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UNBALANCED LOAD FLOW WITH HYBRID WAVELET TRANSFORM AND
SUPPORT VECTOR MACHINE BASED ERROR-CORRECTING OUTPUT CODES FOR
POWER QUALITY DISTURBANCES CLASSIFICATION INCLUDING WIND ENERGY

Purpose. The most common methods to design a multiclass classification consist to determine a set of binary classifiers and to
combine them. In this paper support vector machine with Error-Correcting Output Codes (ECOC-SVM) classifier is proposed to
classify and characterize the power quality disturbances such as harmonic distortion, voltage sag, and voltage swell include wind
farms generator in power transmission systems. Firstly three phases unbalanced load flow analysis is executed to calculate
difference electric network characteristics, levels of voltage, active and reactive power. After, discrete wavelet transform is
combined with the probabilistic ECOC-SVM model to construct the classifier. Finally, the ECOC-SVM classifies and identifies
the disturbance type according to the energy deviation of the discrete wavelet transform. The proposed method gives satisfactory
accuracy with 99.2% compared with well known methods and shows that each power quality disturbances has specific deviations
firom the pure sinusoidal waveform, this is good at recognizing and specifies the type of disturbance generated from the wind
Ppower generator. References 22, tables 8, figures 9.

Key words: unbalanced load flow, wavelet transform (WT), support vector machines (SVM), power quality disturbance,
wavelet energy.

Leny. Haubonee pacnpocmpanennsle Memoobl ROCMPOECHUA MYTbIMUKAACCOGOU KNACCUDUKAYUU 3aKIIOUAIOMCA 8 Onpedesienuu
Habopa 06oUYHBIX Kaaccuuxkamopoe u ux o6veounenuu. B Ooannoii cmamove npeonoxicenHa Mauiuna ONOPHLIX 6€KMOPO8 C
Knaccugukamopom 6vIxo0uvIx k0006 ucnpaenenusa ownooxk (ECOC-SVM) ¢ yenvio knaccuguyuposame u xapaxmepusoeamso
makue HapyuwieHUs Kavyecmea 3JIeKMpPOIHEPIUU, KAK 2aAPMOHUYECKUE UCKANCCHUA, NAOeHUEe HANPANCEHUA U CKAYOK
HARpPAJCEHUA, GKNIOUAA 2eHEPamop GempoGvIX INEKMPOCMAHUUL 6 cucmemax nepedauu nekmpodrnepeuu. Crauana
GLINOIHACMCA AHAU3 NOMOKA HEeCUMMEmPUYHON HAzPy3Ku mpex a3 0nsa pacuema pazHOCHMHBLIX XAPAKMEPUCHMUK
INEKMPUYEcKoil cemu, ypoeHeil HANPANCEHUs, AKMUGHOU u peakmugnoii mownocmu. Ilocne ymozo Oouckpemnoe egeiignem-
npeobpazosanue o00veounsemcsa ¢ eepoamuocmuoi mooeavto ECOC-SVM ona nocmpoenus knaccuguxamopa. Haroneu,
ECOC-SVM knaccugpuyupyem u udenmuuyupyem mun 603IMYW|CHUsA 6 COOMGENICEUU ¢ OMKIOHEHUeM IHepeuuU
oucKkpemnozo geiignem-npeoopazoeanus. Ilpeonosrcennviit memoo oaem yooenemeopumenvuyio mounocms 99,2% no
CPAGHEHUIO C XOPOWIO U36ECHIHbIMU MEMOOaMU U NOKA3bleAeN, YMo Kajcooe HapyweHue Kauecmea 31eKmpoInepzun umeem
onpeodenennvie OMKIOHEHUA OM YUCHO CUHYCOUOANLHOU (OPMBL 6ONIHBL, UMO CROCOOCIMEYem PACNO3HAGAHUIO U ONPeeeHUI0
muna 03MyuieHUsA, 2EHEPUPYEMO20 8eMPOBLIM 2eHepamopom. bubn. 22, tabm. 8, puc. 9.

Kniouesvie crnoea: HecOaIaHCHPOBAHHBIN NMOTOK HArpy3KH, BeiiBier-npeoOpazoBanue (WT), MalIuHbI ONOPHBIX BEKTOPOB

(SVM), HapyuieHHe KayecTBa JJIeKTPOIHEPIrHH, JHepPIrus BeiiBiera.

Introduction. The quality of energy has become an
important issue for electric users and their customers.
With the rapid increase of wind energy, this quality can
be easily disturbed by the distortion in the supply of the
electric power network that can lead to high costs and
create many problems.

Problem statement and definition. To improve and
ensure the quality of the electrical energy, the
disturbances must be detected and if possible the
detection must be close to the source of these
disturbances. Several criteria can set the quality of energy
which includes the voltage waveform, harmonics, inter
harmonics, transient voltage, frequency voltage,
frequency stability, voltage fluctuations (flicker)...etc [1].
To improve the power quality in [2] found that the load
flow analysis is an important part and essential step for
any power system network computation and it has always
been useful by many power system engineers in this
domain. Furthermore, they propose a novel approach
using a 25 IEEE bus test system to solve the reorder of the
unbalanced distribution network including optimal
distribution network including optimal location of
dispersed production units. By the comparison with other
results obtained before, the results of this new technique
are better to reduce losses and improve the PQ
characteristics in distribution network level. With a same
way, In [3] a modification has been done for the CPC
power theory to four-wire unbalanced power, for

objective to gives the smallest possible line losses in the
same transferred of the active power to the load in non
symmetrical and unbalanced distribute voltage. For this
reason a load flow is an important analysis tool to
improve the PQ [4].

On the other hand, the wavelet transform has an
important part in power system, and the development of
this tool allowed many scientists to operate in various
domains among them power quality. First applied of
wavelets transform in power system by Ribeiro and
Robertson in 1994 [5, 6]. From this year till now the
number of publications in this domain has increased and
the most popular wavelet analysis in power systems are
used and applied for amelioration of power quality.

Overview of the most well-known evolutionary
classifier on the topic. In the literature various methods
based on wavelet transform (WT), fuzzy logic, neural
network (NN), support vector machine (SVM), particle
swarm optimization (PSO) and genetic algorithm (GA)
have been proposed and implemented for PQD
identification and classification.

In [7] present a combination of binary classifiers
method, the proposed PQD classifier is based on WT and
SVM, this method uses a one-vs-one multiclass SVM
(four SVM nodes) each node is contain one event and
trained individually allowing them to be parallelized. In
general, the results display a good performance and the
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PQ events can be detected. A novel method of automatic
classification of hybrid or single PQD is proposed by [1],
this proposed algorithm depend of the Discrete Wavelet
Transform (DWT) and Probabilistic NN based Artificial
Bee Colony (PNN-ABC) optimal feature selection of
PQD, the DWT utilized for the feature extraction of the
disturbances and the PNN is applied as an operative and
dynamic classifier for the classification of the PQD. After
the results, they found that the proposed algorithm is a
significantly upper technique forcharacterize and
identifying the single and various PQD. On the other
hand, [8] are presents a new approach consisting linear
Kalman filter and fuzzy-xpert system for identification
and classification of voltage and current disturbances in
power systems. Linear Kalman filter together with DWT
is used to extract the parameters and these parameters are
the inputs to fuzzy-xpert system that uses to identify the
class of the PQD. A new method to classify and detect
PQD in power system based fuzzy logic (FL) and neural
networks basis radial function (RBFNN) are suggested in
[9], RBFNN used the feature extracted by wavelet as
inputs to generate membership function in FL and
features to collect various events using FL detection and
classification. The comparison showed that the
classification accuracy of the fuzzy logic is improved just
by the help of PSO, more details in [10]. Other techniques
based on fuzzy and WT have been presented in [10, 11].
In [12] is presented another methodology that uses a
maximal overlap discrete wavelet transform (MODWT)
technique to recognition and locating of different PQD,
the coefficients extracted from MODWT used like input
for the classifiers. The obtained results show that the
Decision Tree (DT) provides better classification
accuracy than the SVM at every case with and without
noise. Otherwise, the selection tree is working
satisfactorily ~ with  synthesized or real signals.
Probabilistic neural network (PNN) has been used in [13]
as a function approximation tool for PQD classification
and genetic algorithm (GA) is used to optimize the PNN
parameter and the results demonstrate that the method is
more accurate than the other methods presented. Another
method has been presented in [14], S-transform with
double-resolution (DRST) combined with directed acyclic
graph based on support vector machines (DAG-SVMs).
First, DRST are used for an effective feature extraction
from power signals. Then, the DAG-SVMs classify and
predict the PQD. Obtained results of this proposed show
that the automatic classification algorithm is powerful and
has the ability to distinguish and to detect different power
quality phenomena classes easily. In [15] is displayed a
performance enhancement scheme for the recently
developed extreme learning machine (ELM) for
classifying PQD wusing particle swarm optimization
(PSO), the results indicated that the proposed algorithm
faster and more accurate in discriminating PQD, and
overall accuracy was 97.6 %. Other methods based on
SVM and WT have been presented in [7, 16], wavelet and
neural network [1, 17].

Generally, each research has a different strategy and
this is good for providing information and to predict the
classes of PQD and each method has its negatives and
positives, also the significance of the importance of

unbalanced load flow analysis is needed for more
information and good contribution and to generalize all
PQD especially in transmission network to reduce power
losses and to improve the PQ characteristics for electric
users and their customers.

The goal of the paper is to overcome the
advantages we propose in this paper a recognized method
based unbalanced load flow to extract and calculate
difference system data such as voltage, reactive and active
power. After, this data are used to calculate the energy
deviation of the waveform signal using the discrete
wavelet transform, in which the support vector machines
with  Error-Correcting Output Codes (ECOC-SVM)
locates the importance values including to classify some
kinds of power quality disturbances produced from the
wind energy.

Wavelet transform. Discrete wavelet transform
(DWT) is an implementation using a discrete set of scales
and wavelet translations obeying certain rules. With

a=ay and b=nbyay , where ay > 1, by > 0, and m, n
are integers
+00
DWT = (m,n)= Ix(t)y*(t)dt , )
—00
where «m» scale and «n» shift (translation)
ﬂ
Vet lninfat) o
In other words, this technique decompose the signal
into a set of mutually orthogonal wavelets, which is the
major difference with continuous wavelet transform.
Energy of signal. The energy of the disturbed signal
will divided into different resolution levels by different
ways depending on the power quality events at hand. So,
the standard deviation at different resolution levels of the
decomposed signal (Equations (1) and (2)) and MRA is
proposed in this technique as feature to classify different
power quality problems. The energy used in our study in
equations (3), is the vector containing the percentages of
energy corresponding to the details at different resolution

levels, given by
C
Ed(K):—Z( ZKz)z

where C is the vector contains the wavelet decomposition
and C, is the vector contains the detail coefficients at
level k, using the DWT.

All of the waveforms in this paper are simulated in
MATLAB Simulink with IEEE 9 Bus system [18]. We
generated pure sine wave (frequency 60 Hz and the
amplitude in p.u).

Proposed method. The block diagram in Fig. 1
demonstrate the proposed method. Where the Support
Vector Machine (SVM) with Error-Correcting Output
Codes (ECOC) classifier is proposed to classify and
characterize the power quality disturbances such as
voltage sag, voltage swell and harmonic distortion, which
are possible to be produced from the wind energy.
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Fig. 1. Block diagram representing the simulation steps

Firstly, 3 phases unbalanced load flow analysis is
executed to calculate different electric network
characteristics, levels of voltage, active and reactive power.
After, a wavelet transform is applied to decompose the
signal by DWT. Using the equation (3), we calculate the
energy of the decomposed signal. Finally, the ECOC-SVM

Bus B

SRS

Bus2 ™

classifies and identifies the disturbance type according to
the energy deviation of the DWT.

Applications and results. Possible causes of the
voltage sag include short circuit faults, electric motors
starting, turning on of heavy equipment, capacitor
switching, etc. Sag can occur on multiple-phase or on a
single phase, and are often accompanied by voltage swells
on other healthy phases. Where, the harmonic currents
produced by some nonlinear loads on the system, such as
adjustable speed drives, arc furnace loads, computers,
copiers, etc. The wind power generator has a possibility to
generate all this kinds of disturbances. By this way, we
have generated different power quality problems using the
IEEE 9 Bus model (Fig. 2).

Fig. 2. IEEE 9 bus system network

In this study, sag and swell voltages caused by a
short circuit fault at bus 6 and the rectifiers (diode) are
used in our study as source of harmonics on the network
at the same bus with 90 % power factor (cos6 = 0.9) in
Bus 6, take in consideration the main characteristics of
event in power system [19].

Unbalanced Load Flow Results. Load flow
analysis is an important part and essential step for any
power system network computation and it has always
been useful by many power system engineers in this
domain to improve the power quality and to reduce the
power losses. Most methods use a balanced load flow
(single or simple phase), this gives low information
quantity, especially in three phase system in transmission
or distributed network. For this reason, unbalanced load
flow is needed to extract a maximum of information in

each phase. Table 1, 2 and Fig. 3 presents 3 phase
unbalanced load flow results.
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Fig. 3. Voltage profile of the three phase load flow results
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Table 1 represents the phase magnitude voltage,
angle, active and reactive powers in each generator bus and
Table 2 represent the load buses. It can be seen the non-
symmetrical values in some buses, especially in case of the
manager's fault (phase C), where Fig. 3 shows in detail the
voltage profile and the minimum voltage found in case 4
(harmonics + fault), especially in phase C at bus 6 and its
observed also near to this bus. Furthermore, in the
harmonic disturbance results, there is a difference between
all buses, this is due to the location of the harmonic source
(bus 6) and the total distortion harmonic (THD) in each bus
when THD in bus 1 was 1.16 % in bus 6 30.29 % and 21.3
% in bus 5, The same thing for the other disturbances.

DWT Results. The appropriate select of the mother
wavelet perform an important part in detecting, localizing
and analysing different kinds of signal variations, the
choice relies on the nature of the application. For
detection of low amplitude, short duration, fast decaying
and oscillating type of signals, the most popular wavelets
are Daubechies and Symlets families (db2, db3 and sym2,
sym3... etc). Wavelet Daubechies «db4» is used to
execute the DWT with 11 decomposition levels.

Figure 4 shows the distorted energy distribution at
each level, we could not actually recognize the features.
High and low frequency disturbance come in 5th, 6th and
9th level. The results showed that the sag energy
deviation levels are less than the pure energy deviation
levels, and minimum values concentrates between 6th and
9th levels. Contrary to the value of energy in voltage
swell is more than the pure signal, also the voltage swell
has the maximum energy deviation at level 8. These
figures have been tested and proved using the IEEE 9-bus
network (Fig. 2).
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Fig. 4. Distortion energy distribution in each level

Table 1
Unbalanced load flow results for the Generators Buses
Phase A Phase B Phase C Total
Voltage Power Voltage Power Voltage Power Voltage Power

pu |angle| MW |Mvar| pu | angle | MW | Mvar | pu | angle | MW |Mvar| p.u |angle| MW | Mvar

Normal (pure) | 1.04 | 0 | 274 |-0.67| 1.04 | -120 | 274 | -0.67 | 1.04 | 120 | 274 |-0.67| 1.04 0 |8221|-2.02

BUS 1 Harmonics 1.04 | 0 |2589|2.04|1.04 | —120 [25.89| 2.04 | 1.04 | 120 | 25.89 | 2.04 | 1.04 0 |77.67| 6.13
Fault (phase C) | 1.04 | 0 |25.72| 3.87 | 1.04 | —120 [31.33|-15.15| 1.04 | 120 |106.98|31.07| 1.04 0 [164.04| 19.80
Harm + Fault | 1.04 | 0 | 8.85| 881 | 1.04 | —120 |12.92|-18.22| 1.04 | 120 |106.74|47.96| 1.04 0 [128.51| 38.57

Normal (pure) |1.025| 9.54 |54.32|-2.36|1.025|—110.46 |54.32| —2.36 [1.025|129.54| 54.32 |-2.36| 1.025 | 9.54 |162.97 | —7.07
Harmonics  |1.025] 9.96 |54.33|—1.54|1.025|-110.04 | 54.33| —1.54 |1.025|129.96 | 54.33 |-1.54| 1.025 | 9.96 | 163 | —4.63

BUS 2 Fault (phase C) | 1.025|14.26|54.33 | 0.53 | 1.025| —114.3 |54.33| —2.4 |1.025|113.85| 54.33 | 6.30 | 1.141 | 4.61 | 163 | 4.44
Harm + Fault |1.025|19.15|54.33|-4.82(1.025|-111.17|54.33| —9.57 | 1.025|114.46| 54.33 | 2.58 |1.0091| 7.49 | 163 |-11.81

Normal (pure) |1.025] 2.74 | 28.3 | 7.61 | 1.025|-117.26| 28.3 | 7.61 |1.025|122.74| 283 | 7.61 | 1.025 | 2.74 | 84.90 | 22.83

BUS 3 Harmonics  |1.025] 3.16 |28.33| 9.14 |1.025|-116.54|28.33| 9.14 |1.025|123.46| 28.33 | 9.14 | 1.025 | 3.46 | 85 | 27.42
Fault (phase C) [1.025] 9.93 |28.33| 2.43 |1.025|-122.03 |28.33| 20.59 |1.025|101.67 | 28.33 |38.26|1.0042|-3.46| 85 | 61.28
Harm + Fault |1.025]15.32|28.33|-3.53|1.025|-118.58|28.33| 20.94 |1.025|100.97 | 28.32 |51.27|0.9942|-0.73 | 84.99 | 68.69
Table 2

Unbalanced load flow for the Load Buses
Phase A Phase B Phase C Total
Voltage Power Voltage Power Voltage Power Voltage Power

pu |angle| MW |Mvar| p.u angle | MW |Mvar| p.u | angle | MW |[Mvar| pu | angle | MW |Mvar

Normal (pure) |0.9777 |-3.66|41.63[16.58|0.9777 | —123.66 |41.63|16.580.9777|116.34 |41.63|16.58|0.9777 | —3.66 | 124.89 (49.75
Harmonics | 0.9748 |-3.44|41.67|16.67|0.9748 |—-123.44 |41.67|16.67|0.9748 | 116.56|41.67|16.67|0.9748 | -3.44 | 125 50

Bus3 Fault (phase C) |0.9713|-1.85|41.67|16.67|0.9957 | —125.56 | 41.67 | 16.67|0.9093 | 104.58 | 41.67|16.67|0.9541 | -7.42 | 125 50
Harm + Fault | 1.0103| 2.33 [41.67|16.67|1.0495| —122.4 |41.67|16.67|0.9413|105.86|41.67|16.67|0.9933 | —-4.48 | 125 50
Normal (pure) |0.9879(—4.73(29.88| 9.93 |0.9879|—124.73 |29.88| 9.93 |0.9879|115.27|29.88| 9.93 |0.9879 | —4.73 | 89.64 (29.78
Harmonics |0.9789|-3.86(28.47| 13.8 |0.9789|-123.86 |28.47 | 13.8 |0.9789|116.14|28.47| 13.8 |0.9789| -3.86 | 85.4 |41.4

pUs e Fault (phase C) | 1.0646 |-0.74| 30 10 {0.9382|-124.77| 30 10 |0.7239| 86.77 | 30 10 |0.8835[-10.62| 90 30
Harm + Fault | 1.0933| 2.09 [28.47| 13.8 |0.9448|-119.96 |28.46| 13.8 | 0.5869| 80.18 |28.45| 13.8 | 0.8369 | —7.67 | 85.38 |41.39
Normal (pure) |0.9661 |—1.72(33.42|11.65|0.9661 | —121.72 {33.42|11.65|0.9661 | 118.28 |33.42 | 11.65|0.9661 | —1.72 | 100.25 |34.94
Harmonics | 0.9651| —1.1 [33.33|11.67/0.9651 | —121.1 |33.33|11.67/0.9651 | 118.9 |33.33|11.67|0.9651 | —1.1 100 | 35

BuSs Fault (phase C) | 0.9788 | 4.54 |33.33|11.67|0.9475| —126.1 |33.33|11.67|0.9023 | 99.21 {33.33|11.67|0.9276| —7.09 | 100 | 35
Harm + Fault |0.9984|10.31(33.33|11.67/0.9572|-122.34|33.33|11.67|0.8940| 99.2 |33.33|11.67|0.9273| -3.54 | 100 | 35
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Using the proposed rules extracted from MRA
technique at different levels with MRA curve the
recognizing waveform problem becomes more easily and
we can localize and detect and also classify several PQ
events. When sag occurs, the 8th level also when the
signal suffers harmonic distortion the 5th and 6th levels
show noticeable variations, and this is clear in Fig. 5.

The percentages of energy depend on many factors,
value of the disturbance, the duration, the location of this
disturbance (in which bus) also the parameter of the
network system as lines, load, voltage source...etc.

However, to preserve the complete information Std-
MRA curve values of all levels of MRA are considered as
an input to SVM to classify the power quality events.
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Fig. 5. Families of energy deviation curve for different PQD

Support Vector Machine results. A Support
Vector Machine (SVM) is a special classifier formally
and known by a separating hyperplane. In the other
words, given name as training data (supervised or control
learning), the algorithm outputs an optimal hyperplane
which classify new examples (Fig. 6). For that reason our
objective should be to obtain the line passing as far as
possible from all points. Then, the process of the SVM
algorithm is based on locate the optimal hyperplane that
determinate the largest distance between the two class to
the training examples. In this case, the classification
becomes very dynamic and more precise. Different kernel
functions are used and applied in the literature. The
Gaussian kernel (Equation (4)) is an example of radial
basis function kernel which gives the best results is
selected [20]

- oA

klx,y)=exp| ———|. 4
(x,7)=exp 3 C)
The adjustable parameter o represent a significant
role in the behavior of kernel, and should be carefully
adjust to the problem at hand. If overestimated, the
exponential will behave almost linearly and the higher-
dimensional projection and forecast will start to lose its
non-linear capacity. In the other hand, if underestimated
the function will miss regularization and the decision limit

will be highly sensitive to unrest in training data.
Two-Class Support Vector Machine. From the
simulated signals, DWT is applied to the signals
waveforms. After, the energy of the decomposition levels

obtained using the DWT are used for SVM. The basic
idea of SVM is to plan the training data from the input
area into a higher dimensional feature space through
Gaussian kernel function. By this away, space optimal
hyper plane is specified and determined to maximize the
generalization ability of the classifier. Before the training
process, input data are normalized and divided into 500
sets for training and 300 sets for test. A structure of the
support vector machines consists of 2 or 3 inputs (Energy
level), for example [Ed6 — Ed8] or [Ed6 — Ed8— Ed9] as
illustrated in Table 3. The output variables of the support
vector machines are designated as value range from 1 to
6, which corresponds to the different power quality
problems:

A: «1» corresponds to Voltage swell;

B: «2» corresponds to Voltage sag;

C: «3» corresponds to Harmonic;

D: «4» corresponds to Voltage swell + Harmonic;

E: «5» corresponds to Voltage sag + Harmonic;

F: «6» corresponds to pure (without problems).

We have 5 Two-Class SVM models are used and
each model contains 2 types of the power quality
problems (Table 3). For each SVM model, the adjusted
parameters out-of sample classification error are
investigated as the most appropriate parameters so that the
obtained output is only specified or determined the effect
of choice or with energy level are good for the training of
the SVM and also for the classification. After the training
process, case studies are varied so that the decision
algorithm capability can be verified. The total numbers of
the case studies are 300.

BVM twio classes

* Voltage Swell
28} Voltage Swell+harmanic
* Test1
24 Test 2
= o @ Support Vectors
L o Correctly Classified
225 "
£, &
B it
was »
£os wmog o
® o’ |
16F % T og
o
. o s
14 . Oo Py
L] o @
12 -
L]
1 L] ™
. .
4 % % ® & )

Ed& (%)
Fig. 6. Classification by two-class SVM between Voltage swell
and Voltage swell + Harmonic

Table 3
Out-of sample classification error for two-class SVM
l\/?(ZiI:Ils Ed6 & Ed9 | Ed8 & Ed6 | Ed8 & Ed9 Ed6]<§chgd8&
A&B 0% 2% 2% 0%
B&C 0% 0% 0% 0%
C&E 27 % 7% 10 % 0%
C&D 16 % 13% 21 % 9%
D&E 12 % 3% 5% 0%
Average 12 % 5% 7.6 % 1.8 %
Multi-Class SVM (ECOC-SVM). The most

common framework or methods already used Kernel
functions. Well known classic SVM was developed for
binary classification, if a multi class classifier is needed
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such as the case of PQD classification, particularly where
the signals include more than one disturbance or more
problems, in this situation the SVM needs to be achieved
in several steps. The natural extension is to combine
various binary classifiers to response and to comply a
binary decision tree. Error-Correcting Output Codes
(ECOC) represent a effective structure to handling with
these kinds of problems. However, the performance is
influenced by the size and degree of the problem. In
addition, for the particular case analyzed in this paper,
multi ECOC technique or Fit multiclass models for
support vector machines (fitcecoc) are used [21]. Multi
ECOC technique is based on a reduction of multiclass
classification problems to a set and combination of binary
SVM where certain decoding scheme and coding design
are used for the prediction of classification results
according to binary SVM predictions (Fig. 7):

- max objective evaluations of 30 reached;

- total function evaluations: 30;

- total elapsed time: 50.6946 sec;

- total objective function evaluation time: 8.1846.
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Fig. 7. Min objective vs Number of function evaluations
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Fig. 9. Frequency, current and voltage waveform at bus 3

In this part we will divide the signal produced from
the wind generator at bus 3 into 3 parts (0-0.5 s, 0.5-1 s,
1-5 s), and we will try to detect the different perturbation
on this signal using ECOC-SVM classifier. Table 5 shows
the classification results.
Table 5
PQD classification generated by the wind generator
using Ecoc-SVM classifier

SIGNAL PART | [0-0.5s] | [0.5—15s] | [1.5-4.55]
PQD class D E F

Comparing performance with other classifiers.
Tables 6 and 7 demonstrate the ability of the proposed
method to identify and classify PQD with very high
accuracies averaging to 99.2 %.

Table 6
Percentage of classification by ECOC-SVM

Table 4 d oth .. lassifi
Out-of sample classification error for ECOC-SVM and other existing classifiers
Ed 8 & | Ed 6 & Ed | All Energy levels Type of power | ST with | S-transformand | Proposed
Ed6 | 8&Ed 10 (Ed1-Ed11) quality problem |CFDT [22]| DAG-SVMs [14] | ECOC-SVM

P A 98.66 % 98.5 % 100 %

Out-of sample classification 10.8 % 10 % 329 ° 0 °
error ECOC-SVM B 97.33 % 99 % 100 %

C 100 % 99.5 % 98 %

Wind turbine simulation and results. In this D 98 % 97 % 98 %
section, reconﬁguratlor} of the transmission network in thp E B 995 % 100 %

presence of power wind generator. As we know, this . . ;
reconfiguration can disturb the network parameters and Average 98.49 % B.7% 99.2%

create some PQD (Harmonics and voltage perturbation), Table 7

as seen in Fig. 9, by replacing the generator in bus 3 by a
wind farm power generation and keeping the same power
generation 85 MW (figure 2).

Figures 8 and 9 represent the simulation results,
where Fig. 8 represent the mechanical power of the
turbine and the speed of the asynchronous machine. On
the other hand, Fig. 9 present the frequency, current and
voltage waveform at bus 3 and table 8 represent the 3
phase load flow results with and without wind energy.

Classification accuracy rate of the proposed method compared
with other methods

Method Classification
Proposed method (ECOC-SVM) 99.20 %
Neural network with DWT and fuzzy logic [10]| 98.17 %
Wavelet and fuzzy logic [11] 98.02 %
Wavelet and SVM [7] 93.43 %
PSO-ELM [15] 97.60 %
Fast Dyadic ST with CFDT [22] 98.66 %
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The performance and the efficiency of the proposed
method and algorithm is also compared with other
existing classifiers, including wavelet transform and
neural network, wavelet transform and neural fuzzy,
wavelet and SVM. The most common methods to design
multiclass classification is to determine a series of binary
classifiers and to combine or collect them [14-16]. This

work represents an effective framework to compact with
these types of problems.

The results showed significant performance by
different device and strategy of new problem dependent
designs based on the ternary ECOC-SVM with out-of
sample classification error are relatively low with 3.2 %
(Table 4).

Table 8
Load flow results with and without wind energy in some buses
Phase A Phase B Phase C Total
Voltage Power Voltage Power Voltage Power Voltage \ Power
pu |angle| MW [Mvar| p.u angle | MW |Mvar| p.u | angle | MW |Mvar| p.u |angle| MW | Mvar
Without wind | 1.025 | 2.74 | 28.3 | 7.61 | 1.025 |-117.26 | 28.3 | 7.61 | 1.025 | 122.74| 28.3 | 7.61 | 1.025 | 2.74 | 84.90 | 22.83
BUS 3
With wind 1.02 | 1.11 |28.33| 5.14 | 1.02 | —116.1 [28.33| 5.14 | 1.02 | 123.5 |28.33| 5.14 | 1.02 | 1.15 85 15.42
Without wind | 0.9661 |—1.72|33.42 | 11.65|0.9661 | —121.72 {33.42|11.65|0.9661 | 118.28 |33.42|11.65|0.9661 |—1.72 | 100.25 | 34.94
BUS 8
With wind 0.9555| 2.1 [33.99]10.41{0.9555| —117.9 {33.99|10.41|0.9555{121.9633.99|10.41|0.9555| 1.88 | 101.97| 31.23
Without wind | 0.9879 |—4.7329.88| 9.93 |0.9879 | -124.73 |29.88| 9.93 | 0.9879 | 115.27|29.88| 9.93 {0.9879 |4.73 | 89.64 | 29.78
BUS 6
With wind | 0.9620 | 3.27 {29.77| 8.96 |0.9620 | —-115.84 |29.77 | 8.96 |0.9620|122.90(29.77| 8.96 | 0.9620 | 3.52 | 89.33 | 29.6
Conclusion. distribution systems. Advances in Electrical and Computer

The paper introduces the application and the
implementation of wavelet transform and multiresolution
analysis signal decomposition as a powerful analysis tool
in power system, the property of this wavelet demonstrate
the capacity of this technique to extract significant
information from the analyzed distorted signal. This
information is partitioned into different zones where each
zone can be used to observe and classify power quality
problems. The results show clearly that the precision of
the combination of discrete wavelet transform and support
vector machines algorithm is highly acceptable as shown
in previous tables. In the other hand, the proposed method
is able to recognize and classify different power
disturbance types efficiently with 99.2 % compared with
well known methods. The further work will be the
improvement of the algorithm by taking in consideration
the real signals for the development of the practical
protection system, it can also help in finding and locating
the source and the cause of disturbance.

REFERENCES
1. Khokhar S., Mohd Zin A.A., Memon A.P., Mokhtar A.S. A
new optimal feature selection algorithm for classification of
power quality disturbances using discrete wavelet transform and
probabilistic neural network. Measurement, 2017, vol.95, pp.
246-259. doi: 10.1016/j.measurement.2016.10.013.
2. Roosta A., Eskandari H.-R., Khooban M.-H. Optimization
of radial unbalanced distribution networks in the presence of
distribution generation units by network reconfiguration using
harmony search algorithm. Neural Computing and Applications,
2018, vol.31, no.11, pp. 7095-7109. dei: 10.1007/s00521-018-
3507-0.
3. Skrbi¢ B., Mikulovi¢ J., Sekara T. Extension of the CPC
power theory to four-wire power systems with non-sinusoidal
and unbalanced voltages. International Journal of Electrical
Power & Energy Systems, 2019, vol.105, pp. 341-350. doi:
10.1016/j.ijepes.2018.08.032.
4. Emiroglu S., Uyaroglu Y., Ozdemir G. Distributed reactive
power control based conservation voltage reduction in active

Engineering, 2017, vol.17, no4, 99-106. doi:
10.4316/aece.2017.04012.

5. Ribeiro P.F Wavelet transform: an advanced tool for
analyzing non-stationary harmonic distortion in power system.
Proceedings of the IEEE International Conference on Harmonics
in Power Systems, Bologna, Italy, September 21-24, 1994.

6. Robertson D., Camps O., Mayer J. Wavelets and power
system transients: feature detection and classification.
Proceedings of SPIE international symposium on optical
engineering in aerospace sensing, Orlando, FL, USA, April 5-8,
1994, vol.2242, pp. 474-487.

7. De Yong D., Bhowmik S., Magnago F. An effective power
quality classifier using wavelet transform and support vector
machines. Expert Systems with Applications, 2015, vol.42,
no.15-16, pp. 6075-6081. doi: 10.1016/j.eswa.2015.04.002.

8. Abdelsalam A.A., Eldesouky A.A., Sallam A.A.
Classification of power system disturbances using linear Kalman
filter and fuzzy-expert system. International Journal of
Electrical Power & Energy Systems, 2012, vol.43, no.1, pp.
688-695. doi: 10.1016/j.ijepes.2012.05.052.

9. Kanirajan P., Kumar V.S. Wavelet-based power quality
disturbances detection and classification using RBFNN and
fuzzy logic. International Journal of Fuzzy Systems, 2015,
vol.17, iss.4, pp 623-634. doi: 10.1007/s40815-015-0045-0.

10. Reaz M.B.1,, Choong F., Sulaiman M.S., Mohd-Yasin F.,
Kamada M. Expert system for power quality disturbance
classifier. IEEE Transactions on Power Delivery, 2007, vol.22,
no.3, pp. 1979-1988. doi: 10.1109/tpwrd.2007.899774.

11. Guo-Sheng Hu, Jing Xie, Feng-Feng Zhu. Classification of
power quality disturbances using wavelet and fuzzy support vector
machines. 2005 International Conference on Machine Learning and
Cybernetics, 2005. doi: 10.1109/icmlc.2005.1527633.

12. Upadhyaya S., Mohanty S. Localization and classification of
power quality disturbances using maximal overlap discrete
wavelet transform and data mining based classifiers. /FAC-
PapersOnLine, 2016, vol49, iss.1, pp 437-442. doi:
10.1016/j.ifacol.2016.03.093.

13. Manimala K., Selvi K. Power disturbances classification
using S-transform based GA—PNN. Journal of The Institution of
Engineers (India): Series B, 2015, vol.96, iss.3, pp 283-295.
doi: 10.1007/s40031-014-0144-6.

pp.

68

ISSN 2074-272X. Electrical Engineering & Electromechanics. 2019. no.6



14. LiJ., Teng Z., Tang Q., Song J. Detection and classification
of power quality disturbances using double resolution S-
transform and DAG-SVMs. [EEE  Transactions on
Instrumentation and Measurement, 2016, vol.65, no.10, pp.
2302-2312. doi: 10.1109/tim.2016.2578518.

15. Ahila R., Sadasivam V., Manimala K. An integrated PSO
for parameter determination and feature selection of ELM and
its application in classification of power system disturbances.
Applied Soft Computing, 2015, vol.32, pp 23-37. doi:
10.1016/j.as0¢.2015.03.036.

16. Bosnic J.A., Petrovic G., Putnik A., Mostarac P. Power
quality disturbance classification based on wavelet transform
and support vector machine. 2017 1ith International
Conference  on  Measurement, May  2017. doi:
10.23919/measurement.2017.7983524.

17. Bhavani R., Prabha N.R. A hybrid classifier for power
quality (PQ) problems using wavelets packet transform (WPT)
and artificial neural networks (ANN). 2017 IEEE International
Conference on Intelligent Techniques in Control, Optimization
and  Signal  Processing (INCOS), Mar. 2017. doi:
10.1109/itcosp.2017.8303073.

18. Available at:
https://www.mathworks.com/matlabcentral/fileexchange/45936-
ieee-9-bus?s_tid=srchtitle (accessed 13 May 2018).

19. Muhammad Zaid M., Malik M.U., Bhatti M.S., Razzaq H.,
Aslam M.U. Detection and classification of short and long
duration disturbances in power system. Journal of Electrical
Systems, 2017, vol.13, iss.4, pp 779-789.

How to cite this article:

20. Ekici S. Classification of power system disturbances using
support vector machines. Expert Systems with Applications,
20009, vol.36, is8.6, PP 9859-9868. doi:
10.1016/j.eswa.2009.02.002.

21. Escalera S., Pujol O., Radeva P. On the decoding process in
ternary error-correcting output codes. [EEE Transactions on
Pattern Analysis and Machine Intelligence, 2010, vol.32, no.1,
pp. 120-134. doi: 10.1109/tpami.2008.266.

22. Biswal M., Dash P.K. Measurement and classification of
simultaneous power signal patterns with an S-transform variant
and fuzzy decision tree. [EEE Transactions on Industrial
Informatics, 2013, vol9, no.4, pp. 1819-1827. doi:
10.1109/tii.2012.2210230.

Received 12.08.2019

Ala eddine Rahmani', Ph.D Student in Electrical Engineering,
Linda Slimani', Doctor in Electrical Engineering, Professor,
Tarek Bouktir', Doctor in Electrical Engineering, Professor,

! Department of Electrical Engineering,

Université Ferhat Abbas Sétif 1, Algeria,

phone: +213 658 210 102,

e-mail: alaaeddinrahmani@yahoo.fr,
slimaniblinda@gmail.com, tbouktir@univ-setif.dz

Rahmani A., Slimani L., Bouktir T. Unbalanced load flow with hybrid wavelet transform and support vector machine
based error-correcting output codes for power quality disturbances classification including wind energy. Electrical
engineering & electromechanics, 2019, no.6, pp. 62-69. doi: 10.20998/2074-272X.2019.6.09.

ISSN 2074-272X. Electrical Engineering & Electromechanics. 2019. no.6 69



