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MAGNETIC PROPERTIES OF MULTICOMPONENT HETEROGENEOUS MEDIA 
WITH A DOUBLY PERIODIC STRUCTURE 
 
Heterogeneous media have a wide range of practical applications. Media with a doubly periodic structure (matrices of high-
gradient magnetic separators, etc.) occupy an important place. Their study is usually based on experimental and approximate 
methods and is limited to simple two-phase systems. The development of universal and accurate methods of mathematical 
modelling of electrophysical processes in such environments is an urgent task. The aim of the paper is to develop a method for 
calculating local and effective parameters of a magnetostatic field with minimal restrictions on the number of phases, their 
geometry, concentration, and magnetic properties. Based on the theory of elliptic functions and secondary sources, an integral 
equation is formulated with respect to the magnetization vector of the elements of the main parallelogram of the periods. The 
calculated expressions for the complex potential, field strength, and components of the effective magnetic permeability tensor are 
obtained. The results of a series of computational experiments confirming the universality and effectiveness of the method are 
presented. As an example of a practical application, a detailed study of the field of the magnetic forces of the matrix is carried 
out: the lines of magnetic isodine and potential extraction areas for a complex version of the matrix are constructed. Within the 
framework of the developed method, the calculation of local and effective field characteristics is carried out by solving the field 
problem in the field of an arbitrary parallelogram of periods without specifying boundary conditions on its sides with a 
comprehensive consideration of significant interdependent factors. The practical value of the method is to create new 
opportunities for improving the technical characteristics of electrophysical devices for which the universality and accuracy of 
calculating local and effective field characteristics is decisive. An algorithm for optimizing the characteristics of the separator is 
proposed. References 16, figures 11. 
Key words: doubly periodic heterogeneous medium, integral equation, magnetization vector, strength field, homogenization 
problem, magnetic permeability tensor, polygradient separation, matrix, magnetic forces. 
 
Викладено метод розрахунку магнітостатичного поля в двоякоперіодичному гетерогенному середовищі. 
Сформульовано інтегральне рівняння відносно вектора намагніченості елементів середовища. Розрахунок 
характеристик поля виконується шляхом вирішення польової задачі в області основного паралелограма періодів без 
задання граничних умов на його сторонах. Отримано розрахункові вирази для напруженості поля і тензора 
магнітної проникності. Наведено результати обчислювальних експериментів, що підтверджують універсальність 
і ефективність методу. Проведено детальне дослідження поля магнітних сил матриці високоградієнтного 
магнітного сепаратора. Метод відкриває нові можливості підвищення технічних характеристик електрофізичних 
пристроїв, для яких універсальність і точність розрахунку локальних і ефективних характеристик поля є 
визначальною. Бібл. 16, рис. 11. 
Ключові слова: двоякоперіодичне гетерогенне середовище, інтегральне рівняння, вектор намагніченості, поле 
напруженості, тензор магнітної проникності, високоградієнтна сепарація, матриця, магнітні сили. 
 
Изложен метод расчета магнитостатического поля в двоякопериодической гетерогенной среде. Сформулировано 
интегральное уравнение относительно вектора намагниченности элементов среды. Расчет характеристик поля 
осуществляется путем решения полевой задачи в области основного параллелограмма периодов без задания 
граничных условий на его сторонах. Получены расчетные выражения для напряженности поля и тензора магнитной 
проницаемости. Приведены результаты вычислительных экспериментов, подтверждающих универсальность и 
эффективность метода. Проведено детальное исследование поля магнитных сил матрицы высокоградиентного 
магнитного сепаратора. Метод открывает новые возможности повышения технических характеристик 
электрофизических устройств, для которых универсальность и точность расчета локальных и эффективных 
характеристик поля является определяющей. Библ. 16, рис. 11.  
Ключевые слова: двоякопериодическая гетерогенная среда, интегральное уравнение, вектор намагниченности, поле 
напряженности, тензор магнитной проницаемости, высокоградиентная сепарация, матрица, магнитные силы. 
 

Introduction. Heterogeneous media (HM) are 
widely used due to a wide range of their practical 
application: magnetodielectrics, semiconductors, 
mixtures, solutions, composite and reinforced materials, 
electrostatic and magnetic filters, etc. 

The theory of HM originates from the classical 
works by J. Maxwell and J. Rayleigh, which dealt with 
determining the effective parameters of the HM with 
canonical inclusions in the shape of cylinders and spheres 
(the problem of homogenization). Subsequently, these 
investigations were developed and summarized by many 
authors: K.M. Polivanov, V.M. Finkelberg, A.V. 
Netushil, B.M. Fradkin, V.I. Odelevsky, L.D. Stepin, 
B.Ya. Balagurov, Yu.P. Yemets, V. Buryachenko, M. 
Kharadly, W. Jackson, K.Z. Markov, S. Nemat-Nasser, 

M. Hori, W.T. Perrins, D.R. McKenzie, R.C. McFedran, 
P.D. Qyuivy, S. Torcuato and many others. 

Various aspects of the theory and practice of HM 
were actively developed in Ukraine, in particular, by 
researchers of the Institute of Electrodynamics of the 
NAS of Ukraine. Particular attention was paid to the 
development of methods for analyzing electromagnetic 
fields in electrically conductive, dielectric, composite 
and heterogeneous systems at the Department of 
Electrophysics of Energy Conversion. Yu.P. Yemets 
developed analytical methods for analyzing electric 
fields using methods of integral equations and complex 
variables. 2D two-component systems with a regular 
distribution structure of inhomogeneities are considered. 
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The main effective parameters of two-component 
dielectric and conductive media with canonical 
inclusions are determined: conductance, 
magnetoresistance and Hall coefficient. Research results 
by Yu.P. Emets and his followers in this direction are 
presented in the monograph [1]. 

Based on the multipole expansion of high orders, the 
classical J. Maxwell and J. Rayleigh formulas on 
spherical and circular cylinders in a rectangular matrix in 
[2] are generalized and developed for the case of elliptic 
cylinders and spheroidal elements. There, for the first 
time, a fairly general field formulation was considered on 
the doubly periodic problem of magnetostatics for a 
nonlinear inhomogeneous anisotropic medium with 
periodic inclusions and with complex geometry of 
elements. 

In recent years, the scope of HM has been steadily 
expanding: the study of nanocomposite materials [3], 
ferromagnetic perforated membranes (magnetic sieves) 
[6], and other devices for micromagnetic separation of 
ultrafine magnetic particles [5]. More actively in the study 
of the properties of the HM the capabilities of modern 
information technology are used. 

Significant place in the theory and applications of 
HM occupy the tasks associated with the use of a 
magnetic field. In particular, one of such problems is the 
synthesis of filter matrices of high-gradient magnetic 
separators (HGMS) for maximum extraction of weakly 
magnetic minerals. The need for these devices arose in the 
middle of the last century due to the depletion of reserves 
of rich raw materials against the background of the 
rapidly developing technology of homeless metallurgy 
and the growth of requirements for the quality of steel 
[6, 7]. Various types of HGMS (Jones, Sala-Carousel, 
Boxmag Rapid, Krupp-Sol-24/14, 6-ERM-35/135, 
VGS-100/2, etc.) were created. The operation of these 
separators showed that at high weight and size parameters 
(for example, the Jones separator DR 335 with capacity of 
180 t/h has a rotor diameter of 3.35 m and mass of 114 t) 
and specific power consumption they do not always 
provide the required technological parameters of 
enrichment. Therefore, the development of new HGMS 
designs continues, and the optimization of their technical 
parameters remains an urgent task.  

A distinctive feature of the HGMS, which largely 
determines their effectiveness, is the use of magnetic 
filters of the matrix structure, the elements of which have 
complex geometry and high concentration to increase the 
magnetic field strength and its gradient. The study of 
various types of matrices is the subject of attention of 
many authors. A review of the current state of this issue 
with an extensive bibliography is given in [5]. The 
interest in this issue is explained by the fact that the 
matrix significantly affects productivity, separation 
efficiency, and operating cost. Ideally, it should, with high 
extraction efficiency, provide the maximum specific 
capture volume of the useful mineral with the minimum 
possible pulp resistance. 

Optimization of matrix parameters is associated with 
a compromise between a large number of factors affecting 
its effectiveness. The magnetic force acting on a particle 
with volumetric magnetic susceptibility  and volume V, 

F=0V|H|grad(|H|). In this expression, the last two 
factors are related to the magnetic system of the separator 
and its matrix, and the rest are related to the extracted 
magnetic material. If justification of the holding force 
|F|min for specific parameters  and V is the task of 
technologists, then ensuring the necessary value of the 
value of F*=|H|grad(|H|), at which |F|  |F|min, is a rather 
complicated task requiring special research. Obviously, 
the F* value is important for extraction, not the |H| and 
grad(|H|) values separately. Moreover, the «weight» of 
each of the factors is far from obvious. The increase in the 
field strength H is associated with an increase in the 
power and, ultimately, the mass and size parameters of 
the separator. Since here the magnetic field gradient does 
not change significantly, an increase in the magnetic field 
strength «blindly» does not necessarily lead to an 
improvement in the separation efficiency in practical use 
[7]. As for the field gradient, the possibility of increasing 
it is potentially much greater, since it substantially 
depends on the size of the matrix elements and their 
shape. But here, a compromise solution should be sought, 
since for selective separation it is necessary to coordinate 
the dimensions of the matrix element with the particle 
size distribution. In addition, the large heterogeneity of 
the matrix field and especially of its gradient greatly 
complicates the task of ensuring the maximum capture 
zone while eliminating the possible blocking of the 
matrix. This explains a large number of studies on 
precisely the geometric parameters of matrix elements. 
For example, in [8], the expected decrease in the magnetic 
force with an increase in the number of sides of regular 
polygons has been confirmed by calculation. The studies 
of many authors (see, for example, [7, 9, 10]) 
recommended the optimal parameters of triangular gear 
plates, although due to a more uniform force field, 
replacing triangular elements with elements with a lower 
surface steepness can increase the ability to collect small 
particles. On the contrary, the patent [11] proposed 
strengthening the forces for the extraction of a fine 
fraction by replacing rods of circular cross section with 
rods with a diamond-shaped cross section (with a 
reduction in the size of the capture zone). The publication 
[12] recommended as promising rod matrices with an 
elliptical cross section. A number of works (see, for 
example, [13]) discuss the feasibility of using a 
combination of rods with different diameters or different 
cross-sectional shapes, as well as changing the order of 
their grouping. 

A feature of the listed works is their particular and 
sometimes contradictory nature, as well as the 
predominant orientation to simple forms of matrix 
elements. Unfortunately, they do not give an idea of the 
local distribution of the field of magnetic forces in the 
working space of the matrix formed by elements of 
complex geometry and arbitrary concentration, especially 
when there are difficulties with the formation of boundary 
conditions in order to localize the calculation domain. 

The wide variety of matrix elements used (balls, 
corrugated plates, rods, nets, spirals, wire wool, etc.) 
significantly complicate the development of a universal 
mathematical model for calculating the force field of 
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HGMS matrices. At the same time, the most common 
type of rod matrices, which are characterized by 
periodicity along the plane coordinates, should be 
selected. As shown in [2, 14], to study such media, the 
natural mathematical apparatus is the theory of doubly 
periodic (elliptic) functions, the use of which allows one 
to efficiently solve doubly periodic problems for HM in a 
fairly general formulation. 

The goal of the paper is the development of a 
universal method for calculating the magnetic and force 
fields of a heterogeneous medium with a doubly periodic 
structure without significant restrictions on the number of 
phases, their geometry, concentration, and magnetic 
properties. 

Basic definitions and properties of doubly 
periodic systems. The first and indispensable condition 
for the investigation of multicomponent HM is the 
determination of the main periods 1 and 2, which are 
the constituents of the main parallelogram of the periods 
 (if it exists). The unequivocal answer to this question is 
not always obvious, since, as will be shown below, even 
the doubly periodicity of all phases of a multicomponent 
HM does not guarantee its doubly periodicity as a whole.  

Consider a pair of complex numbers 1 and 2, with 
Im(=2/1)>0. Points u and v  of the complex plane are 
called congruent if they are connected by the relation 
umod(1, 2) [15] or  

u =  + m1·ω1 + m2·ω2, at m1, m2 = 0, ±1, ±2, … .  . (1) 

A parallelogram with vertices u0, u0+1, u0+2, 
u0+1+2 will be called a parallelogram of periods 
constructed on periods 1 and 2. Obviously, the set of 
congruent points corresponds to an infinite number of 
parallelograms of periods covering the entire complex 
plane without overlapping. 

The concept of a doubly periodic (elliptic) function 
occupies an important place in the subsequent analysis. 
Denote =m11 + m22. The function f(u) with periods 
 will be called doubly periodic, and 1 and 2 – its main 
periods.  

From the theory of elliptic functions, it is known 
[13] that a pair of main periods (1, 2) is not unique. If 
for arbitrary integers m1, m2 and 1 2,m m   the sets of points 

=m11 + m22 and = 1 1 2 2m ω m       coincide, then 

the pairs of periods  and  are equivalent. Here, a pair 
of periods (1, 2) is equivalent if and only if to a pair of 
periods 1 2( , )ω  ,when the relation 2  = + 1, 

  = 2 + 1 is valid, where , , ,  are the integers 

that satisfy the condition    = 1 at Im(2/1)>0. 
Examples of equivalent periods for two sets of congruent 
points are shown in Fig. 1. 

We note some more obvious statements. The areas 
of equivalent periods are the same, and the area of the 
main parallelogram  with periods (1, 2) is minimal. 
We will also call two parallelograms with periods (1, 2) 
and 1 2( , )ω  similar if the directions of the periods 1 and 

1 , 2 and 2  and coincide. 

        
                        a                                             b 

Fig. 1. Sets of congruent points and their corresponding 
equivalent parallelograms of periods 

 
The concept of a doubly periodic HM is more 

complicated than the concept of a doubly periodic lattice, 
since in addition to geometrical properties it is also 
necessary to take into account the physical and other 
properties of individual phases, their arrangement in the 
parallelogram of periods, etc. Moreover, the set of HM 
can correspond to the same period lattice. For example, 
we establish a correspondence between doubly periodic 
HM shown in Fig. 2 and lattices of periods of Fig. 1. 

 

        
                           a                                                b 

        
                           c                                                d 

Fig. 2. Examples of doubly periodic multicomponent HM 
corresponding to the lattices of Fig. 1: two-component – a;  

three-component – b and c; six-component – d 
 

Note an important point on the example of Fig. 2,a. 
The main parallelogram for the set of congruent points is 
the small square. At the same time, it cannot be the main 
parallelogram of the HM, since, for example, the entire 
complex plane cannot be covered by the yellow phase. 
Therefore, for this HM, the main parallelograms of the 
periods correspond to Fig. 1,a (each of them includes two 
elements of the yellow and blue phases). HMs, shown in 
Fig. 2,b,c,d correspond to Fig. 1,b. Indeed, considering in 
Fig. 2,b,c the system of congruent points of the yellow 
phase (for example, the upper points of the elements) we 
see that they coincide with the period lattice of Fig. 1,b. 
The same can be said about other congruent points of the 
yellow and two other phases. More complicated HM of 
Fig 2,d also corresponds to Fig. 1,b. After turning Fig. 2,d 
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(or coordinate systems) at 30 it can be seen that 
topologically Fig. 2,c,d are the same. The only difference 
is that each element of the phases of Fig. 1,c corresponds 
to three elements of the two phases of Fig. 2,d. Here, as it 
is easy to see, the sets of the corresponding congruent 
points of all six phases coincide with the lattice of periods 
in Fig. 1,b. 

Shown in Fig. 2 multicomponent HMs have obvious 
doubly periodicity with the same lattice parameters for the 
periods of each phase within the HM. As will be shown 
below, in this case, the main periods of the HM generally 
coincide with the corresponding periods of the phases. 

A number of important conclusions can be drawn 
from the analysis performed. In particular, it is legitimate 
to introduce the concept of congruent areas, whose 
geometry is fully reproduced in each parallelogram of 
periods. Moreover, these areas can be multiply connected 
and multicomponent. This follows from the statement that 
each period parallelogram of system (1) owns only one 
point of this system [15]. Considering the set of arbitrary 
points  with the sets of congruent points (1) generating 
them, we naturally come to the concept of congruent 
doubly periodic domains. 

We will illustrate some additional features of a 
doubly periodic HM using the example of a complex HM 
shown in Fig. 3. 

The discrete phase of this HM is represented by 
three fractions  red, blue and green. The main 
parallelograms of the periods of these fractions are 
highlighted in the corresponding colors. They are similar 
(i.e., the corresponding sides of the parallelograms are 
parallel), but have different basic periods and 
concentration of inclusions. For example, if for the green 
fraction introduce the designation  1=(1, 2), then for 
the red fraction  2=(1, 22), and for the blue one 
 3=(31, 2). Note that each of the highlighted main 
parallelograms of periods  i has a set of equivalent ones, 
however, for the HM under consideration, all of them are 
reduced to similar ones. This procedure is necessary to 
answer the important question: is this HM a doubly 
periodic, and if so, what are the main periods of this 
medium. This question was posed in [16]. therefore, we 
confine ourselves here to some refinements and additions. 

 

 
Fig. 3. Basic parallelograms of periods     

of separate phases and equivalent parallelograms of periods 
and  of a three-component HM 

The condition of doubly periodicity of a 
multicomponent HM. Let some multicomponent HM is 
composed of a number of doubly periodic HMs of a lower 
level. Denote by { i} the set of primitive lattices 

1 2( , )i i i   , i=1, 2, 3, … Р. In the simplest case, when 

1 1,i in     2 2
i im    , where 1

  and 2
  are some 

complex numbers, Im( 2
 / 1

 )>0, and ni, mi are the 

arbitrary natural numbers , the HM under consideration is 
doubly periodic and its main periods 1, 2 are defined as 
follows. Denote by N and M the least common multiples 
for the sets {ni}, {mi}: N = lcm(n1, n2, …, nP), 
M = lcm(m1, m2, …, mP). Then 1=N 1 ,  2=M 2 .  For 

example, for the HM considered in Fig. 3, 
N = lcm(1, 1, 3) = 3, M = lcm(1, 2, 1) = 2. Thus, 
1=3 1 , 2=2 2 .  In Fig. 3 two equivalent periods of 

HM  and   are highlighted in yellow. 
Note several important consequences of the analysis 

carried out. 
1. A necessary condition for doubly periodicity of 

the HM is the existence in the set of main periods of the 

phases { i} of a subset of similar periods { i }. 
2. The doubly periodicity and similarity of periods 

{ i } does not guarantee the doubly periodicity of the 
HM as a whole. For example, let 

1 2 1 2
1 1 2 2, , ,a b       and a  b are any irrational 

numbers, for example, a = e, b = . Obviously, it is 
impossible to select integer multiplicities for the specified 
periods. 

3. At a linear displacement of the main 
parallelogram of periods  or when moving to the 
equivalent parallelogram, all congruent components 
(or their parts), the concentration of individual phases and 
physical parameters that are doubly periodic, such as the 
magnetization vectors in the corresponding congruent 
points, are conserved. This is important in the practical 
solution of problems on the definition of local and 
effective parameters of HM. 

It should be noted that the establishment of the fact 
that the HM is doubly periodic and the determination of 
its main periods significantly expand the possibilities of 
investigation the HM, since it provides the possibility of 
applying the theory of elliptic functions and limits the 
scope of analysis by the main parallelogram of periods. 

Basic calculation relations. In the complex plane E, 
we consider a medium with a regular structure formed by 
a set of congruent groups of magnetics, each of which 
corresponds to a bounded (in the general case multiply 

connected) domain Dmn
j

mn
D with a sufficiently smooth 

boundary Smn j
mnS  (j = 1, 2, ... , k; т, n = 0, 1, 2, ...). 

For convenience, we denote the domain D00 
corresponding to the main parallelogram  with periods 
 and , by D. Accordingly, S00S and D DS. The 
region external to the magnetics is denoted by DeE\Dmn. 

Let Вj=Вj(Н, z) be a known function that, in the 
general case, defines the inhomogeneous, nonlinear and 
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anisotropic properties of the set of congruent elements 
j, z  Dmn. If zDe, then В=0Н. 

Consider a system of dipoles with identical moments 
M located at the points   mod . Their complex 
potential and field strength [2] 

( ) ( ) ( ),
2πM

M
W z z C z                     (2) 

   ( ) ( )
2π 2πM M

M M
H z W z z C z C            , (3) 

where z  u z u are the Weierstrass 
functions, and a bar over a complex number means a 
conjugation operation. 

Without loss of generality, we combine the period 
1 with the x axis and take Im1=0. Taking into account 
the Legendre relation [13] 

1221=2j, 
for the constant C we obtain the expression [2] 

1 2 2 1
1 2

1 2 1 2 1

1

1

j1

2π 2π

j Im
,

2π

M M
С M M

M M

F

  
          


  



  
    




,    (4) 

where М1, М2 is the decomposition of the vector M in the 
directions of the periods  and , F=1Im2 is the 
area of the main parallelogram of periods . 

Let J(z), zD be the distribution of magnetization 
arising under the action of the field of primary sources 
Н0(z). A joint consideration in the domain D of the action 
of primary and secondary sources (the magnetization of 
all magnetics in E) leads to expressions for the complex 
potential and intensity [12]: 

0 0

1

1

1
( ) ( ) ( ) ( ) ( ) [ ( )

2π

j
( )] d Im ( ) ( ) d ,

JW z W z W z W z J z

z J z
F

       

        






 
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where P is the full dipole moment of the main 
parallelogram . The integral in (6) is singular. 

Let us consider in more detail the linear case: 
Вj=a

jH = 0 jH, Вe = 0H for zD and zDe, 
respectively. In this case, outside the domain D J(z)=0 
and the problem of calculation of the field characteristics 
at an arbitrary point of the HM is reduced to calculation 
of the distribution of the magnetization vector J(z) in D. 

Introduce the integral operator that is important for 
the analysis below [2] 
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Denote 1
0B B   and consider a chain of equalities:  
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From (7), (8) it is easy to obtain an integral equation 
for the medium magnetization vector J(z), zD: 
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where =(1)/(+1). 
We give one more expression for the singular 

operator ПJ. Denoting by  a circle of small radius , 
and by D=D\ a domain D with punctured point z = , 
expression (7) is transformed to 
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It is easy to establish that 
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Applying the Green formula to (10), (11), assuming 
the differentiability of the function f 

1 1
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and taking into account that the integral (12) along a 
circle of a sufficiently small radius  is zero, we find: 
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Here S is the boundary of the domain D (in the 
general case, multiply connected). At λ(z)=const J=0, 
therefore, the singular operator П J is expressed through 

the surface (boundary) integral 
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The practical implementation of the basic 
relations. Let us now consider some questions of the 
practical use of the expressions obtained. We represent 
the domain D as a set of triangular elements DDk with 
a constant magnetization Jk corresponding to the center of 
gravity k of triangle Dk. In this case, the solution 
J(z)Jk(z) can be obtained by simple iteration method 
for the equation 
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(14) 

(m = 1, 2, 3, …, М; i = 1, 2, 3, …). 
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If we consider the magnetized domains Dk as dipoles 
with magnetic moments Mk = Jkk, located at the points 
 k, then (14) is greatly simplified: 
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2 Δ
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where Amk=(zm  k) + 1/1. 
The calculation of Amk values can be performed 

using the formulae [15] 
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or at Im < Im  < Im 
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, (17) 

where u  umk = zm k, q = exp(j),  = u/1. 
For uniformly magnetized triangles, the integrals in 

(14) can be calculated analytically. Applying (13) for the 
k-th triangle and taking into account that [15] 
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we obtain 
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In this expression Sk is the boundary of the k-th 
triangle, zi, zj, zk are the complex coordinates of its 
vertices, aki j = aki  aij, aijk = aij  ajk, ajki = ajk  aki, 

amn = ( n mz z )/( n mz z ), m, n = i, j k; 1 is the 
-function with high convergence rate:  

1/ 4 2 6
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Let us consider in more detail the calculation of the 
complex potential (5) from the known distribution of the 
magnetization vector J(z) in D. In the simplest case, the 
discrete analog of this equation, by analogy with (15), 
takes the form 

0

1

1

j
Im ( Δ

1
( ) ( ) [ (

),

)
2π

( )] Δ k
k

k k

k

k
k

k
k

W z W z J z

z J z g
F

 

     

    












 


  (20) 

where for gk using the Green formula we obtain 
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and for (u)  (1/1)u one can use absolutely and 
uniformly convergent series 
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or at Im < Im  < Im 
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A more accurate expression for W(z) can be obtained 
by passing in (5) to the integral over the boundary Sk. 
Using (18) and (20), we rewrite (5) as 
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To calculate the integrals in (23), we use the well-
known expansion for the -function 
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Taking into account that in accordance with (12) 
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where an=q2n/[n(1  q2n)].  
Calculation of the first integral in (25) leads to the 

expression 
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where u1p= z  n1  zp, u2p = z + n1  zp, p = i, j, k; 
bn=0,5 at n = 0 and bn = 1 at n  0.  

Calculation of the second integral in (25) gives: 
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where 
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1 1 1( ) / , ( ) / , ( ) / .j j i i k kz z z z z z            

It should be borne in mind that the logarithm is a 
multivalued function, therefore, when integrating along 
the boundary Sk, it is necessary to choose its continuous 
branches. 

Examples of numerical implementation. Below 
are examples of numerical simulations illustrating the 
capabilities of the method described. Figures 4-8 show 
field patterns (field lines in blue, equipotentials in red) for 
a three-component HM with basic periods 1=8, 2=6j. 
The external field Н0 is uniform and directed at different 
angles about the horizontal axis. 

In Fig. 5 with the same parameters as in Fig. 4, the 
field is calculated in the equivalent parallelogram of 
periods  with 1 8,   2 8 6 j.    Comparison of the 

field distribution in Fig. 4 and Fig. 5 confirms the 
conclusion about the conservation of field characteristics 
at congruent points of equivalent periods. The freedom to 
choose from equivalent periods of more convenient for 
calculating and visualizing the results in this case clearly 
speaks in favor of Fig. 4. 

The choice of indicated in Fig. 6 angle 9.2535 is 
due to the direction of the external field Н0 in the 
direction of the main axis of anisotropy of the 
homogenized HM (calculation – see below). 

 

 
Fig. 4. The field pattern in the three-component HM at 

relative magnetic permeabilities of discrete elements =1000 
and the external medium е=1. Green dotted line illustrates  
the main parallelogram of the periods. External field Н0=1  

 

 
Fig. 5. The field pattern in the equivalent basic period 

(highlighted in green dotted line) with the HM parameters  
of Fig. 4 

 
Fig. 6. The same as in Fig. 4, but the external field Н0 is directed 

at an angle of 9.2535 to x-axis 
 

 
Fig. 7. Relative magnetic permeabilities of triangular, square 
and round rods, respectively, equal to 1000, 10 and 2, е=1. 
The external field Н0 is directed at an angle of 45 to x-axis 

 
Figures 8, 9 show the results of solution of the flow 

problem: Fig. 8 shows the flow lines, and Fig. 9 presents 
the distribution of the magnetization vector in a magnetic 
sheet with discrete air voids (see Fig. 8). In this case, 
instead of (9) the following equation is used: 
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Fig. 8. The flow problem. The relative magnetic permeabilities 

of discrete elements  =1, of the external medium е=1000 
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Fig. 9. Discretization of the computational domain and 

distribution of the magnetization vector in the flow problem  
(see Fig. 8) 

 

Attention should be paid to an important detail: 
despite the simple shape of the main parallelogram of 
periods, the boundary conditions on its sides are not 
known a priori and cannot be reduced to the conditions 
commonly used in FEM. 

Calculation of effective parameters of a 
multicomponent HM. Since the above method is based 
on the determination of the magnetization vector J in the 
main parallelogram of the periods, solution of the 
homogenization problem poses no significant difficulties. 
To do this, it is necessary to calculate J(z), z for two 
mutually perpendicular external fields Н0, for example, 
for Н0 = 1 and Н0 = j. Let us denote the total 
magnetization of all elements in  by x=xx+jxy and 
y=yx+jyy, respectively. Then the relative magnetic 
permittivity tensor  is easily determined through the 
effective magnetization of the medium: in vector notation 
J=/F=H0. Obviously, xx=xx/F, xy=xy/F, 
yx=yx/F, yy=yy/F. 

In the general case, for the chosen coordinate 
system, the tensor  should be symmetric, but not 
necessarily diagonal. To bring it to a diagonal tensor   
with principal , ( 0)xx yy xy yx       

 
values, we 

introduce a new coordinate system (x', y') by rotating the 
old one by the angle . This angle can be determined 
from the expression

 21
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and the principal values of the tensor   can be 
determined from the relations 
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 (29) 

In accordance with the above, for a medium with 
parameters corresponding to Fig. 4, the following results 
are obtained: 

1,0054 0,0210 1,0088 0
, , 9, 2535 .

0,0211 0,8801 0 0,8766
       

For the components of the effective relative 
magnetic permeability tensor, we obtain the obvious 
values: xx =2,0088, yy  1,8801. 

To confirm the correctness of the calculations, Fig. 6 
shows a picture of the field obtained with an external field 
strength Н0=1, directed at an angle  = 9.2535 to the 
x-axis (i.e. along the main axis of anisotropy). For effective 
magnetization of the medium, a sufficiently accurate result 
is obtained: =1.0089exp(j9.2561/180). 

For the parameters of the HM corresponding to 
Fig. 7, the corresponding results are equal to: 

0,4462 0,0029 0,4461 0
, , 1, 4169 .

0,0025 0,5571 0 0,5572


   


    

The components of the tensor of effective relative 
magnetic permeability: xx =1.4461, yy  1.5572. Their 

decrease in comparison with the above values is explained 
by a decrease in the effective magnetization of the HM 
due to smaller values of the magnetic permeabilities of 
the discrete phases. The insignificant asymmetry of the 
tensor  is explained by its almost zero non-diagonal 
components. 

Calculation of the field of magnetic forces. To 
further illustrate the capabilities of the developed method, 
we present the results of calculating the distribution of the 
force field |H|grad|H| = 0,5 grad(|H|2). As can be seen 
from the last expression, the force field of the HGMS 
matrix is completely determined by the distribution of the 
modulus of the magnetic field vector H in the working 
space of the matrix. Within the framework of the 
developed method, this distribution is easily obtained on 
the basis of expression (6) using its discrete analogue or 
the relation H = –grad(ReW(z)). 

To determine the force field F*, it is necessary to 
specify the vector of the external (background) field 
strength Н0 and the dimensions of the matrix elements. 
For example, for the HM corresponding to Fig. 4, with the 
value of the main period 1=8 mm (the dimensions of the 
matrix elements are determined by proportional 
conversion and are visible from Fig. 4-9) and the external 
field Н0 =5 kA/m direction along this period, in Fig. 10 
lines |H|2=const and the magnetic force vectors F* 
perpendicular to them are shown. Since the force field of 
the matrix is highly heterogeneous, Fig. 10 shows a 
fragment of the domain with the most intense force field. 
The areas of magnetic particle capture zones are 
determined by the known value of the minimum 

extraction force *

min
F , the determination of which is 

beyond the scope of this paper. As noted above, this force 
depends on the magnetic susceptibility of the initial 
product, the size of the extracted fraction, and other 
technological parameters. For example, at 

0minmin
( )V   *F F 5.5·109 A2/m3, which roughly 

corresponds to the real values, the isodines *F  = const 

and the particle extraction zones are shown in Fig. 11. 
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Fig. 10. Characteristics of the force field of the matrix of Fig. 4 

in the corner zone of a triangular element 
 

 

Isodines |F*|=5.5·109 A2/m3

 
Fig. 11. Isodines F *| = const and their corresponding  

extraction domains of the force field at |F*|min= 5.5·109 A2/m3 
for a fragment of the matrix working space 

 
The above analysis shows that the high 

heterogeneity of the force field (even in the extraction 
zone, the forces can differ by 2-3 orders of magnitude) is 
a negative factor. It is more preferable to have a field 
sufficient for extraction with a minimum spread of 
magnetic forces (ideally, isodynamic). We also note the 
high sensitivity of the force field to the strength value Н0 
and the size of the filter elements. This casts doubt on the 
universality of the recommendations for determining the 
optimal geometric shapes of matrix elements without 
reference to the magnetic system of a particular HGMS 
and its comprehensive study. 

Field analysis of the force field in the matrix can be 
continued in the following direction. Obviously, the 
formed extraction zones reduce the area and geometry of 
the pulp free flow area. The hydraulic permeability of the 
matrix can be investigated by solving the flow problem 
(see Fig. 8) with the geometry of liquid-impermeable 
regions modified due to particle sticking. 

Thus, the information obtained on the basis of the 
developed method can be used in the development of new 
and modernization of existing HGMS in the following 
directions: 

 calculation of the magnetic permeability tensor 
values (homogenization problem) makes it possible to 

quite accurately determine the magnetic resistance of the 
matrix as the main element of the magnetic system of the 
separator, and as a result of calculating the distribution of 
the magnetic flux in it, to determine the average magnetic 
flux density in the matrix and the calculated value of the 
field strength Н0. For the considered example, xx ≈2 and 

Н0=5 kA/m, the average magnetic flux density is 
B = 0.126 T; 

 for the selected geometrical and magnetic 
parameters of the matrix elements with a known value of 
strength Н0, it is necessary to calculate the field of 
magnetic forces |F*| ≥ |F*|min (according to the example of 
Fig. 10), and for a given value of the minimum holding 
force |F*|min – the areas of potential extraction zones and 
the fill factor of the working space (Fig. 10). It should be 
borne in mind that the specific magnetic resistance of the 
matrix does not depend on the absolute dimensions of its 
elements and the strength of the external field. At the 
same time, the magnetic forces |F*| are proportional to 
|H0|

2 and inversely proportional to the absolute sizes of 
the elements. From this it follows that the recalculation of 
the force field in these cases should not be done, since the 

picture of isodines *F = const remains unchanged, only 

the values of their values change; 
 calculated configuration of liquid-tight areas makes 

it possible to evaluate the hydraulic permeability of the 
pulp and decide on a change in the force field F* in one 
direction or another; 

 varying the geometric sizes and shapes of the matrix 
elements and conducting a series of corresponding 
computational experiments, it is possible to optimize the 
HGMS magnetic system as a whole with given 
technological limitations. 

Thus, the use of the proposed method will create 
additional opportunities for improving the technical 
characteristics of electrophysical devices with HM 
elements, for example, high-gradient magnetic separators, 
electrostatic filters, and other structures for which the 
universality and accuracy of calculating effective and 
especially local field characteristics are decisive. 

Conclusions. 
1. A universal method has been developed for 

calculating the local and effective characteristics of the 
magnetic field of a multicomponent heterogeneous 
medium with a doubly periodic structure which is based 
on solving the integral equation with respect to the 
magnetization vector of the elements of the main 
parallelogram of the periods. 

2. The performed computational experiments confirm 
the high efficiency and accuracy of the proposed method. 
Its main advantages are the compactness of the 
computational domain, the absence of the need to specify 
unknown boundary conditions on the sides of the 
parallelogram of the periods and severe restrictions on the 
geometry and number of components of a heterogeneous 
medium. 

3. One of the effective areas of application of the 
developed method is the analysis of the force fields of 
matrices of high-gradient magnetic separators. The ability 
to comprehensively take into account the factors 
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determining the effective and local field characteristics 
opens up additional possibilities for optimizing the matrix 
parameters and improving the overall dimensions and 
technological characteristics of the separator as a whole. 

4. Without significant changes, the method can be used 
in the analysis of other potential fields in doubly periodic 
systems (design of electrostatic filters, problems of 
flowing around gratings of a complex profile, etc.).  
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