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ON-LINE VOLTAGE STABILITY EVALUATION USING NEURO-FUZZY INFERENCE
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Purpose. In recent years, the problem of voltage instability has received special attention from many utilities and researchers. The
present paper deals with the on-line evaluation of voltage stability in power system using Adaptive Neuro-Fuzzy Inference System
(ANFIS). The developed ANFIS model takes the voltage magnitudes and their phases obtained from the weak buses in the system as
input variables. The weak buses identification is formulated as an optimization problem considering the operating cost, the real
power losses and the voltage stability index. The recently developed Moth-Flame Optimization (MFO) algorithm was adapted to solve
this optimization problem. The validation of the proposed on-line voltage stability assessment approach was carried out on IEEE 30-
bus and IEEE 118-bus test systems. The obtained results show that the proposed approach can achieve a higher accuracy compared
to the Multi-Layer Perceptron (MLP) and Radial Basis Function (RBF) neural networks. References 37, tables 3, figures 10.
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B nocneonue 200v1 npoonema necmaduibHOCMU HANPANCEHUA NPUBTEKIA 0COD0E BHUMAHUE MHOUX CIYHCO IKCRAyamauyuu u
uccnedosameneil. Hacmoauwiaa cmamosa noceauiena oyeHKe 6 pejcume OHNAiH CIaduibHOCIMU HANPANCEHUA 6 IHepZocUCHeMme
C UCNOIb308aAHUEM AOANMUBHOI Helipo-HeuemKoul cucmemul 6v1600a (ANFIS). Pazpabomannaa mooens ANFIS npunumaem ¢
Kauecmee 6X00HbIX NEPEMEHHBIX GeTTUUUHBL HANPANCEHUS U UX (a3bl, nonyuennble om wun ¢ cucmeme. Hoenmugpukayun wun
chopmynupoeana Kak 3a0aua ORMuUMU3AyUU, YUUmMsléaouias IKCRIyamayuoHnsle pacxoosl, peansHvle ROmMepu MOUHOCHU U
nokaszamens cmabunviHocmu nanpadcenusn. Heoagno paspabomannviii anzopumm onmuMu3zauuu Memooom MOMbBLILKA U
naamenu (MFO) adanmuposan 0na peuwienus oannoiui 3a0auu onmumusayuu. Ilpoeepka npeonoxicennozo nodxoda K OHNAlH
oyenke cmadunbHOCmu Hanpsaicenus 6 cemu nposoounacv na mecmoevix cucmemax IEEE ¢ 30 wwunamu u IEEE co 118
wiunamu. Ilonyuennvie pesynvmamovl noKa3vleaiom, umMo npeonazaemvlii NOOX00 Modcem obecneuums 0onee GblCOKYIO
MOYHOCMb NO CPAGHEHUIO C MHO20YPO6Hesbimu Heupouuvimu cemamu (MLP) u neiiponnvimu cemamu ¢ paouanbHuimu
bazucnvimu ynkyuamu (RBF). bubn. 37, 1adn. 3, puc. 10.

Kniouesvie cnosa: cTadMIBLHOCTH HANPSIKEHHs, TOKa3aTeJdb CTAOMJILHOCTH HANPSLKEHWS CeTH, ONTHMH3AIHUs MeTOAOM

MOTBHUIbKA U INIAMEHH, aJaNITUBHANA Heﬁpo-ﬂequKaﬂ cCHUCTEeMa BbIBO/1A.

Introduction. The changes in power systems’
parameters such as loading, generator reactive power
limits, action of tap changing transformers, load recovery
dynamics and line or generator outages may cause a
gradually and uncontrolled drop of voltages leading to
voltage instability [1]. Several methods have been proposed
for voltage stability analysis, such as modal analysis [2],
sensitivity analysis [3], continuation power flow [4], and
voltage stability indices [5]. However, these methods are
inappropriate for on-line voltage stability evaluation due to
the time consumption and computational requirement,
mostly in the case of large power systems.

In recent years, the application of Artificial Neural
Networks (ANNs) in voltage stability assessment has
attained increasing importance. The main reasons are its
ability to do parallel data processing with high accuracy
and fast response [6]. Several ANN architectures have been
proposed in the literature for on-line voltage stability
monitoring. Debbie, et al. [6] presented an ANN-based
Multi-Layer Perceptron (MLP) method for on-line voltage
stability monitoring. Chakrabarti [7] developed a new
method for on-line voltage stability monitoring using MLP
network and regression-based technique of selecting
features for training the network. A single ANN trained by
the back-propagation algorithm to evaluate the voltage
stability of power system incorporating FACTS devices has
been proposed in [8]. Further enhancement of ANN
performance in an on-line monitoring of voltage stability
has been achieved by reducing the input data into an
optimal size using Z-score-based algorithm [9]. It is
worthwhile to note that the load real and reactive powers
are generally used as the input information for the ANN.
The application of ANN-based Radial Basis Function
(RBF) for on-line voltage stability evaluation has been

performed by several researchers [10-13]. Although the
ANN has gained attention from researchers as a tool for on-
line voltage stability evaluation, it requires an extensive
training process and a complex design procedure [14].

The ANFIS is a powerful artificial intelligent
technique that combines the advantages of fuzzy logic and
neural network. It has been applied to different power
system areas such as transmission line faults [15], power
quality [16], frequency control [17], and power system
stability [18]. One of the first voltage stability approaches
in which ANFIS algorithm was applied is reported in
[19]. In [20], a novel approach for voltage stability
evaluation using ANFIS model has been developed. The
developed method is constructed in conjunction with the
input information of voltage stability indices termed as
the VOSTA, while the MW distance between the
operation point and the collapse point is taken as the
output vector. Authors in [21] used a subtractive
clustering (SC) method and ANFIS to predict the Voltage
Stability Margin (VSM), where different voltage stability
indices are used as input variables. The ANFIS model has
been also adapted to predict the loadability margin of the
power system incorporated STATCOM and SVC, the real
and reactive powers at all buses are used as the input
variables [22, 23]. However, for large power systems,
training ANFIS model with large input features consumes
large training time.

In this paper, ANFIS soft computing technique is
applied with the aim of developing an on-line voltage
stability evaluation model. The developed ANFIS model
takes the voltage magnitudes and phase angles obtained
from the weak buses in the power system as the input
features. In order to identify the weak buses in the system,
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an optimization problem considering the operating cost,
the real power losses and the voltage stability index is
formulated. The recently developed Moth-Flame
Optimization (MFO) algorithm [24] is adapted to solve
the optimization problem. The proposed approach is
implemented on IEEE 30-bus and IEEE 118-bus test
systems. The results of comparison indicate that the
proposed model could achieve more accurate results than
the Multi-Layer Perceptron (MLP) and Radial Basis
Function (RBF) neural networks techniques.

ANFIS architecture. ANFIS introduced by Jang
[25], is a machine learning technique incorporates the
advantages of ANN and fuzzy logic system. The ANFIS,
which is based on the Sugeno—fuzzy inference model,
constructs an input—output mapping according to both
fuzzy if-then rules and stipulated input—output data pairs
[26]. The fuzzy if-then rules are given by the following
equations [25]:

Rule 1: if x is 4; and y is B,

fi=px+qy+n, )]
Rule 2: if x is 4 and y is B,
fr=px+qy+n, (2)

where x and y are the inputs, 4; and B; are the fuzzy sets, f;
is the /™ output, p;, ¢; and r; are the design parameters
determined by the neural network.

Generally, the ANFIS consists of five layers
configured analogously to any multi-layer feed-forward
neural network. The functionality of these five layers is
given as follows [25]:

e Layer 1 every node in this layer is given by:

0y :ﬂAi(x)» i=1,2 )

Oy = pugi(v), i=1,2; “4)
where z4(x) and up(y) can adopt any fuzzy membership
function (MF).

e Layer 2 this second layer is considered as a rule
layer. The inputs of this layer are the MFs and the outputs
are given as:

W= pgi(x) ppi(y), i=1,2; ®)

e Layer 3 the nodes in this layer play a normalization
role.

1 7 — .

W1+W2’l 1,2; (6)

e Layer 4 nodes are adaptive with node function given
by Layer 1 for a first-order model, and with parameters
referred to as defuzzifier of consequent parameters.

e Layer 5 consists of single node, which makes the
sum of all the rules’ outputs.

In this paper, ANFIS with Subtractive Clustering
(SC)-based learning technique [27] has been used. The SC
technique has the advantage among others clustering
methods that its computation is simply proportional to the
number of data points and independent of the dimension of
the problem under consideration. This is a very useful
feature to benefit from regarding the need of fast calculation
time [21]. Details of the algorithm can be found in [28].

Determination of weak buses using Moth-Flame
Algorithm MFO Optimization.

Line voltage stability index (L,,). Voltage stability
evaluation is currently one of the most important research

i

areas in the field of electrical power system. Several
methods have been used for voltage stability evaluation
and weak buses identification, such as P-V and Q-V
curves [29], continuous power flow [30] and voltage
stability indices [5]. In this paper, the line voltage stability
index L,, [31] is used for on-line voltage stability
evaluation. The L,,, index is defined as follows:
LMH:&SLO, @)
[V, sin(0-8)F
where X is the line reactance, Q, is the reactive power at
the receiving end, V; is the sending end voltage, 6 is the
line impedance angle and ¢ is the angle difference
between the supply voltage and the receiving voltage.

The value of L, index ranges from 0 (no load) to 1
(voltage collapse) and it must be less than 1 for stable
systems.

Problem formulation. In this section the
methodology to find the weak buses in an existing power
system is presented. The main reason for the voltage
collapse is the sag in reactive power at various locations
in power system. Therefore, the weak buses in the power
system can be identified as the buses which need reactive
power support. In this context, the identification of the
weak buses can be mathematically formulated as a non-
linear optimization problem, where the main objective is
the determination of the optimal location for var sources.
The objective function, which has been handled by using
meta-heuristic algorithms, includes the fuel cost, real
power losses and voltage stability index. The general
optimization problem can be written in the following
form:

NG NL
min[f]: th + PLoss +2Lmn > ®
i=l i=l

where f; is the fuel cost of the i generator, NG is the
number of generators in the power system.

The fuel cost curve is modeled by quadratic function as:

i =a; +biPg; + PG ©))

where Pg; is the actual power produced in the /™ generator
a;, b;, and ¢; are the invariant factors.

The active power loss is expressed as follow:

Pross = ZPGi - ZPLj .
ieNG JeNL

The L,,, index is considered as the third part of the
objective function. The equality and inequality constraints
to be satisfied while searching for the optimal solution
can be described by (11) — (15). The equality constraints
represent the real and reactive power equations, which are
expressed as follows:

(10)

Nb
i=
Nb . (1D
le' - le' = |UI|Z|U/|(GU 00551']' + Blj Sin 51/)
The system inequality operation constraints include:
PI < Py < PR (12)

oM <0, <Om (13)

48 ISSN 2074-272X. Electrical Engineering & Electromechanics. 2019. no.2



min max ., . _ .
Vgi SVngVg[ N 1_1, 2,...,Nb,

(14)

Vit <y, <V i=1,2, .0, Ny, (15)
where N, is the number of buses, P,; and Q,; are the active
and reactive power generations at i~ bus, P; and Q; are the
active and reactive power demands at i bus, P; and Q; are
the active and reactive power injections at i bus, G;, By
and J;; are the conductance, the admittance and the phase
difference of voltages between the i™ and /™ bus.

The Moth-Flame Optimization (MFO) algorithm
developed by Seyedali Mirjalili [24] is a novel meta-
heuristic optimization technique inspired by the
navigation of moths in nature called transverse
orientation. In this method, moths fly in the night by
maintaining a fixed angle with the moon, a very effective
mechanism for traveling in a straight line for long
distances [24]. However, sometimes these insects are
cheated by human-made lights. Since such light is very
nearly compared to the moon, using the same navigation
method by maintaining an analogous angle with the light
leads to a worthless spiral fly path, and the moth
ultimately converges to the light as shown in Fig. 1.

~PB+§ﬁ%qa‘

Fig. 1. Spiral flies of moths around a human-made artificial light

Moth-Flame algorithm utilizes this demeanor to
achieve the optimal solutions and presumes moths as the
candidate solutions and their positions in the space as the
optimization problem’s variables. The flames are related
to the optimal solutions (positions) that moths traversed
so far in the optimization process [24].

MFO algorithm is a population-based algorithm, so
the set of moths is represented in a matrix M

my mp my g4
my1 My my.q
M= T 7 N (16)
my1 My my da
The set of flames can be also represented by
K, Hp Fa
Fy Fp Fry
o . (17)
Fn,l Fn,2 Fn,d

where 7 is the number of moths and d is the number of
variables.

For evaluating each moth, the fitness function
should be given during optimization process, and the
matrix OM and OF are employed to store the fitness value
of moths and flames, respectively

oM,

oM,

om=|"12 ], (18)

oM,

OF,

OF,

oF=|".7|, (19)

OF,

n
where 7 is the number of moths and d is the number of
variables.

In order to mathematically model the transverse
orientation, the position of each moth is updated with
respect to a flame using the equation

M, :S(Mi,Fj)zDi e -cos(27z-t)+Fj, (20)

where M; indicates the /™ moth; F; indicates the j* flame; and
S is the spiral function; D indicates the distance of /™ moth
for /™ flame, b is a constant for determining the shape of the
logarithm spiral, and # is a random number in [-1, 1].

D; is calculated as follows

D, =|F-M,|. @1

Another concern here is that updating the position of
moths with respect to n different locations in the search
space may degrade the exploitation of the best promising
solutions. To resolve this concern, an adaptive mechanism
is used to provide the number of flames. The following
formula is utilized in this regard:

flameno = round(N -1 %) ,

(22)
where iter is the current number of iteration, N is the
maximum number of flames and max iter is the
maximum number of iterations.

The gradual decrement in number of flames balances
the exploration and exploitation of the search space.

Weakest buses identification. The implementation of
MFO optimization algorithm in weak locations
identification is represented in Fig. 2 and summarized into
the following steps:

e Step 1. Read power system data (bus data, line data,
and generator data);

o Step 2. Set the values of MFO parameters such as:

- the number of moths;

- the maximum number of iterations;

- the number of variables;

- the upper and the lower bounds of variables (the
real power outputs and the location of reactive power
support). The candidate locations are in the range [1 Np],
where N, is the number of load buses in the system;

e Step 3. Initialize the position of moths and the
number of flames;

o Step 4. Update the flame number;

e Step 5. Input the positions of moths into the power
flow program and compute the fitness value of each moth
according to the objective function;

e Step 6. The population of moths with the optimal
fitness values will be selected as the flames;

e Step 7. Update the position of moth with respect to
its corresponding flame or one flame;
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¢ Step 8. Obtain the best moth and fitness value;

e Step 9. If the stop criterion is achieved, go to the
Step 10. Otherwise, repeat steps 4 to the 9;

e Step 10. The best moth comprised the best fitness
value was selected and the best location for reactive
power support was obtained.

Read power system data

|

‘ Set the values of Moths

!

Imitialize the position of moths
and the number of flames

Update the flame
number

|

compute the fitness value of
each moth according to the
objective function

A

Select the optimal fitness values of
moths as the flames

Updatethe position of moth with respect to
its corresponding flame

l

‘ Obtainthe best moth and

Next iteration

fitness value

1

)

Satisfy stopping
creterion

|G

Obtaine the best location for

reactive power support

Fig. 2. Flowchart of the proposed weak buses identification
method

Voltage stability Assessment Using ANFIS Model.
In this section, the proposed methodology to assess the
voltage stability using ANFIS model is described. The
main idea of the proposed method is presented in Fig. 3.
The first step in the off-line phase involves the data
preparation for the training and testing steps of the
ANFIS model. The training and testing data sets are
generated by varying both of the real and reactive powers
at all system buses. The load is increased from the base
value until the system achieves the maximum loading
point leads to the collapse in a power system operation.
Simultaneously, the L,, is calculated corresponding to
the different operating points.

The voltage magnitudes and phase angles extracted
from the weak buses in the system are taken as the input
variables of the ANFIS model. While the maximum
corresponding values of L, are considered as the output

variables. In order to evaluate the performance of the
proposed ANFIS model, the difference between the
predicted and the actual output values was assessed
according to the correlation coefficient (R), the root mean
square error (RMSE) and the mean absolute percentage
error (MAPE). These indices are represented by the
following equations [27, 28].

> @ -a)p-P)

= : 23)

i<a,-—afg<e—ﬁ)z

(24)

n
MAPE = 100

n

a;— b

a;

; (25

i=1
where a and P denote the actual output and predicted
output sets, respectively, » is the total number of data.
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Fig. 3. Schematic of the proposed on-line voltage stability
evaluation method

Simulation and results. This section presents the
details of the simulation studies carried out on IEEE 30-
bus and 118-bus test systems. The IEEE 30-bus power
system consists of 6 generators, 41 branches, 4 tap
changing transformers and 2 capacitors as shown in Fig. 4.
The IEEE 118-bus system consists of 54 generators, 186
transmission lines, 9 tap changing transformers and 14
capacitors as shown in Fig. 5. The data of the generators,
loads, and transmission lines for both test systems are
given in [32]. The simulation was done using the
computer with specification Intel® Core™ I5-
2328MCPU@2.20GHz.

30 29 28

Fig. 4. Line diagram of the IEEE 30-bus system
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Fig. 5. Line diagram of the IEEE 118-bus system

Weak Buses Identification and Ranking. As it is
mentioned above, the proposed method to find the weak
buses is based on the determination of the optimal
location for Var sources. The identification and the
ranking of the first five weak buses in the system are
performed using the MFO optimization technique where
the buses are ranked starting with the most critical bus.
The obtained results in the case of IEEE 30-bus system
are tabulated in Table 1. This Table shows also a
comparison between the results obtained by using the
proposed method and the results found by other existing
methods in the literature. It is clearly shown form this
Table that the buses 30, 26 and 29 are identified as the
weakest locations in the IEEE 30-bus test system.

Table 1
Weak buses ranking for IEEE 30-bus system
Ref [33] 30, 26, 29, 25, 27
Ref [34] 30, 26, 29, 14, 23
Ref [35] 30, 26, 29, 19, 20
Ref [36] 30, 26, 29, 21, 24
Proposed method 30, 26, 29, 28, 7

The proposed method is applied also to determine
the weak buses in the 118-bus system. This power system
can be regarded as a realistic transmission level power
network in terms of number of buses and branches. It
consists of 118 bus and 186 branches. By using the
proposed method, the first five weakest buses in the 118-
bus system are fond to be 118, 88, 57, 16 and 117.

T T

Training Error

0 50 100 150 200 250 300

Number of Epochs
a

Application ANFIS model in voltage stability
assessment. In this section, the ANFIS-based Subtractive
Clustering SC method has been developed to estimate the
L, index. The input variables of ANFIS model are the
voltage magnitudes and the phase angles of weak buses,
while the output is the corresponding highest value of L,,,
index. The dataset is generated, using conventional power
flow, by varying the load at all buses from the base case
to the collapse point. 80 % of the generated data are used
as the training samples, while the rest 20 % are used to
test the ANFIS model. Afterward, to evaluate the
performance of ANFIS model, the difference between the
predicted and actual output values were evaluated
according to the correlation coefficient (R), the root
means square error (RMSE) and the mean absolute
percentage error (MAPE).

In order to generate fuzzy rules, using SC technique,
it is critical to determine the adequate value of cluster
radius. According to [37], good values for cluster radius
are usually between 0.2 and 0.5. Table 2 presents the
ANFIS model performance for different cluster radius
values. It is clear from the results that the best value of
cluster radius was 0.2 for both test systems.

Table 2
RMSE results under different cluster radius

Power Cluster radius values

system 0.2 0.3 0.4 0.5
IEEE | 5 5437.10% | 8.6545.10%] 13-10° 14107
30-bus

IEEE 1) 4285.10 | 2.1324-10|2.6604-104|2.5255.10°*
118-bus

Based on the above settings, the ANFIS model was
trained for the base case and for the different operating
conditions. Fig. 6,a,b depict the training curves of ANFIS
model in the case of the IEEE 30-bus and IEEE 118-bus
systems. Fig. 7, 8 shows the comparison between the
calculated L,,, index using conventional load flow and the
estimated ones in the case of IEEE 30-bus and IEEE 118-
bus test systems, respectively. It is clearly seen that the
ANFIS predictions are in good.

Training Error

100 150 200 250 300
Number of Epochs

b

Fig. 6. Training curves of ANFIS models in the case of IEEE 30-bus system (@) and IEEE 118-bus system ()

Accordance with the load flow values in both steps.
Fig. 9,a,b shows the testing absolute error between the L,
index predicted using the ANFIS model and the Z,,, index
computed by the conventional load flow in the case of
IEEE 30-bus and IEEE 118-bus test systems, respectively.

It is clearly shown from this Figure that the ANFIS output
values are very close to the target values with maximum
absolute error equal to 0.81-107 in the case of IEEE 30-bus
and 1.39-10 in the case of IEEE 118-bus system.
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Fig. 9. Absolute error in the case of IEEE 30-bus system (a), IEEE 118-bus system (b)

Fig. 10 shows the Linear fits between the actual and
the predicted values of L,, index for both test systems.
The ANFIS predictions yield a correlation coefficient of
0.9823 and 0.9573, in testing phase, for both the IEEE 30-
bus and IEEE 118-bus cases, respectively. The obtained
results revealed that the ANFIS model has a good
prediction capability.

In order to further assess the performance of the
ANFIS model in the prediction of the L,, index, the
obtained results are compared, using the same dataset,

with that of Multi-Layer Perceptron (MLP) and Radial
Basis Function (RBF) neural network [9, 13]. A
comparison of the statistical indicators values and
computation time, for the different models, is listed in
Table 3. It is clearly seen, for both case studies of IEEE
30-bus and IEEE 118-bus systems, that the ANFIS model
acquired relatively lower values of RMSE and MAPE, this
means that the trained ANFIS model has a superior
performance compared to the MLP and RBF networks.
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Fig. 10. Linear fits between the actual and the predicted values of L, in testing phase for IEEE 30-bus system (a),
IEEE 118-bus system ()

Table 3
Performance Comparison of ANFIS, MLP and RBF
Performance Training Testing
Power system .
indices ANFIS MLP RBF ANFIS MLP RBF
RMSE 3.01:10* | 0.0029 | 0.0020 | 5.24-10°% | 0.004 | 0.0032
IEEE 30-bus MAPE 0.0748 0.6504 | 0.3238 0.1090 0.9657 | 0.6004
Time (s) 6.989 1.9940 | 0.6470 0.0800 0.0060 | 0.0040
RMSE 9.38-10° | 0.0025 | 0.0015 | 1.42-10* | 0.0025 | 0.0015
IEEE 118-bus MAPE 0.02700 0.8410 | 0.4552 0.04030 0.8833 | 0.4542
Time (s) 6.2018 3.5690 | 1.1384 0.07980 0.0065 | 0.0088
Conclusion. This paper presented the application of 5. Modarresi J., Gholipour E., Khodabakhshian A. A

an Adaptive Neuro-Fuzzy Inference System (ANFIS) in
on-line voltage stability assessment. The input features of
the developed ANFIS model were the voltage magnitudes
and phase angles obtained from the weak buses in the
system. The problem of weak buses identification is
formulated as an optimization problem and solved using
Moth-Flam Optimization (MFO) algorithm. The ability of
the developed ANFIS model to predict the voltage
stability margin was carried out on IEEE 30-bus and
IEEE 118-bus test systems. Three statistical performance
indices of correlation coefficient (R), root mean square
error (RMSE) and mean absolute percentage error
(MAPE) were considered to further assess the modeling
performance. Through the comparison with MLP and
RBF neural networks, the ANFIS model shows
superiority in the accuracy of estimating the L,,, index.
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