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SLIME MOULD ALGORITHM FOR PRACTICAL OPTIMAL POWER FLOW
SOLUTIONS INCORPORATING STOCHASTIC WIND POWER AND STATIC VAR
COMPENSATOR DEVICE

Purpose. This paper proposes the application procedure of a new metaheuristic technique in a practical electrical power system to
solve optimal power flow problems, this technique namely the slime mould algorithm (SMA) which is inspired by the swarming
behavior and morphology of slime mould in nature. This study aims to test and verify the effectiveness of the proposed algorithm
to get good solutions for optimal power flow problems by incorporating stochastic wind power generation and static VAR
compensators devices. In this context, different cases are considered in order to minimize the total generation cost, reduction of
active power losses as well as improving voltage profile. Methodology. The objective function of our problem is considered to be
the minimum the total costs of conventional power generation and stochastic wind power generation with satisfying the power
system constraints. The stochastic wind power function considers the penalty cost due to the underestimation and the reserve cost
due to the overestimation of available wind power. In this work, the function of Weibull probability density is used to model and
characterize the distributions of wind speed. Practical value. The proposed algorithm was examined on the IEEE-30 bus system
and a large Algerian electrical test system with 114 buses. In the cases with the objective is to minimize the conventional power
generation, the achieved results in both of the testing power systems showed that the slime mould algorithm performs better than
other existing optimization techniques. Additionally, the achieved results with incorporating the wind power and static VAR
compensator devices illustrate the effectiveness and performances of the proposed algorithm compared to the ant lion optimizer
algorithm in terms of convergence to the global optimal solution. References 38, tables 6, figures 9.

Key words: optimal power flow, slime mould algorithm, stochastic wind power generation, static VAR compensators.

Mema. Y cmammi Rpononyemocs npouedypa 3ACMOCY8AHHs HOG020 MEMAeEPiCMINecKo20 Memoody 6 peanbHil
eleKmpoenepzemuy il cucmemi 0 po3eé’A3aHHA 3a40ay ONMUMATILHO20 HOMOKY eHepzii, a came anzopummy ciu308oi yeini,
AKUWI 3ACHOBAHUIL HA ROBEOTHYI POI10 | MOPEhoN02iT c1u30601 Yyeini ¢ npupooi. /lane 00CHi0HCEHHA CRPAMOBAHE HA MECMYBAHHA
i nepegipky eghekmugnocmi 3anponoHOBAHO20 AN2OPUMMY 018 OMPUMAHHA XOPOWUX PIieHb 0713 nPOOIeM ONMUMATILHO2O
HOMOKY HOMYMHCHOCHI WIAXOM 6KTIOUEHHA NPUCMPOI8 CIMOXACMUYHOIO 6imPOo6oi 2enepayii i cmamuuHux KOMREHcamopis
VAR. Y 36'a3ky 3 yum, po3enaoaiomoca pizui 6unaoku, uwioo mMinimizyeamu 3azanvHy éapmicmos zenepayii, 3HUIUMU empamu
aKkmuenoi nomyscnocmi i noninwumu npogine nanpyzu. Memoodonozia. B axkocmi uyinvoeoi Qyukuyii 3aeédannsn
PO32NA0AEmMbCA MIHIMANbHA CYKYRHA éapmicmb mpaouuiinol zenepauii enexmpoenepzii i cmoxacmuyunoi eimpoeoi zenepauii
npu 3a0060nenni oomedxncens enepzocucmemu. Cmoxacmuuna Qynkyia emepeii eimpy epaxogyc eeauvunu wmpagie uepes
HeO0OoUinKy i pe3epeni sumpamu uepes 3a6UlieHy OYiHKy 00cmynnoi eimpogoi enepeii. Y oaniii pooomi pynkuia winenocmi
umogipnocmi Beitbynna euxopucmogyemuvcsa 011 MOOEII08AHHA | XAPAKMEPUCMUKU PO3NO0OiNie weuoKkocmi eimpy.
Ilpakmuuna yinnicme. 3anpononosanuii anzopumm 0ye nepesipenuii na cucmemi wun IEEE-30 i eéenukuii anycupcokoi
mecmogiit enepzocucmenmi 3i 114 wuunamu. Y eunaokax, Konu mema nonazae ¢ momy, wjoo 3gecmu 00 MiHiMymy mpaouyiiine
GUPOONEHHA elleKmPOoeHepzil, 00CAZHYmI Pe3yibmamu 8 000X mMecmosux enepzocucmemax noKa3anu, wio aizopumm ciu3o08oil
ueini gpynkyionye Kpauje, Hixc inwi icuyroui memoou onmumizayii. Kpim mozo, oocazuymi pezyromamu 3 6UKOPUCIMAHHAM
eimpoeoi enepzii i cmamuunozo komnencamopa VAR intocmpyroms epexmuenicmo i npoOyKmuenicms 3anponoHoéanozo
anzopummy 6 NOPIGHAHHI 3 AJI2OPUMMOM ORMUMI3AMOPA MYPAUWIUHUX J1€8i6 3 MOUKU 30py 30idcHocmi 00 2100a1bHO20
onmumanvrozo piwmennsn. bion. 38, tadmn. 6, puc. 9.

Kniouogi cnoséa: onTuManbHUi NOTIK eHeprii, A1ropuTM CJIHM30BOI IBiTi, cTOXacTHYHA reHepauis eneprii BiTpy, cratuuni VAR
KOMIIEHCATOPH.

Introduction. In the last decade, energy developing thanks to the technological advances made in

consumption has been increased significantly especially
in developing countries. Renewable energy can be known
as green energy or clean energy is one of the best
solutions to the increasing demand problem, and it is
inexhaustible energy that comes from natural resources or
processes that are constantly replenished [1], even if their
availability depends on weather and weather conditions,
and whose exploitation causes the least possible
ecological damage, does not cause toxic waste and does
not cause damage to the environment. They are cleaner,
more environmentally friendly than fossil fuels and fissile
energies, environmentally friendly, available in large
quantities around the world.

Nowadays, the integration of renewable energy
sources — RESs (i.e., solar, wind, hydropower, etc.) into
the electrical grid is experiencing a rapid increase. Among
the various RESs, wind energy considered is one of the
most desirable sources in recent years that keeps

the field of wind generators to reduce the cost of system
installations. In addition, the application of flexible AC
transmission systems (FACTS) controllers such as static
VAR compensators (SVC) devices that considered one of
the most controllers used in the case of the high demand
for energy to maintain the magnitude of bus voltage at the
desired level, improve voltage security and minimize the
total power losses.

With the growing penetration of RESs in the power
system, the study of optimal power flow (OPF) becomes
necessary to solve power system problems or improve the
performance of this system. The OPF for the system that
includes RESs such as wind power generators is the
subject of ongoing research models nowadays. It is
necessary to confront the stochastic nature of this source
for analysis of the planning and operation of modern
power systems, in order to obtain much more precise
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results [2]. In general, the problem with wind power is the
stochastic nature of wind speed. Therefore the model
which considers the probability of the available wind
power can represent the cost of overestimating and
underestimating this power at a certain period.

Recently, OPF with stochastic wind power has
extensively been studied by more researchers. In [3]
authors proposed a Gbest-guided artificial bee colony
algorithm (GABC) to solve the OPF problem in the IEEE
30 bus system incorporating stochastic wind power. In
attempting the same problem in [4] author proposed a
modified moth swarm algorithm (MMSA) to solve the
OPF problem incorporating stochastic wind power. In this
work, three different objective functions are considered,
which are the minimize the total operating cost, reduce
the transmission power loss, and improve the voltage
profile enhancement. In another study [5] authors applied
the success history-based adaptation technique of
differential evolution algorithm to solve the OPF problem
comprises of stochastic ~wind-solar power with
conventional thermal generators under various cases. The
OPF incorporation with wind power and static
synchronous compensator STATCOM was studied in [6]
by using a modified bacteria foraging algorithm (MBFA).
The results obtained proved that MBFA efficiency and
better than the ACO algorithm for solving OPF problems
in power systems. Bird Swarm Algorithm (BSA) for
solving an OPF problem with incorporating stochastic
wind and solar PV power in the power system is studied
in [7]. The proposed approach applied in the modified
IEEE 30-bus system with objective function is to
minimize the total energy generation cost, which is the
cost of thermal-wind-solar. In [8] authors applied a
modified hybrid PSOGSA with a chaotic maps approach
to improve OPF results by incorporating stochastic wind
power and two controllers in the FACTS family such as
TCSCs and TCPSs. The proposed method is applied in
the power systems to minimize the thermal generators'
fuel cost and the wind power generating cost.

Several metaheuristic optimization algorithms were
developed and applied for the OPF solution. Some of
them are: salp swarm optimizer [9], moth swarm
algorithm [10], differential evolution [11], glowworm
swarm optimization [12], differential search algorithm
[12], moth-flame optimizer [14], stud krill herd algorithm
[15], artificial bee colony algorithm [16], symbiotic
organisms search algorithm [17], improved colliding
bodies optimization algorithm [18], firefly algorithm [19],
black-hole-based optimization approach [20], the league
championship algorithm [21, 22], multi-verse optimizer
[23], harmony search algorithm [24], earthworm
optimization algorithm [25]. Among several numbers of
the available metaheuristic algorithm, a new flexible and
efficient stochastic optimization algorithm has been
proposed to solve our problem and satisfy our imposed
conditions, this technique namely a slime mould
algorithm (SMA). SMA is based upon the oscillation
mode in nature and simulates the swarming behavior and
morphology of slime mould in foraging.

In this paper, a new flexible and efficient stochastic
optimization algorithm called slime mould algorithm
(SMA) has been proposed with the aim is solving the

OPF problem in power systems incorporating stochastic
wind power and SVC devices.

Modeling of SVC. The static VAR compensator
(SVC) device is an important member of the FACTS
controllers’ family. The importance of SVC is to maintain
the bus voltage magnitude at the desired level by
providing or absorbing reactive energy. In the power
system, SVC is modeled by shunt variable admittance.
SVC's admittance only has its imaginary part since the
SVC device's power loss is assumed to be negligible and
is given as follows:

ysve = jbsyc - (1)

The bgyc susceptance can be capacitive or inductive
to provide or absorb reactive power, respectively. In this
study, SVC is installed in the power system as a PV bus
with the objective is to regulate the voltage magnitude V
by injecting reactive power to a bus where it is connected.
The current Igyc and reactive power QOgyc absorbed or
injected by the SVC device is calculated as follow:

Isyc = jbsycVis 2)

Osvc =—Vihsyc - ©)
Optimal power flow problem formulation. The
optimal power flow problem solution aims to give the
optimum value of the objective function by adjusting the
settings of control variables. Generally, the mathematical
expression of the optimization problem with satisfying
various equality and inequality constraints may be
represented as follows:

min F' (x,u) ; “4)
Subjected to g(x,u) =0; 5)
h(x,u)s 0; (6)

where F(x, u) denotes the objective function that to be
optimized, x and u represents the vectors of the state
variables (dependent variables) and control variables
(independent variables), respectively.

Control variables. In the OPF the control variables
should be adjusted to satisfy the load flow equations. The
set of control variables can be represented by vector u as
follows:

. Fo, By Bws, - Bwsy, V6, Ve

Oc,---Ocyo T+ Inr»SVCy...SVCiysyc |
where Pg is the thermal generator active power; Py is the
wind active power; V is the generator voltage; Oc is the
reactive power injected by the shunts compensator; 7 is
the tap setting of transformers; SVC is the static VAR
compensator; NG is the number of generators; NW is the
number of wind farms; NC is the number of shunts
compensators units; N7 is the number of regulating
transformers; NSVC is the number of SVC devices.

State variables. The set of variables which describe
the electrical power state can be represented by vector x
as follows:

X = Pastack 06, Q6 »Ows, -+ Qs Ve -+ Vi »Sty 51, ()
where Pgy,q 1S the active power generation at the slack
bus; Qg is the reactive power outputs of the generators;
Ops 1s the reactive power outputs of the wind farms; V; is
the voltage magnitude at load bus; S; is the apparent
power flow; Ng is the total number of generators buses;

(7
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N; is the total number of load buses or PQ buses; , is the
total number of transmission lines.

Equality constraints. The equality constraints
represent in the power system the load flow equations of
the balanced powers and reflect the physics of the power
system. The equality constraints can be represented as
follows:

N
PG,'+PWS,‘_Pdi =VlZVJ(gU0055U +Z,/SIH5U), (9)
j=1

N
QGi +QWSI- —le_ = Vlej(gl] Sll’l5lj +Z!'/' COS5I'J') (10)
=

Inequality constraints. The inequality constraints
reflect the limiting of the power system operation. These
inequality constraints can be represented as follows:

min max ,
PG,- <Fg < PG,- ;

min max ,
st < Bys, < P
min max ,
QGi < QGi < QGi s
min max ,
szqg < Ops, 55§2wag=
min max
< < :
v < Vg, SVER

)

min max
< < :
7}vn. <Tyr, "J}JE ’

min max .
QSVC,- = QSVC,- = QSVC,- >

< max
NAERH

Objective function. In this study, the objective
function is to minimize the total generation cost (TGC)
subject to operating constraints. The objective function is
formulated as:

N NW
Fior = ZFt(Pl)+ chr(Pwr)+
i=1 i=1 (12)

NW NW
Zcp.wr (Pwr.av - Pwr )+ Zcr.wr (Pwr _Pwr.aw )
i=1 i=1

In the expression of the objective function
formulated in the (12), the first term denotes thermal
power generation cost, second, third and last term of the
objective function shows the costs of wind power,
respectively. Details of all terms are explained below.

Fuel cost of the conventional generator. The cost
function of the thermal generators as follows:

N

FI-(PI-):[Zal- +b,Pg + PG ] (13)
i=1

where Pg is the active power generated from the

available thermal generators; a;, b; and ¢; are the cost

coefficients of i-th generator.

The direct cost function for wind power. The grid
operators pay the cost of purchasing wind power from a
wind power producer based on the power purchase
agreement. This cost is termed as the direct cost and is
defined as follows [5]:

er(P Wr) = drP wrs (14)

where d, is the direct cost coefficient for the j-th wind
generator and P, is the scheduled power output.

Cost function due to the underestimation. The
underestimation situation is due when the actual wind
power is higher than the estimated value. So, the utility
operator needs to pay a penalty cost for not using the
surplus amount of available wind power [4, 5]. The
penalty cost functions due to the underestimation of
available wind power represented by (15), it can be given
as [26]:

Cp.wr(Pwr.av _Pwr): kp(Pw.av _Pwr):
Pr.()
(15)
:kp I(W_Pwr)'fw(Pw)’

P,

where C,,, is the cost associated with wind power
shortage (underestimation); P,,, is the actual available
power output; &, is the penalty cost coefficient due to
underestimation and f,(P,) represents the probability
density function (PDF).

Cost function due to the overestimation. On
contrary to the underestimation situation, the
overestimation situation is due when the actual wind
power is less than the estimated value. So, a spinning
reserve is needed for grid operators [5]. The penalty cost
function due to the overestimation of available wind
power represented by (16) as follows [27]:

Cr.wr(Pwr - Pwr.av): kr(Pwr _Pw.av):

P,

wr (16)
:kr J‘(Pwr_W)'fw(Pw)’

0

where C,,, the cost associated with wind power surplus
(overestimation) and £, is the reserve cost coefficient due
to overestimation.

Wind power model. The distribution function was
used in this work to model and characterize the
distributions of wind speed known as Weibull probability
density function (PDF) [28], and can be represented as:

flv)= f[ijk_l L,

c\¢C

an

here v is the wind speed; & and ¢ respectively the shape
factor and scale factor (m/s).

The probability density function for the continuous
portion of wind energy conversion systems (WECS)
power output random variable becomes as follows:

F ()= KL Veuin ((1 0 Wi jkl ]
C

c

, (18)

c

exp| — ( (1 +p l)vcut—in jk

where | = (Viazed — Veurin) ! Veurin 18 the ration of linear
range wind speed to cut-in wind speed; v, ;, is the wind
speed at which wind turbine starts to generate power;
Veur-of 1 the wind speed at which the wind turbine is
disconnected; Vv, is the wind speed at which the
mechanical power output will be the rated power;
p =P,/ P, is the ratio of wind power output to rated
wind power.
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The probability for the discrete portion of the WECS
power output is expressed by (19) and (20), respectively
as follows [5, 291:

1.(B)={P,=0}=1- exp(— [V;ﬂ .

¢
v k (19)
+exp —(Mj :
c
v k
fW(PW):{Pw:Pwr}:eXp _[ mC'tedj
v k (20)
—exp —[MJ :
c

Slime mould algorithm. A slime mould algorithm
(SMA) is a new stochastic optimizer technique nature-
inspired proposed in 2020 in [30]. This technique based
on the oscillation mode of slime mould in nature and
simulates the swarming behavior and morphology of
slime mould in foraging. The SMA algorithm features a
special mathematical model that uses the adaptive weight
to simulates the combination of positive and negative
feedback from the bio-oscillator-based propagation wave
that was inspired by slime mould to form the optimal
pathway to connect food. Some of the most interesting
characters in the slime mould are the unique pattern based
on the various food sources to create a venous network
connecting them at the same time. This scheme gives the
high capability of escaping from local optima solutions.
The algorithm is aroused by slime mold diffusion and
foraging behavior. In SMA, slime mould can approach
food, depending on the smell in the air. The slime mold
morphology varies, with three different forms of
contraction. The following section will explain in detail
the mathematical model for simulating the behavior of
slime mould during the foraging [30].

Approach food. The following formulas for
imitating the contraction mode is proposed to model the
behavior of slime mould to approaching food according to
the odor in the air as follow:

m: XB(I"‘F\TI;(WXA(I'—XB‘t’)F<p,
\Iﬂ%),er,

where X denotes the slime mould location; X, is the
individual emplacement with the highest odor
concentration currently found; X, and Xjp are indicated
two randomly selected individuals from the swarm;
vb is a parameter distributed in the range of [-a, a];
ve decreases linearly from 1 to 0; ¢ shows the current
iteration; W represents the slime mould weight and given
below by (24); p is the parameter given as follows:

2h

p =tanh|S(i)- DF|, (22)
where S(i) shows the fitness of X cie 1,2, .., nm
DF is the optimum fitness obtained in all iterations.

The parameter of a is given as follows:
a= arctanh(—( ! J+ 1] . (23)
max_ ¢

The expression of W define the location of slime
mould and is given as follows:

bF - S(i)

1+r-lo
g[b - wF

1-7r- log[bF;S(l) + 1], others,
bF F

- W

+ 1), condition;

W (Smelllndex(i))= (24)

where condition denotes that S(i) is ranked first half of the
population; r represents the random value distributed in
the range of [0, 1]; bF and wF are represented the optimal
and worst fitness value obtained in the current iterative
process, respectively; Smelllndex represents the sequence
of fitness values sorted as:

Smelllndex = Sort(S). (25)

Wrap food. This portion mathematically simulates
the contraction mode in the slime mould venous tissue
structure while searching. In this context, the higher the
food concentration reached by the vein, the stronger the
bio-oscillator-generated wave, the quicker the cytoplasm
flows and the thicker the vein. The following
mathematical  formula represents updating the
emplacement of slime mould:

rand -(ub—Ib)+Ib, rand < z;
Xp(t +1Tb~(W~XA(t)—XB(t)),r<p;
%-m,er,

where /b and ub denote the lower and upper limits of the
search range, respectively; rand denotes the random value
distributed in the range of in [0, 1].

Grabble food. Slime mould is primarily dependent
on the propagation wave to change the cytoplasmic flow
in the veins, so they appear to be in a better concentration
of food. Slime mould can approach food faster when the
concentration and quality of food are high, while if the
food concentration is lower, approach it more slowly, thus
increasing the efficiency of slime mould in selecting the
optimal source of food.

X - (26)

In the SMA process, the value of the parameter vh
oscillates randomly in the interval between [—a, a] and
progressively approaches zero as the iterations increase.
The value of vc oscillates randomly in the interval
between [—1, 1] and finally tends to be zero.

The pseudo-code of the SMA to solve the OPF
problem is shown in Algorithm 1.

Algorithm 1 Pseudo-code SMA algorithm
Read the system data (bus data, line data, and generator data);
Initialize the parameters of search agents, size of the
population, the maximum number of iterations, the number and
position of the control variables;
Initialize the position of the slime mould X; using (21);
While iteration < Max _iteration,
Calculate the fitness of all slime mould using (26);
Update the best fitness, X3
Calculate the 17 by using (24);
For each search space
Update the parameters of SMA which are: p, vb and vc;
Update the best positions of the slime mould;
Calculate the best value of the objective function (12);
End For iter=iter +1;
End while
Return best Fitness found so far, X3.
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Simulations and results. To demonstrate the
performance and efficiency of the SMA algorithm to
solve the OPF problem by incorporating stochastic wind
power and FACTS devices such as SVC, the present work
aims to apply the SMA on IEEE 30-bus and Algerian
114-bus systems with different test cases study. In this
context, the minimization of total fuel cost and wind
power cost is considered as objective functions. The
description of all these test cases can be found in the
following section. All the simulations are carried out by
using MATLAB 2009b and computed with specification
Intel® Core™ i5 CPU@1.80 GHz with 8 GB of RAM.
For establishing the robustness of the SMA algorithm,
30 independent trial runs are performed for all the test
cases. In this work, the population size is 40 and the
number of iterations maximal is 500.

IEEE 30-bus test system. The first test is dedicated
to the standard IEEE 30-bus power system in order to
verify the performance and efficiency of the SMA for the
small scale power system. This system includes
6 generators unit, 41 transmission lines, 4 transformers
located at lines 6-9, 4-12, 9-12, and 27-28. Nine reactive
compensators are located at buses 10, 12, 15, 17, 20, 21,
23,24, and 29. The total load is (2.834 +j-0.735) p.u.

The upper limit and lower limit variables are shown
in Table 1. In this section, two different parts are
considered, the first part is solving the OPF problem
under normal conditions and the second part is solving the
OPF problem under the contingency state.

OPF solution under normal condition. In this part,
the SMA is applied to solve the OPF problem under the
normal condition with active power loading is 283.4 MW.
Three different cases are examined via SMA as follows.

Case 1: Minimization of total fuel cost. The objective
function used in the first case under normal condition is to
minimize the total fuel cost according to the optimal power
distribution of the production units and is described by (13).
Table 3 tabulates the results obtained by the SMA algorithm
for Case 1. It can be seen that the optimal settings of control
variables are all within their acceptable limits. Furthermore,
we can also see that the fuel cost obtained by SMA is
798.9709 $/h, this value is lower and better compared to
those obtained by MSA, GSO, MFO, BHBO, ALO, MSCA
which are mentioned in Table 1.

Table 1
Comparison of solutions achieved using SMA
and different methods for Case 1
Method Fuel cost ($/h)

Slime mould algorithm 798.9709
Moth swarm algorithm [10] 800.5099
Glowworm Swarm Optimization [12] 799.06
Moth-Flame Optimizer [14] 799.072
Black-hole-based optimization [20] 799.921
Ant lion optimizer [31] 799.0133
Modified Sine-Cosine algorithm [32] 799.31

The convergence characteristics of the proposed
method and the ALO algorithm are shown in Fig. 1. It can
be seen that the SMA algorithm outperforms the ALO
algorithm in terms of convergence rate towards the global
optimum solution. So, the results achieved showed the
SMA superior and robust compared to the ALO algorithm
in order to get the best solution to solve the OPF problem.
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Fig. 1. Convergence characteristics of the SMA & ALO: Case 1

Case 2: Minimization of total fuel cost and wind
power cost. In this test case, SMA is applied to solve the
OPF problem by incorporating stochastic wind power.
Thus, the objective function is minimizing the total
generation cost that includes fuel cost and wind power
cost. The cumulative cost, described by (13). In this case,
the standard IEEE 30-bus system is considered by
including two wind farms located at bus numbers 10 and
24. Moreover, the two wind farms (WFs) consist of 30
units of wind turbine generation (WTG) with a nominal
power rating of each WTG is 2 MW. Thus, each WF
having a total capacity of 30 MW.

Table 2 details the specification of wind turbine
characteristics used in all optimization cases in this study
concern with incorporating wind power for the IEEE 30-bus
system [33].

Table 2
The characteristics of this wind turbine
Parameters Value
k 2
c 3
d, 1.3
pP,, 2000 kW
Veut-in 4 m/s
Vrated 12 m/s
Veur off 25 m/s
K, ; (penalty factor) 1 $/MWh
K., (rserve factor) 4 $/MWh

Table 3 presents for case 2 the results obtained by
SMA to minimize the total generation costs, which are the
total fuel and wind costs. The sizing of the two wind
farms can be referred to in the same table. For this case,
SMA exhibit bus 10 and 24 as the optimal locations of the
wind farm. At active power loading of 283.4 MW, It can
be seen that the TGC produced by SMA is reduced from
798.9709 $/h to 725.7113 $/h. Moreover, the active
power losses have also increased from 8.5752 MW to
6.2413 MW which is lowered by 27.21 %. Thus, SMA
provides the best values to minimize the TGC and reduce
the active power losses in the IEEE 30-bus test system by
incorporating wind power compared to the case without
the implementation of wind farms. In general, the
implementation of wind farm installation to the system
has significantly reduced the values of the total generation
cost and the active power losses.
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Table 3

Best control variable settings obtained via SMA for IEEE 30-bus system including WPG and SVC devices

Control Variables .Limits Active power loading 283.4 MW Active power loading 410.93 MW
Min | Max Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
P (MW) 50 | 200 177.5784 139.3865 139.6782 199.9977 195.2207 195.2576
P (MW) 20 80 48.6770 39.6216 39.4803 78.8218 57.6992 57.8394
Pss(MW) 15 50 21.2668 18.6332 18.5144 424211 32.9495 32.7988
Pe(MW) 10 35 21.2316 10.0000 10.0292 34.9915 34.9999 34.9896
Psii(MW) 10 30 12.0890 10.0000 10.0025 29.9997 21.9266 23.1781
Psi3(MW) 12 40 12.0000 12.0000 12.0042 38.2946 20.3897 19.1394
Pysi(MW) 0 40 - 30.0000 30.0000 - 30.0000 30.0000
Py (MW) 0 40 - 30.0000 30.0000 - 30.0000 30.0000
Vei(p-u) 095 1.1 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000
Vea(p.u) 09 | 1.1 1.0879 1.0894 1.0873 1.0843 1.0804 1.0818
Ves(p.u) 09 | 1.1 1.0618 1.0644 1.0597 1.0286 1.0264 1.0263
Vos(p-u) 09 | 1.1 1.0701 1.0760 1.0719 1.0616 1.0669 1.0694
Veri(pu) 09 | 11 1.1000 1.0539 1.0233 1.1000 1.1000 1.0964
Veis(p-u) 09 | 1.1 1.1000 1.0183 1.0150 1.1000 1.0516 1.0371
Ty1(p.u) 09 | 1.1 1.0259 1.0903 1.0989 1.0189 1.0896 1.1000
To(p.u) 09 | 1.1 0.9010 1.0286 1.0887 1.0211 1.0991 1.0993
Ti5(p-w) 09 | 11 0.9803 1.0980 1.0786 1.0511 1.0997 1.0974
T36(p-u) 09 | 1.1 0.9568 1.0594 1.0429 0.9609 1.0272 1.0455
Ocio(Mvar) 0 5 4.3806 0.0139 1.7150 4.8813 4.1783 3.8886
Oc12(Mvar) 0 5 4.7790 2.8581 0 1.9164 4.8901 0.8560
Ocis(Mvar) 0 5 4.8272 0 4.7098 3.1109 3.1556 1.6088
Oci17(Mvar) 0 5 4.9942 2.2721 1.4631 4.9727 49617 5.0000
Oco(Mvar) 0 5 2.5651 2.7844 1.0131 1.3915 1.1554 4.1684
Ocr1(Mvar) 0 5 2.8396 5.0000 4.8532 4.9937 0.0066 4.9944
Oc;(Mvar) 0 5 3.4609 4.8785 0.5928 2.9808 2.7736 4.7325
Ocs(Mvar) 0 5 4.9957 0.2167 1.8172 4.6307 1.3769 0.0423
Ocr9(Mvar) 0 5 1.1562 0.9389 0.4900 1.1981 1.2900 4.8493
Owsi1(Mvar) -15 | 40 — -3.9319 39.4803 — 4.7442 57.8394
Ows(Mvar) -15 | 40 - 3.3754 0.8719 — 10.3240 32.7988
Osvcio(Mvar) -25 | 25 - - 5.6479 - - 6.6716
Total generation cost ($/h) 798.9709 725.7113 725.8855 1339.4776 1198.1826 1198.2092
Power losses (MW) 8.5752 6.2413 6.3087 13.5964 12.2555 12.2729
Voltage deviation (p.u.) 1.4494 0.6285 0.5195 0.7413 0.6066 0.5465
Reserved real power - 53.5074 53.5074 - 53.5074 53.5074

The convergence curves of the SMA and ALO for
case 2 are shown in Fig. 2, which allows us to note, in the
first place, that the SMA converges towards the global
optimum value at iteration 120 compared to the ALO, that
the convergence towards the optimal solution is reached
at iteration 270.

Case 3: Minimization of fuel cost and wind power
cost by considering the SVC device. In this case study,
SMA is applied for solving the OPF problem by
incorporating wind power and SVC devices. The optimal
location of the SVC device for the IEEE 30-bus system
found by SMA is bus N°30. The objective function used is
to minimize the TGC as described by (13). From this case,
It can be seen that the voltage deviation is reduced from
1.4494 p.u (case 1) and 0.6285 (case 2) to 0.5428 p.u. The
voltage profile obtained by the SMA algorithm for cases 2
and 3 is shown in Fig. 3. It is seen that the effect of the
SVC device to improve the profile voltage, especially in

the busses far from generators units such as bus N°25
until bus N°30.
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Fig. 2. Convergence characteristics of the SMA & ALO: Case 2

OPF solution under the contingency state. In this
part, the SMA is applied to solve the OPF problem under
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the contingency state, which is increased loading at 45 %.
Thus, the active power loading is 410.93 MW. Three
different cases are considered for this part.
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Fig. 3. Profile Voltage magnitudes for case 2 and case 3

Case 4: Minimization of total fuel cost. In this
case, the objective function is to optimize the total fuel
cost in the IEEE 30-bus system with increased loading at
45 % and is described by (16) addition to the penalty of
line power. From the results given by the SMA algorithm
for the case N°5, It can be seen that most generators work
near their maximum limits, due to the increased load
compared to the results given in case 1 without increased
load. Moreover, we can also see that the fuel cost, active
power losses, and voltage deviation are increased as
presented in Table 3. The convergence characteristics of
the SMA and ALO for case 4 are shown in Fig. 4.
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Fig. 4. Convergence characteristics of the SMA & ALO: Case 4

Case 5: Minimization of total fuel cost and wind
power cost. The minimization of total fuel cost and wind
power cost, in this case, is formulated as the objective
function, which is described by (13). At higher active power
loading of 410.90 MW, SMA provides 1198.1826 $/h for
the TGC, this value better than a value obtained in a case
without incorporating wind power. On the other hand, the
implementation of wind farms has reduced the active
power losses and the deviation voltage in the system.

The convergence characteristics of the SMA and
ALO for case 5 are shown in Fig. 5. From this figure, it
demonstrates that the SMA algorithm can converge to the
global optimum at iteration 170, while ALO towards the
optimal solution is reached at iteration 230.
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Fig. 5. Convergence characteristics of the SMA & ALO: Case 5

Case 6: Minimization of total fuel cost and wind
power cost by considering the SVC device. In this case, we
have study the influence of SVC devices on a power system
to improve the voltage profile. The voltage profile for case 5
and case 6 are shown in Fig. 6. Unlike case 5 where profile
voltage decreases after overloading, adding the SVC to the
power system, in this case, improves the voltage as seen in
Fig 6. Through the given results, we note that the effect of
SVC is significant in the case of increased load.
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Fig. 6. Profile voltage magnitudes for case 5 and case 6

Algerian electrical network system. In order to
verify the performance and efficiency of the ALO to solve
nonlinear problems in larger-scale dimensions, OPF is
performed on the Algerian electrical network system. This
system includes 15 generators, 175 transmission lines,
and 16 located from line 160 to line 175. The technical
and economic parameters of generator units of the
Algerian electrical network system are presented in [34].

Case 7: Minimization of total fuel cost. In this
case, SMA is tested to identify the optimal fuel cost on
the large-scale Algerian electrical network system with
114 buses. Table 4 presents the optimal settings of control
variables reached by SMA with three different cases
taking into consideration the vector of control variables
contains the active powers generated and the generator
voltages. The best value of fuel cost obtained by SMA for
the vector of control variables contains the active powers
generated is 18914.105 $/h and better than other methods
as well as previously reported methods in Table 5.

The convergence characteristics of the proposed
algorithm and ALO algorithm for case 7 are shown in Fig. 7.
It can be seen that the SMA algorithm outperforms the
ALO algorithm in terms of convergence rate towards the
global optimum solution.

ISSN 2074-272X. Electrical Engineering & Electromechanics. 2020. no.6 51



Table 4

Best control variable settings obtained via SMA for ALG 114-bus system including WPG and SVC devices

Control Variables Case 7 Case 8 Case 9 Control Variables | Case 7 | Case 8 | Case 3
Psy(MW) 451.3078 | 444.8246 | 446.5335 Va(p.uw) 1.0997 | 1.1000 | 1.0999
Pss(MW) 451.1405 | 446.1754 | 443.8411 Ves(p.u) 1.1000 | 1.1000 | 1.1000
Psii(MW) 99.9998 | 99.9992 | 99.9993 Veii(p-u) 1.0954 | 1.0990 | 1.0993
Psis(MW) 193.3981 | 190.5629 | 188.6959 Veis(p-u) 1.1000 | 1.1000 | 1.0993
Ps17(MW) 446.9078 | 439.3309 | 441.6877 Vei7(p.u) 1.1000 | 1.1000 | 1.1000
Ps1o(MW) 194.8571 | 190.8661 | 189.4341 Veio(p-u) 1.0599 | 1.0523 | 1.0590
Pin(MW) 191.8038 | 190.0866 | 186.7558 Vioo(p.u) 1.0620 | 1.0589 | 1.0683
Pgs:(MW) 188.5324 | 186.9000 | 185.9111 Vgsa(p.u) 1.0661 | 1.0622 | 1.0668
Psso(MW) 190.4592 | 184.5212 | 186.0970 Vso(p-u) 1.1000 | 1.1000 | 1.0998
Psgs(MW) 187.8661 | 181.9296 | 183.6420 Vesa(p.u) 1.1000 | 1.1000 | 1.1000
Pgos(MW) 188.6026 | 183.2775 | 184.3464 Vos(p-u) 1.1000 | 1.1000 | 1.1000
Pgioo(MW) 600.0000 | 599.9998 | 600.0000 V100(p-u) 1.1000 | 1.1000 | 1.1000
Pgi1oi(MW) 200.0000 | 200.0000 | 200.0000 Veio1(p-u) 1.1000 | 1.1000 | 1.1000
Pros(MW) 100.0000 | 99.9995 | 99.9985 Vioo(p-u) 1.1000 | 1.1000 | 1.0998
Pgi1i(MW) 99.9976 | 100.0000 | 100.0000 Vern(p.u) 1.0701 | 1.0650 | 1.0792
Pysi(MW) - 15.0000 15.0000 QOsyesg(Mvar) - - 22.000
Py (MW) - 30.0000 | 29.9999 QOsyeso(Mvar) - - 32.800

Case 1 Case 2 Case 3
Fuel cost ($/h) 18914.105 18624.9978 18610.7234
Power losses (MW) 57.8726 56.4733 54.9422
Voltage deviation (p.u.) 4.9714 4.8197 4.5968
Reserved real power — 41.0227 41.0227
Table 5 located at busses 99 (Setif) and 107 (Djelfa). Moreover,

Comparison of solutions achieved using SMA
and different methods for Case 7

Method Fuel cost ($/h)
Slime mould algorithm 18914.105
Differential evolution [34] 19203.340
Grey wolf optimizer [35] 19171.958
Hybrid GA-DE-PS [36] 19199.444
M-objective ant lion algorithm [37] 19355.859
x 10"
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Total generation cost ($/h)

50 100 150 200 250 300 350 400 450 500

lteration
Fig. 7. Convergence characteristics of the SMA & ALO: Case 7

Case 8: Minimization of total fuel cost and wind
power cost. In this case, SMA is applied to solve the OPF
problem on the large-scale power system by incorporating
stochastic wind power. The Algerian power system ALG
114-bus is considered by including two wind generators

the two wind farms (WF) consist of 40 units of wind
turbine generation (WTG) are connected to the system at
busses 10 and 24 with a nominal power rating of each
WTG is 1.5 MW. Weibull settings for the sites that have
been chosen are taken from [38]. The choice of the
turbine has been set for General Electric GE 1,5-77
machines. The characteristics of this wind turbine are
shown in Table 6.

Table 6

The characteristics of this wind turbine

Parameters Wind turbinel | Wind turbine
k 1.425 2.008
c 4.083 5.178
d, 1.75 2
P, 15 MW 30 MW
Veut-in 3.5m/s 3.5m/s
Vyated 12 m/s 12 m/s
Veut-off 25 m/s 25 m/s
K, ;(penalty factor)| 1.5 $/MWh | 1.5 $/MWh
K, ; (rserve factor) 3 $/MWh 3 $/MWh

Table 4 summarizes the best results reached by
SMA to minimize total generation cost, reduce active
power losses and improve the voltage profile by
incorporating two wind farms. Based on the results
achieved by the SMA in case 7 compared to case 8, the
incorporation of wind farms into the system in the ALG
114 system gave more significant profit in TGC and
reducing active power losses. The convergence
characteristics of the SMA for case 8 are shown in Fig. 8.
The convergence of the SMA is reached in the first 170
iterations, while the convergence of the ALO towards the
optimal solution is reached at iteration 230.
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Case 9: Minimization of total fuel cost and wind
power cost by considering the SVC device. In order to
illustrate the effectiveness of the SMA in presence of
SVC devices on the power system, the ALG 114-bus is
considered by including two SVC devices at busses N°68
(Sedjerara) and bus N°89 (Souk Ahras). These locations
of SVC devices are considered the optimal placement in
the Algerian 114-bus system found by the SMA
algorithm. After the results of the simulation, the
installation of the SVC improved considerably the total
generation cost, the active power loss. Figure 9 represents
that the effect of SVC devices is significant in the
Algerian 114-bus system to maintain the voltages within
the acceptable limits.
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Fig. 9. Profile voltage magnitudes for case 8 and case 9

Conclusion. This paper proposed a recent
metaheuristic technique called a slime mould algorithm to
solve the optimal power flow problem incorporating
stochastic wind power and static VAR compensator
devices. In this study, nine cases have been considered
and examined via the proposed algorithm on the IEEE
30-bus system and practical Algerian power system ALG
114-bus. The objective function solved is a minimization
of the total generation cost that includes fuel cost and
wind power cost. Also, the nature of the wind output
function used is based on the Weibull probability
distribution model. For the case without considering wind
power and static VAR compensator devices, it is worth
mentioning that the proposed algorithm is capable of
achieving and getting the best global optimal solution for

both of the testing systems compared to the other methods
in the literature mentioned in this paper. With considering
wind power and SVC devices, the numerical results
obtained show a better performance of the proposed
algorithm to solve the optimal power flow problem
compared to the ant lion optimizer algorithm.
Additionally, incorporating the wind power and static
VAR compensator device has a high influence on the
power system through minimize the total generation cost,
reduce the active power loss as well as improve the
voltage profile. Thus, the results obtained prove the merits
and efficiency of the proposed algorithm to solve the
stochastic optimal power flow problem.
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