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ON-LINE VOLTAGE STABILITY EVALUATION USING NEURO-FUZZY INFERENCE 
SYSTEM AND MOTH-FLAME OPTIMIZATION ALGORITHM 
 
Purpose. In recent years, the problem of voltage instability has received special attention from many utilities and researchers. The 
present paper deals with the on-line evaluation of voltage stability in power system using Adaptive Neuro-Fuzzy Inference System 
(ANFIS). The developed ANFIS model takes the voltage magnitudes and their phases obtained from the weak buses in the system as 
input variables. The weak buses identification is formulated as an optimization problem considering the operating cost, the real 
power losses and the voltage stability index. The recently developed Moth-Flame Optimization (MFO) algorithm was adapted to solve 
this optimization problem. The validation of the proposed on-line voltage stability assessment approach was carried out on IEEE 30-
bus and IEEE 118-bus test systems. The obtained results show that the proposed approach can achieve a higher accuracy compared 
to the Multi-Layer Perceptron (MLP) and Radial Basis Function (RBF) neural networks. References 37, tables 3, figures 10. 
Key words: voltage stability, line voltage stability index, Moth-Flame optimization, adaptive neuro-fuzzy inference system. 
 
В последние годы проблема нестабильности напряжения привлекла особое внимание многих служб эксплуатации и 
исследователей. Настоящая статья посвящена оценке в режиме онлайн стабильности напряжения в энергосистеме 
с использованием адаптивной нейро-нечеткой системы вывода (ANFIS). Разработанная модель ANFIS принимает в 
качестве входных переменных величины напряжения и их фазы, полученные от шин в системе. Идентификация шин 
сформулирована как задача оптимизации, учитывающая эксплуатационные расходы, реальные потери мощности и 
показатель стабильности напряжения. Недавно разработанный алгоритм оптимизации методом мотылька и 
пламени (MFO) адаптирован для решения данной задачи оптимизации. Проверка предложенного подхода к онлайн 
оценке стабильности напряжения в сети проводилась на тестовых системах IEEE с 30 шинами и IEEE со 118 
шинами. Полученные результаты показывают, что предлагаемый подход может обеспечить более высокую 
точность по сравнению с многоуровневыми нейронными сетями (MLP) и нейронными сетями с радиальными 
базисными функциями (RBF). Библ. 37, табл. 3, рис. 10.  
Ключевые слова: стабильность напряжения, показатель стабильности напряжения сети, оптимизация методом 
мотылька и пламени, адаптивная нейро-нечеткая система вывода.  
 

Introduction.  The changes in power systems’ 
parameters such as loading, generator reactive power 
limits, action of tap changing transformers, load recovery 
dynamics and line or generator outages may cause a 
gradually and uncontrolled drop of voltages leading to 
voltage instability [1]. Several methods have been proposed 
for voltage stability analysis, such as modal analysis [2], 
sensitivity analysis [3], continuation power flow [4], and 
voltage stability indices [5]. However, these methods are 
inappropriate for on-line voltage stability evaluation due to 
the time consumption and computational requirement, 
mostly in the case of large power systems. 

In recent years, the application of Artificial Neural 
Networks (ANNs) in voltage stability assessment has 
attained increasing importance. The main reasons are its 
ability to do parallel data processing with high accuracy 
and fast response [6]. Several ANN architectures have been 
proposed in the literature for on-line voltage stability 
monitoring. Debbie, et al. [6] presented an ANN-based 
Multi-Layer Perceptron (MLP) method for on-line voltage 
stability monitoring. Chakrabarti [7] developed a new 
method for on-line voltage stability monitoring using MLP 
network and regression-based technique of selecting 
features for training the network. A single ANN trained by 
the back-propagation algorithm to evaluate the voltage 
stability of power system incorporating FACTS devices has 
been proposed in [8]. Further enhancement of ANN 
performance in an on-line monitoring of voltage stability 
has been achieved by reducing the input data into an 
optimal size using Z-score-based algorithm [9]. It is 
worthwhile to note that the load real and reactive powers 
are generally used as the input information for the ANN. 
The application of ANN-based Radial Basis Function 
(RBF) for on-line voltage stability evaluation has been 

performed by several researchers [10-13]. Although the 
ANN has gained attention from researchers as a tool for on-
line voltage stability evaluation, it requires an extensive 
training process and a complex design procedure [14]. 

The ANFIS is a powerful artificial intelligent 
technique that combines the advantages of fuzzy logic and 
neural network. It has been applied to different power 
system areas such as transmission line faults [15], power 
quality [16], frequency control [17], and power system 
stability [18]. One of the first voltage stability approaches 
in which ANFIS algorithm was applied is reported in 
[19]. In [20], a novel approach for voltage  stability 
evaluation using ANFIS model has been developed. The 
developed method is constructed in conjunction with the 
input information of voltage stability indices termed as 
the VOSTA, while the MW distance between the 
operation point and the collapse point is taken as the 
output vector. Authors in [21] used a subtractive 
clustering (SC) method and ANFIS to predict the Voltage 
Stability Margin (VSM), where different voltage stability 
indices are used as input variables. The ANFIS model has 
been also adapted to predict the loadability margin of the 
power system incorporated STATCOM and SVC, the real 
and reactive powers at all buses are used as the input 
variables [22, 23]. However, for large power systems, 
training ANFIS model with large input features consumes 
large training time. 

In this paper, ANFIS soft computing technique is 
applied with the aim of developing an on-line voltage 
stability evaluation model. The developed ANFIS model 
takes the voltage magnitudes and phase angles obtained 
from the weak buses in the power system as the input 
features. In order to identify the weak buses in the system, 



 

48 ISSN 2074-272X. Electrical Engineering & Electromechanics. 2019. no.2 

an optimization problem considering the operating cost, 
the real power losses and the voltage stability index is 
formulated. The recently developed Moth-Flame 
Optimization (MFO) algorithm [24] is adapted to solve 
the optimization problem. The proposed approach is 
implemented on IEEE 30-bus and IEEE 118-bus test 
systems. The results of comparison indicate that the 
proposed model could achieve more accurate results than 
the Multi-Layer Perceptron (MLP) and Radial Basis 
Function (RBF) neural networks techniques. 

ANFIS architecture. ANFIS introduced by Jang 
[25], is a machine learning technique incorporates the 
advantages of ANN and fuzzy logic system. The ANFIS, 
which is based on the Sugeno–fuzzy inference model, 
constructs an input–output mapping according to both 
fuzzy if–then rules and stipulated input–output data pairs 
[26]. The fuzzy if–then rules are given by the following 
equations [25]: 

Rule 1: if x is A1 and y is B1 

1111 ryqxpf  ,                            (1) 

Rule 2: if x is A2 and y is B2 

2222 ryqxpf  ,                           (2) 

where x and y are the inputs, Ai and Bi are the fuzzy sets, fi 
is the ith output, pi, qi and ri are the design parameters 
determined by the neural network. 

Generally, the ANFIS consists of five layers 
configured analogously to any multi-layer feed-forward 
neural network. The functionality of these five layers is 
given as follows [25]: 

 Layer 1 every node in this layer is given by: 
 xO Aii 1 ,  i = 1, 2;                    (3) 

 yO Bii 2 ,  i = 1, 2;                    (4) 

where μAi(x) and μBi(y) can adopt any fuzzy membership 
function (MF). 

 Layer 2 this second layer is considered as a rule 
layer. The inputs of this layer are the MFs and the outputs 
are given as: 

   yxW BiAii   ,  i = 1, 2;              (5) 

 Layer 3 the nodes in this layer play a normalization 
role. 

21 WW

W
W i

i 
 , i = 1, 2;                          (6) 

 Layer 4 nodes are adaptive with node function given 
by Layer 1 for a first-order model, and with parameters 
referred to as defuzzifier of consequent parameters. 

 Layer 5 consists of single node, which makes the 
sum of all the rules’ outputs. 

In this paper, ANFIS with Subtractive Clustering 
(SC)-based learning technique [27] has been used. The SC 
technique has the advantage among others clustering 
methods that its computation is simply proportional to the 
number of data points and independent of the dimension of 
the problem under consideration. This is a very useful 
feature to benefit from regarding the need of fast calculation 
time [21]. Details of the algorithm can be found in [28]. 

Determination of weak buses using Moth-Flame 
Algorithm MFO Optimization. 

Line voltage stability index (Lmn). Voltage stability 
evaluation is currently one of the most important research 

areas in the field of electrical power system. Several 
methods have been used for voltage stability evaluation 
and weak buses identification, such as P-V and Q-V 
curves [29], continuous power flow [30] and voltage 
stability indices [5]. In this paper, the line voltage stability 
index Lmn [31] is used for on-line voltage stability 
evaluation. The Lmn index is defined as follows: 

  
0.1

sin

4
2





s
mn

V

XQr
L ,                    (7) 

where X is the line reactance, Qr is the reactive power at 
the receiving end, Vs is the sending end voltage, θ is the 
line impedance angle and δ is the angle difference 
between the supply voltage and the receiving voltage. 

The value of Lmn index ranges from 0 (no load) to 1 
(voltage collapse) and it must be less than 1 for stable 
systems. 

Problem formulation. In this section the 
methodology to find the weak buses in an existing power 
system is presented. The main reason for the voltage 
collapse is the sag in reactive power at various locations 
in power system. Therefore, the weak buses in the power 
system can be identified as the buses which need reactive 
power support. In this context, the identification of the 
weak buses can be mathematically formulated as a non-
linear optimization problem, where the main objective is 
the determination of the optimal location for var sources. 
The objective function, which has been handled by using 
meta-heuristic algorithms, includes the fuel cost, real 
power losses and voltage stability index. The general 
optimization problem can be written in the following 
form: 

  



NL

i
mnLoss

NG

i
i LPff

11

min ,               (8) 

where fi is the fuel cost of the ith generator, NG is the 
number of generators in the power system. 

The fuel cost curve is modeled by quadratic function as: 
2

GiiGiiii PcPbaf  ,                     (9) 

where PGi is the actual power produced in the ith generator 
ai, bi, and ci are the invariant factors. 

The active power loss is expressed as follow: 





NLj

Lj
NGi

GiLoss PPP .                  (10) 

The Lmn index is considered as the third part of the 
objective function. The equality and inequality constraints 
to be satisfied while searching for the optimal solution 
can be described by (11) – (15). The equality constraints 
represent the real and reactive power equations, which are 
expressed as follows: 
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   (11) 

The system inequality operation constraints include: 
maxmin
gigigi PPP  ;                        (12) 

maxmin
gigigi QQQ  ;                        (13) 
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maxmin
gigigi VVV  ;  i = 1, 2, …, Nb;             (14) 

maxmin
lilili VVV  ;  i = 1, 2, …, Nb,             (15) 

where Nb is the number of buses, Pgi and Qgi are the active 
and reactive power generations at ith bus, Pi and Qi are the 
active and reactive power demands at ith bus, Pi and Qi are 
the active and reactive power injections at ith bus, Gij, Bij 
and δij are the conductance, the admittance and the phase 
difference of voltages between the ith and jth bus. 

The Moth-Flame Optimization (MFO) algorithm 
developed by Seyedali Mirjalili [24] is a novel meta-
heuristic optimization technique inspired by the 
navigation of moths in nature called transverse 
orientation. In this method, moths fly in the night by 
maintaining a fixed angle with the moon, a very effective 
mechanism for traveling in a straight line for long 
distances [24]. However, sometimes these insects are 
cheated by human-made lights. Since such light is very 
nearly compared to the moon, using the same navigation 
method by maintaining an analogous angle with the light 
leads to a worthless spiral fly path, and the moth 
ultimately converges to the light as shown in Fig. 1. 

 
Fig. 1. Spiral flies of moths around a human-made artificial light 

 
Moth-Flame algorithm utilizes this demeanor to 

achieve the optimal solutions and presumes moths as the 
candidate solutions and their positions in the space as the 
optimization problem’s variables. The flames are related 
to the optimal solutions (positions) that moths traversed 
so far in the optimization process [24]. 

MFO algorithm is a population-based algorithm, so 
the set of moths is represented in a matrix M 























dnnn

d

d

mmm

mmm

mmm

M

,2,1,

,22,21,2

,12,11,1









.               (16) 

The set of flames can be also represented by 
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where n is the number of moths and d is the number of 
variables. 

For evaluating each moth, the fitness function 
should be given during optimization process, and the 
matrix OM and OF are employed to store the fitness value 
of moths and flames, respectively 
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where n is the number of moths and d is the number of 
variables. 

In order to mathematically model the transverse 
orientation, the position of each moth is updated with 
respect to a flame using the equation 

    j
bt

ijii FteDFMSM  2cos, ,    (20) 

where Mi indicates the ith moth; Fj indicates the jth flame; and 
S is the spiral function; D indicates the distance of ith moth 
for jth flame, b is a constant for determining the shape of the 
logarithm spiral, and t is a random number in [–1, 1]. 

Di is calculated as follows 

iii MFD  .                             (21) 

Another concern here is that updating the position of 
moths with respect to n different locations in the search 
space may degrade the exploitation of the best promising 
solutions. To resolve this concern, an adaptive mechanism 
is used to provide the number of flames. The following 
formula is utilized in this regard: 







 


T

N
lN

1
roundflameno ,               (22) 

where iter is the current number of iteration, N is the 
maximum number of flames and max_iter is the 
maximum number of iterations. 

The gradual decrement in number of flames balances 
the exploration and exploitation of the search space. 

Weakest buses identification. The implementation of 
MFO optimization algorithm in weak locations 
identification is represented in Fig. 2 and summarized into 
the following steps: 

 Step 1. Read power system data (bus data, line data, 
and generator data); 

 Step 2. Set the values of MFO parameters such as: 
- the number of moths; 
- the maximum number of iterations; 
- the number of variables; 
- the upper and the lower bounds of variables (the 

real power outputs and the location of reactive power 
support). The candidate locations are in the range [1 Nlb], 
where Nlb is the number of load buses in the system; 

 Step 3. Initialize the position of moths and the 
number of flames; 

 Step 4. Update the flame number; 
 Step 5. Input the positions of moths into the power 

flow program and compute the fitness value of each moth 
according to the objective function; 

 Step 6. The population of moths with the optimal 
fitness values will be selected as the flames; 

 Step 7. Update the position of moth with respect to 
its corresponding flame or one flame; 
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 Step 8. Obtain the best moth and fitness value; 
 Step 9. If the stop criterion is achieved, go to the 

Step 10. Otherwise, repeat steps 4 to the 9; 
 Step 10. The best moth comprised the best fitness 

value was selected and the best location for reactive 
power support was obtained. 

 

 
Fig. 2. Flowchart of the proposed weak buses identification 

method 
 

Voltage stability Assessment Using ANFIS Model. 
In this section, the proposed methodology to assess the 
voltage stability using ANFIS model is described. The 
main idea of the proposed method is presented in Fig. 3. 
The first step in the off-line phase involves the data 
preparation for the training and testing steps of the 
ANFIS model. The training and testing data sets are 
generated by varying both of the real and reactive powers 
at all system buses. The load is increased from the base 
value until the system achieves the maximum loading 
point leads to the collapse in a power system operation. 
Simultaneously, the Lmn is calculated corresponding to 
the different operating points. 

The voltage magnitudes and phase angles extracted 
from the weak buses in the system are taken as the input 
variables of the ANFIS model. While the maximum 
corresponding values of Lmn are considered as the output 

variables. In order to evaluate the performance of the 
proposed ANFIS model, the difference between the 
predicted and the actual output values was assessed 
according to the correlation coefficient (R), the root mean 
square error (RMSE) and the mean absolute percentage 
error (MAPE). These indices are represented by the 
following equations [27, 28]. 
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where a and P denote the actual output and predicted 
output sets, respectively, n is the total number of data. 

 
Fig. 3. Schematic of the proposed on-line voltage stability 

evaluation method 
 

Simulation and results. This section presents the 
details of the simulation studies carried out on IEEE 30-
bus and 118-bus test systems. The IEEE 30-bus power 
system consists of 6 generators, 41 branches, 4 tap 
changing transformers and 2 capacitors as shown in Fig. 4. 
The IEEE 118-bus system consists of 54 generators, 186 
transmission lines, 9 tap changing transformers and 14 
capacitors as shown in Fig. 5. The data of the generators, 
loads, and transmission lines for both test systems are 
given in [32]. The simulation was done using the 
computer with specification Intel® Core™ I5-
2328MCPU@2.20GHz. 

 
Fig. 4. Line diagram of the IEEE 30-bus system 
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Fig. 5. Line diagram of the IEEE 118-bus system 

 

Weak Buses Identification and Ranking. As it is 
mentioned above, the proposed method to find the weak 
buses is based on the determination of the optimal 
location for Var sources. The identification and the 
ranking of the first five weak buses in the system are 
performed using the MFO optimization technique where 
the buses are ranked starting with the most critical bus. 
The obtained results in the case of IEEE 30-bus system 
are tabulated in Table 1. This Table shows also a 
comparison between the results obtained by using the 
proposed method and the results found by other existing 
methods in the literature. It is clearly shown form this 
Table that the buses 30, 26 and 29 are identified as the 
weakest locations in the IEEE 30-bus test system. 

Table 1 
Weak buses ranking for IEEE 30-bus system 

Ref [33] 30, 26, 29, 25, 27 
Ref [34] 30, 26, 29, 14, 23 
Ref [35] 30, 26, 29, 19, 20 
Ref [36] 30, 26, 29, 21, 24 

Proposed method 30, 26, 29, 28, 7 
 

The proposed method is applied also to determine 
the weak buses in the 118-bus system. This power system 
can be regarded as a realistic transmission level power 
network in terms of number of buses and branches. It 
consists of 118 bus and 186 branches. By using the 
proposed method, the first five weakest buses in the 118-
bus system are fond to be 118, 88, 57, 16 and 117. 

 

Application ANFIS model in voltage stability 
assessment. In this section, the ANFIS-based Subtractive 
Clustering SC method has been developed to estimate the 
Lmn index. The input variables of ANFIS model are the 
voltage magnitudes and the phase angles of weak buses, 
while the output is the corresponding highest value of Lmn 
index. The dataset is generated, using conventional power 
flow, by varying the load at all buses from the base case 
to the collapse point. 80 % of the generated data are used 
as the training samples, while the rest 20 % are used to 
test the ANFIS model. Afterward, to evaluate the 
performance of ANFIS model, the difference between the 
predicted and actual output values were evaluated 
according to the correlation coefficient (R), the root 
means square error (RMSE) and the mean absolute 
percentage error (MAPE). 

In order to generate fuzzy rules, using SC technique, 
it is critical to determine the adequate value of cluster 
radius. According to [37], good values for cluster radius 
are usually between 0.2 and 0.5. Table 2 presents the 
ANFIS model performance for different cluster radius 
values. It is clear from the results that the best value of 
cluster radius was 0.2 for both test systems. 

Table 2 
RMSE results under different cluster radius 

Cluster radius values Power 
system 0.2 0.3 0.4 0.5 

IEEE 
30-bus 5.243710–4 8.654510–4 1310–4 1410–4 

IEEE 
118-bus 1.428510–4 2.132410–4 2.660410–4 2.525510–4

 

Based on the above settings, the ANFIS model was 
trained for the base case and for the different operating 
conditions. Fig. 6,a,b depict the training curves of ANFIS 
model in the case of the IEEE 30-bus and IEEE 118-bus 
systems. Fig. 7, 8 shows the comparison between the 
calculated Lmn index using conventional load flow and the 
estimated ones in the case of IEEE 30-bus and IEEE 118-
bus test systems, respectively. It is clearly seen that the 
ANFIS predictions are in good. 

 

   
                                                               a                                                                                           b 

Fig. 6. Training curves of ANFIS models in the case of IEEE 30-bus system (a) and IEEE 118-bus system (b) 
 

Accordance with the load flow values in both steps. 
Fig. 9,a,b shows the testing absolute error between the Lmn 
index predicted using the ANFIS model and the Lmn index 
computed by the conventional load flow in the case of 
IEEE 30-bus and IEEE 118-bus test systems, respectively. 

It is clearly shown from this Figure that the ANFIS output 
values are very close to the target values with maximum 
absolute error equal to 0.8110–3 in the case of IEEE 30-bus 
and 1.3910–3 in the case of IEEE 118-bus system. 



 

52 ISSN 2074-272X. Electrical Engineering & Electromechanics. 2019. no.2 

 

 
a 

 
b 

Fig. 7. Comparisons between the actual and the predicted values of Lmn in the case of IEEE 30-bus system, 
(a) training phase, (b) testing phase 

 

 
a 

 
b 

Fig. 8. Comparisons between the actual and the predicted values of Lmn in the case of IEEE 118-bus system, 
(a) training phase, (b) testing phase 

 

  
                                                     a                                                                                                       b 

Fig. 9. Absolute error in the case of IEEE 30-bus system (a), IEEE 118-bus system (b) 
 

Fig. 10 shows the Linear fits between the actual and 
the predicted values of Lmn index for both test systems. 
The ANFIS predictions yield a correlation coefficient of 
0.9823 and 0.9573, in testing phase, for both the IEEE 30-
bus and IEEE 118-bus cases, respectively. The obtained 
results revealed that the ANFIS model has a good 
prediction capability. 

In order to further assess the performance of the 
ANFIS model in the prediction of the Lmn index, the 
obtained results are compared, using the same dataset, 

with that of Multi-Layer Perceptron (MLP) and Radial 
Basis Function (RBF) neural network [9, 13]. A 
comparison of the statistical indicators values and 
computation time, for the different models, is listed in 
Table 3. It is clearly seen, for both case studies of IEEE 
30-bus and IEEE 118-bus systems, that the ANFIS model 
acquired relatively lower values of RMSE and MAPE, this 
means that the trained ANFIS model has a superior 
performance compared to the MLP and RBF networks. 
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                                                                   a                                                                                    b 

Fig. 10. Linear fits between the actual and the predicted values of Lmn in testing phase for IEEE 30-bus system (a), 
IEEE 118-bus system (b) 

Table 3 
Performance Comparison of ANFIS, MLP and RBF 

Training Testing 
Power system 

Performance 
indices ANFIS MLP RBF ANFIS MLP RBF 
RMSE 3.0110–4 0.0029 0.0020 5.2410–4 0.004 0.0032 

IEEE 30-bus MAPE 
Time (s) 

0.0748 
6.989 

0.6504 
1.9940 

0.3238 
0.6470 

0.1090 
0.0800 

0.9657 
0.0060 

0.6004 
0.0040 

RMSE 9.3810–5 0.0025 0.0015 1.4210–4 0.0025 0.0015 
IEEE 118-bus MAPE 

Time (s) 
0.02700 
6.2018 

0.8410 
3.5690 

0.4552 
1.1384 

0.04030 
0.07980 

0.8833 
0.0065 

0.4542 
0.0088 

 
Conclusion. This paper presented the application of 

an Adaptive Neuro-Fuzzy Inference System (ANFIS) in 
on-line voltage stability assessment. The input features of 
the developed ANFIS model were the voltage magnitudes 
and phase angles obtained from the weak buses in the 
system. The problem of weak buses identification is 
formulated as an optimization problem and solved using 
Moth-Flam Optimization (MFO) algorithm. The ability of 
the developed ANFIS model to predict the voltage 
stability margin was carried out on IEEE 30-bus and 
IEEE 118-bus test systems. Three statistical performance 
indices of correlation coefficient (R), root mean square 
error (RMSE) and mean absolute percentage error 
(MAPE) were considered to further assess the modeling 
performance. Through the comparison with MLP and 
RBF neural networks, the ANFIS model shows 
superiority in the accuracy of estimating the Lmn index. 
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