. Practical value. Practical recommendations from the point of view of the
practical implementation on reasonable choice of the spatial arrangement of three shielding coils of three-circuit system of active
shielding of the magnetic field generated by single-circuit overhead power line with phase conductors triangular arrangements in
multi-storey building are given. References 41, figures 15.

Key words: overhead power lines with phase conductors triangle arrangements, magnetic field, system of active shielding,
computer simulation, experimental research.

Lenw. Cruswcenue ypogHs uHOYKYUU MASHUTNHO20 NOJIA 8HYMPU MHO20IMANCHO20 00MA, 2eHEPUPYEMO20 OOHOYENHOU 8030VULHOU
JUHUEN 2NeKmponepedayu 00 YPOsHI CAHUMAPHBIX HOPM. 3adauamu pabomul AEIAIOMCS CUHMES, KOMNbIOMEPHOE MOOETUPOBAHUE
U IKCNepUMEeHMAaIbHble UCCAeO08AHUA MPEXKOHMYPHOU CUCHEMbL AKMUBHO20 IKPAHUPOBAHUSL, COOepIHcawyeli mpu dIKpanupyowue
obmomku. Memoodonozua. Ilpu cummese cucmemvl OnpeoeieHbl — KOMUYECMBO, KOHGUeypayus, npOCMpaHCmMeeHHOe
PACRONONHCEHUE IKDAHUPYIOWUX 0OMOMOK, d MAKdICe MOKU 8 IKDAHUPYIOWUX 0OMOMKAX U pe3yIbmupyiowue 3HaveHus UHOYKyuu
MASHUMHO20 NOJA 8 npocmpancmee IKpanuposanus. Cunmes mpexKoOHMYPHOU CUCeEMbl AKMUBHO20 SKPAHUPOBAHUSA OCHOBAH Hd
PeuleHUY MHO2OKPUMEPUATbHOU CIOXACMUYECKOU USPbl, 8 KOMOPOU 8eKMOPHDBIL 6bIUSPbIUL BLIYUCTAENCSA HA OCHOBAHUU PeuleHUll
ypaenenuti Makceenna 6 KEAUCMAYUOHAPHOM npubaudcenuu. Pewienue uepvl Haxooumcsi Ha OCHOGe —AN2OPUMMO8
CMOXACIMUYECKOU  MYJIbMUASEHMHOU — OnmMuMusayuu  myavmupoem yacmuy. Pesynomameol. [Ipusodsamcs  pesyibmamol
KOMIBIOMEPHOLO MOOETUPOBAHUS U IKCNEPUMEHMANLHBIX UCCACO08AHUU MPEXKOHMYPHOU CUCTEMbl AKMUBHO20 IKPAHUPOBAHUS
MACHUMHO20 NOJA  BHYMPU MHOL0IMANCHO20 OOMA, 2EHEPUPYEMO20 6030VUIHOU JuHuel snekmponepeoauu. Ilokasana
B03MOXNCHOCHb  CHUJICEHU YPOBHA UHOYKYUU UCXOOHO20 MASHUMHO20 RO HYMPU MHO20IMANCHO20 00MA 00 YPOBHS
canumapuvix Hopm. Opuzunansnocms. Bnepesvie 01 cHudiceHUs: YPOBHA UHOYKYUU MASHUMHO20 NOJIS 6HYMPU MHO20IMANCHO2O
00Ma 00 YPOBHSL CAHUMAPHBIX HOPM, NPOBEOEHbl CUHNIE3, KOMNbIOMEPHOE MOOEAUPOBAHUE U IKCNEPUMEHMANbHBLE UCCLE00BAHUS
MPEXKOHMYPHOU CUCEMbl AKMUBHO20 SKPAHUPOBAHUS MASHUMHO20 NOJsl, 2€HEePUPYeMo20 OOHOUENHOU 6030VWIHOU JIUHUEl
9neKmponepeoayu ¢ mpey2oibHbiM n008ecom nposodos. Ilpakmuueckan yennocms. Ipusooames npaxmuyeckue peKomeHoayuu
no 000CHOBAHHOMY 6bIOOPY, C MOYKU 3PEHUs NPAKMUYECKOU pedru3ayuu, NpPOCMPAHCMEEHHO20 DPACHONONCEHUS mpex
IKPAHUPYIOWUX OOMOMOK MPEXKOHMYPHOU CUCEMbl AKMUBHO20 IKDAHUPOBAHUS MASHUMHO20 NOJISL, ON 2EHEPUPYEMO20 GHYMPU
MHO209MANCHO20 00MA MASHUMHO20 NOJ OOHOKOHMYPHOU 6030YWHOU JTUHUU NEKMPOnepeoduu ¢ mpeyeOoibHblM No08ecoM
nposooos. bubi. 41, puc. 15.

Key words: Bo3aynmIHbIe JIMHHH 3JIEKTPONEpeJadd ¢ TPeYroJbHbIM PacmojioxkenueM (a3HLIX MPOBOIOB, MATHHTHOE MoOJe,
CHCTEMAa AKTHBHOT'0 YKPAHHPOBAHNS, KOMIILIOTEPHOE MOJeIHPOBAHUE, JKCIIEPUMEHTAIbHOE HCCJIeI0BAHHE.

Introduction. Overhead power lines often run near
residential buildings. These lines generate a power
frequency magnetic field (MF) in residential buildings,
the level of which often exceeds sanitary standards [1, 2].
To normalize the level of the magnetic field, it is most
effective and economically feasible to use active
screening methods [3, 4]. In an active shielding system
(SAS), a compensating magnetic field is generated using
shielding coils [5-18].

The number, spatial arrangement of shielding
windings and their ampere turns are determined by the
type of power transmission line and currents in the
conductors of power transmission lines, as well as the
spatial location of the shielding zone and its size, as well
as the level of induction, which must be provided by
means of active shielding. The simplest system is the

single-circuit system, which contains only one — single
shielding coil. With the help of such a system, it is
possible to effectively screen a weakly polarized
magnetic field, in which the space-time characteristic
has the form of a highly elongated ellipse, which
approaches a straight line.

However, the greatest difficulty for active shielding
is a highly polarized magnetic field. The shape of the
space-time characteristic of such a magnetic field
approaches a circle. In particular, such a magnetic field is
generated by a single-circuit power line with a triangle-
shaped arrangement of wires. Active shielding of such a
magnetic field requires at least two shielding coils.

In Ukraine, in the zones of old buildings, there are
mainly five-storey residential buildings. In this case,
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single-circuit 110 kV power lines with wires in the
shape of a triangle pass most often near these residential
buildings.

Most of the research focuses on reducing the
magnetic field in one-story houses or even in a separate
room at home [5-19]. Therefore, an urgent task is to reduce
the magnetic field in the entire multi-storey building.

The aim of the work is reduce the level of magnetic
flux density of the magnetic field in multi-storey building
generated by single-circuit overhead power line by active
shielding means. The tasks of the work are the synthesis,
computer simulation and experimental research of three-
circuits system of active shielding.

Statement of the research problem. Let us
consider the synthesis of system of active shielding of a
magnetic field in a multi-story building. The magnetic
field in a multi-story building is generated by a single-
circuit overhead power transmission line with a spatial
arrangement of wires in the shape of a triangle. In Fig. 1
are shown the layout of an overhead transmission line, a
multi-story building, in which it is necessary to reduce
the level of the initial magnetic field to sanitary
standards of Ukraine.

Arrangement of active elements

Fig. 1. The location of 110 kV overhead power line,
three shielding coils and shielding space in multi-story building

Let us introducing the vector of unknown parameters
the components of which are the number and coordinates
of shielding coils as well as parameters of the regulator
[19-23] and vector of uncertainty parameters [24-28].
Then the calculate of vector of unknown parameters of
system of active shielding and of vector of uncertainty
parameters in the form of a solution of multi-criteria
game. The components vector payoff in this game is
levels of magnetic flux density at points of the shielding
space. These components are nonlinear functions of the
vectors of unknown parameters and uncertainty
parameters and are calculated on basis of Maxwell
equations quasi-stationary approximation solutions [3].
First player is vector of unknown parameters and its
strategy is minimization of vector payoff. Second player
is vector of uncertainty parameters and this strategy is
maximization of the same vector payoff [29].

Therefore, the solution of multi-criteria game is
calculated from the condition of minimum value of vector
payoff for the vector of unknown parameters but the
maximum value of vector payoff for the wvector
uncertainty parameters. This technique corresponds to the

standard worst-case robust systems synthesis approach
[27,28].

To find multi-criterion game solution from Pareto-
optimal set solutions taking into account binary
preference relations [29-32] used particle multiswarm
optimization algorithm [33-41], in which swarms number
equal number of vector payoff components.

Computer simulation results. Consider the result
of synthesis of SAS of MF with circular space-time
characteristic created by three-phase single-circuit
overhead power line 110 kV with phase conductors
triangular arrangements in a multi-story building, as it is
shown in Fig. 1. In order to reduce the level of magnetic
flux density of the initial magnetic field throughout the
entire multi-story building to the level of sanitary
standards of Ukraine, in this case, it is necessary to use
three shielding windings, as it is shown in Fig. 1.

In Fig. 2 are shown lines of equal level of module of
the resultant magnetic flux density with the system of
active shielding is on. As follows from this figure, the
level of magnetic flux density of the resulting magnetic
field in the entire space of a multi-storey building does
not exceed the level of 0.5 uT, which corresponds to the
sanitary standards of Ukraine. Note that in the center of
the multi-storey building under consideration, the level of
magnetic flux density of the resulting magnetic field does
not exceed 0.2 uT. Therefore, in this part of the space,
using an system of active shielding, the induction level of
magnetic flux density of the initial magnetic field can be
reduced by more than 20 times.

Field after optimization |B|, uT

Fig. 2. Isolines of the resultant magnetic flux density
with the system of active shielding is on

In Fig. 3 are shown the space-time characteristics of
the magnetic flux density vector of magnetic field
generated by: 1) overhead power line; 2) all three shielding
coils and 3) the resultant magnetic field with the system of
active shielding.

In Fig. 4 are shown the dependences of the of levels
of the magnetic flux density of the initial magnetic field
and the resultant magnetic field when the system of active
shielding is on as a function of the distance from the
extreme conductor of the power line. As can be seen from
this figure, the system of active shielding is reduced the
level of the magnetic flux density of the initial magnetic
field by more 10 times from 4.25 uT to 0.4 uT and
therefore the shielding factor is more 10.
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Field at point x=16 m, z=7 m

B,, uT

By, uT

Fig. 3. Comparison between space-time characteristics of
magnetic flux density without and with system of active
shielding with all three shielding coils and only all three

shielding coils

Field before (1) and after (2) optimization

Fig. 4. Comparison of magnetic flux density level between with
and without system of active shielding

Now let us consider the shielding efficiency of the
original magnetic field when only one single firs shielding
coil is used at optimal values of the regulator of this coil.

In Fig. 5 are shown the space-time characteristics of
the magnetic flux density vector of magnetic field
generated by: 1) overhead power line; 2) only one single
firs shielding coils and 3) the resultant magnetic field with
the only one single firs shielding coils.

In Fig. 6 are shown the dependences of the of levels
of the magnetic flux density of the initial magnetic field
and the resultant magnetic field when the only single first
shielding coil of system of active shielding is on as a
function of the distance from the extreme conductor of the
power line.

As can be seen from this figure, with only one single
first shielding coil of the active shielding system, the level of
magnetic flux density of the initial magnetic field is
increased in 1.19 times in the considered space from 4.25 pT
to the level of 5 uT due to overcompensation.

Now let us consider the shielding efficiency of the
original magnetic field when only one single second
shielding coil is used at optimal values of the regulator of
this coil. In Fig. 7 are shown the space-time characteristics
of the magnetic flux density vector of magnetic field

generated by: 1) overhead power line; 2) only one single
second shielding coils and 3) the resultant magnetic field
with the only one single second shielding coils.

Field at point x=16 m, z=7 m

B, uT

Fig. 5. Comparison between space-time characteristics of
magnetic flux density without and with system of active
shielding with only single first shielding coil

Fig. 6. Comparison of magnetic flux density between with and
without system of active shielding with only single first

shielding coil
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Fig. 7. Comparison between space-time characteristics
of magnetic flux density without and with system of active
shielding with only single second shielding coil and only single
second shielding coil
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In Fig. 8 are shown the dependences of the of levels
of the magnetic flux density of the initial magnetic field
and the resultant magnetic field when the only single
second shielding coil of system of active shielding is on
as a function of the distance from the extreme conductor
of the power line. As can be seen from this figure, with
only one single second shielding coil of the active
shielding system, the level of magnetic flux density of the
initial magnetic field is increased in 1.28 times in the
considered space from 4.25 puT to the level of 5.4 puT due
to overcompensation.

Field before (1) and after (2) optimization

5.5

5

4.5

4

3.5

B, uT

3

Fig. 8. Comparison of magnetic flux density between with and
without system of active shielding with only single second
shielding coil

Now let us consider the shielding efficiency of the
original magnetic field when only one single third shielding
coil is used at optimal values of the regulator of this coil.
In Fig. 9 are shown the space-time characteristics of the
magnetic flux density vector of magnetic field generated by:
1) overhead power line; 2) only one single third shielding
coils and 3) the resultant magnetic field with the only one
single third shielding coils.

Field at point x=16 m, z=7 m

Fig. 9. Comparison between space-time characteristics of
magnetic flux density without and with system of active
shielding with only single third shielding coil and only single
third shielding coil

In Fig. 10 are shown the dependences of the of

levels of the magnetic flux density of the initial magnetic

field and the resultant magnetic field when the only single
third shielding coil of system of active shielding is on as a
function of the distance from the extreme conductor of the
power line.

Field before (1) and after (2) optimization

Fig. 10. Comparison of magnetic flux density between with and
without system of active shielding with only single third
shielding coil

As can be seen from this figure, with only one third of
the winding of the active shielding system, the level of the
magnetic flux density of the initial magnetic field is
reduced in 1.35 times in the considered space from 4.25 pT
to the level of 3.25 puT.

Now let us consider the shielding efficiency of the
original magnetic field when only both first and second
shielding coils are used at optimal values of the regulator of
these coils. In Fig. 11 are shown the space-time characteristics
of the magnetic flux density vector of magnetic field
generated by: 1) overhead power line; 2) only both first and
second shielding coils and 3) the resultant magnetic field
with the only both first and second shielding coils.

Field at point x=16 m, z=7 m

B,, uT

Fig. 11. Comparison between space-time characteristics of
magnetic flux density without and with system of active
shielding with only both first and second shielding coils and
only both first and second shielding coils

In Fig. 12 are shown the dependences of the of
levels of the magnetic flux density of the initial magnetic
field and the resultant magnetic field when the only both
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first and second shielding coils of system of active
shielding are on as a function of the distance from the
extreme conductor of the power line.

Field before (1) and after (2) optimization
4.5

4

Fig. 12. Comparison of magnetic flux density between with and
without system of active shielding with only both first and
second shielding coils

As can be seen from this figure, with only both first
and second shielding coils of the active shielding system,
the level of magnetic flux density of the initial magnetic
field is reduced in 1.35 times in the considered space from
4.25 uT to the level of 3.25 puT.

Experimental research. For experimental research,
a laboratory model of a three-coil system of active
shielding of a magnetic field generated by an air power
line in a multi-storey building has been developed.

In Fig. 13 is shown a general view of the layout of
the synthesized laboratory model of a three-coil system of
active shielding.

of system of active shielding laboratory model

To adjust the model of the system of active
shielding, the space-time characteristic of the magnetic
field was experimentally measured using two measuring
windings and oscilloscope [31, 32].

As an example, in Fig. 14 are shown oscillograms of
the output signals of the sensors (a) and experimentally
measured space-time characteristics (b) of the output
magnetic field.

In Fig. 15 are shown comparison of magnetic flux
density between measurements (solid lines) and
simulations (indicated by +) with and without system of
active shielding.

Fig. 14. Oscillograms of the output signals of the both sensors
(a) and experimentally measured space-time characteristics (b)
of the magnetic field

Field before (1) and after (2) optimization

1Bl uT

TR 3T 47
X, m
Fig. 15. Comparison of magnetic flux density between
measurements (solid lines) and simulations (+) with and without
system of active shielding

Note that from a comparison of the spatio-temporal
characteristics shown in Fig. 9 and Fig. 11 follows that the
space-time characteristic of the resulting magnetic field
remaining after the operation of the only first and second
shielding coil is a highly elongated ellipse. The major axis
elongated ellipse spatio-temporal characteristics practically
coincides with the space-time characteristics of the
magnetic field generated by only one third shielding coil.

As a result, with the help of the third shielding coil,
the major axis of the space-time characteristic of the
resulting magnetic field, which remains after the
operation of the only first and second shielding coils,
is compensated effectively. Due to such compensation,
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a sufficiently high shielding factor of 10.75 is provided in
the system with the simultaneous operation of all three
shielding coils.

As can be seen from Fig. 15 the experimental value
of the induction level does not exceed 0.5 uT. The
deviation of the experimental value of the induction level
from the calculated one is due, firstly, to the deviation of
the geometric dimensions of the shielding windings from
their calculated values, and, secondly, to the inaccuracy of
adjusting the parameters of the regulators.

Conclusions.

1. For the first time, to reduce the initial magnetic field
in multi-storey building generated by a high-voltage
power line by active shielding means, the three-circuits
system of active shielding which contains three shielding
coils was designed.

2.As a result of computer simulation of the
synthesized system, it is shown that with the help of the
synthesized system, the level of magnetic flux density of
the magnetic field in a multi-storey building generated by
a high-voltage power line is reduced by more than 10
times. At the same time, the level of magnetic flux density
of the resulting magnetic field in multi-storey building
does not exceed the sanitary standards of Ukraine.

3.To set up a laboratory model of a three-circuit
system of active shielding, a computer simulation of the
effectiveness of shielding the initial magnetic field in a
multi-storey building using separate windings was carried
out. It is shown, that when only one coil is in operation,
the level of the magnetic flux density increases by a factor
of 1.2-1.5 due to overcompensation. When only two
windings work, it is not possible to ensure the sanitary
standards of Ukraine in terms of the magnetic flux density
level in the multi-storey building.

4. As the results of experimental studies of a laboratory
model of a three-circuit system of active shielding of a
magnetic field in a multi-storey building generated by a
high-voltage power line are presented, it has been
established that the shielding factor is more than 4 units.
The deviation of the experimental value of the level of
magnetic flux density from the calculated one is due,
firstly, to the deviation of the geometric dimensions of the
shielding windings from their calculated values, and,
secondly, to the inaccuracy of adjusting the parameters of
the regulators.
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