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ON THE INFLUENCE OF THE LEVEL OF AN EXTERNAL MAGNETIC FIELD AND 
THE LENGTH ON THE MAGNETIC MOMENT OF CYLINDRICAL CORES 
 
Purpose. Analysis of inhomogeneous magnetization of long cylindrical permalloy 50N cores by a uniform constant magnetic field 
and the influence of length and field level on their magnetic moment. Methodology. The magnetostatic field of a non-uniformly 
magnetized in a uniform magnetic field long cylindrical core of an electromagnet of a spacecraft control system is considered. To 
calculate this field, a transformation of the integral equation with respect to the density of fictitious magnetic charges, as well as 
an iterative algorithm for its numerical solution, are proposed. Results. The convergence of the algorithm and the fact that the 
magnetic moment of the core depends heavily on its length and the level of the external magnetic field is shown. We have made 
an analysis of the influence of the length of a permalloy 50N core in the entire range of the magnetization curve and the level of a 
uniform external magnetic field on the axial projection of the magnetic moment of the core. Originality. The use of an almost 
equal distribution of the axial projection of the resulting magnetic field in the cross sections of the greater part of the cylindrical 
core and its division into cylindrical elements can significantly reduce the order of the system of algebraic equations 
approximating the integral equation for the surface density of fictitious magnetic charges for its numerical solution. Practical 
value. Recommendations regarding the level of the external field created by the electromagnet coil, the increase of the magnetic 
moment in cases of long cores and the choice of the number of cylindrical elements depending on the length of the core are given. 
References 14, tables 1, figures 5. 
Key words: electromagnet, spacecraft control system, non-uniformly magnetized core, integral equation, fictitious magnetic 
charge, magnetization curve, magnetic moment of the core. 
 
Рассмотрено магнитостатическое поле неоднородно намагниченного в однородном магнитном поле длинного 
цилиндрического сердечника электромагнита системы управления космическим аппаратом. Для расчета этого 
поля предложены преобразование интегрального уравнения относительно плотности фиктивных магнитных 
зарядов, а также итерационный алгоритм его численного решения. Сделан анализ влияния длины сердечника из 
пермаллоя 50Н во всем диапазоне кривой намагничивания и уровня внешнего магнитного поля на осевую проекцию 
магнитного момента сердечника, а также даны практические рекомендации относительно уровня внешнего 
поля, создаваемого катушкой электромагнита, и увеличения магнитного момента в случаях длинных 
сердечников. Библ. 14, табл. 1, рис. 5. 
Ключевые слова: электромагнит, система управления космическим аппаратом, неоднородно намагниченный  
сердечник, интегральное уравнение, фиктивный магнитный заряд, кривая намагничивания, магнитный момент  
сердечника. 
 

Introduction. To control the spacecraft, DC 
electromagnets consisting of a coil and a long cylindrical 
core of a material with high magnetic permeability are 
used [1]. Dimensions, winding data and materials can be 
determined and selected based on the calculation of the 
magnetic field generated by the electromagnet. Such an 
electromagnet must have a certain magnetic moment, the 
main part of which is provided by the core [2]. In the 
well-known works, for the calculation of the 
magnetostatic field of the cores the methods of 
demagnetization coefficients [2, 3] and integral equations 
[1, 4, 5] are developed. To determine the demagnetization 
coefficients, it is necessary to carry out experiments, and 
numerical solutions of integral equations were obtained 
under the assumption of a constant magnetic permeability 
of the core material [1, 4]. In [5], the calculations were 
performed under the condition of relatively small changes 
in the magnetic permeability along the core volume. 

The relevance of this paper lies in the fact that in 
well-known works the magnetization of cylindrical cores 
is insufficiently investigated in conditions of large 
changes in magnetic permeability and levels of an 
external magnetic field, which makes it difficult to design 
electromagnets for spacecraft control systems. 

The goal of the work is analysis of inhomogeneous 
magnetization of long cylindrical permalloy 50N cores by 
a uniform constant magnetic field and the influence of 
length and field level on their magnetic moment. 

Transformation of the original integral equation 
taking into account the peculiarities of the 
magnetization of the core. Consider a cylindrical core of 
length b and of radius R located in an unbounded 
nonmagnetic and nonconducting space coaxially with an 

external constant uniform magnetic field of strength 0H


 

(Fig. 1). 
 

 
Fig. 1. Meridian section of the cylindrical core 

 
The strength of the resulting magnetic field is 

represented as [6, 7]: 

mHHH


 0 ,           (1) 

where mH


 is the magnetic field strength due to the magnetic 

properties of the core («demagnetizing» field [2]). 
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The magnetic field H


 is plane-meridian, and the 

vector field mH


 is potential and related to the scalar 

potential φm by 

mmH grad


.            (2) 

Using the electrostatic analogy [6, 8], we represent 
φm в in the following form [9, 10]: 
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where l, dlM are the contour of the meridian section and its 
element with the center in the point M; Q, M  l are the 
observation point and the point with current coordinated; 
σm(M) is the surface density of fictitious magnetic 
charges; µ0 is the magnetic constant; K(k) is the complete 
elliptic integral of the first kind of module k [11]; 
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rQ, rM and zQ, zM are the radial and axial cylindrical 
coordinates of points Q and M. 

Since the core material is isotropic, the relationship 

between H


 and the magnetization J


 is determined by 
the known dependence 

 HHJ r


1)(   ,  (4) 

where µr(H) is the relative magnetic permeability. 
To take into account the inhomogeneity of 

magnetization, we replace the nonlinear magnetized 
medium of the core with a piecewise homogeneous 
medium, which consists of 2No homogeneous cylindrical 
elements with absolute magnetic permeability µk, 

oNk ,1 , having a length bk, and 2/
1

bb
oN

k
k 


(Fig. 1). 

Such a replacement allows to neglect volume fictitious 
magnetic charges and limit the definition of σm. In this 
case, the integral equation for σm takes the form [12]: 
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where l is the contour of the meridian section of the core 
in the first quarter of the coordinate plane zOr; l = l1 + 
+ l2 + l3; l1,2 is the contour of the side and end surfaces; 
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kl  is the boundary between k and k + 1 

cylindrical elements in the calculation region; H0n(Q) is 

the normal projection of 0H


for Q  l;  
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M’ is the point symmetric to point M relative to the r-axis. 
At Q  l1 the first term of the kernel of the equation (5) 
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k is the complete elliptic integral of the second kind of 
modulus k and additional modulus of complete elliptic 

integrals, 21 kk   [11]. The second term of the 
considered kernel S(Q, M’) is determined by the same 
formulas as S(Q, M) if in them to replace the coordinates 
of the point M by M’. 

The replacement of a non-uniformly magnetized 
core with a set of uniformly magnetized cylindrical 
elements was made on the basis of preliminary 
calculations, according to which at b/R ≥ 16 the axial 

projection of H


 in the cross sections of the core along its 
entire length, except for small sections near the ends, is 
distributed almost uniformly. Considering this feature, as 
well as the well-known boundary condition about the 

jump of the normal projection of mH


 on the boundary 

between two magnetized media [13], we assume that σm is 

invariable for all c
kl . Simplified by this assumption, 

equation (5) takes the following form: 
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   (6) 

The system of algebraic equations, with the help of 
which the integral equations are solved, for equation (6) 
has a much smaller order. 

An iterative algorithm for the numerical solution 
of a transformed integral equation. The iteration 
algorithm cycle consists of the following main blocks. In 
the first block, for some initial values of µk

(0), we solve 
the integral equation (6). To do this, using the quadrature 
formula of rectangles, it was transformed into a system of 
algebraic equations of order N (N is the total number of 
nodes of the spatial mesh, N = N1 + N2 + N3, N1 is the 
number of nodes per l1, N2 – per l2, N3 – per l3, N3 = No –1). 
When calculating each integral of the sum in the third 
term of the left-hand side of (6), 100 nodes were taken, 
and to take into account the edge effect at the cylinder 
ends, a non-uniform mesh was used. The obtained system 
of algebraic equations was solved by a direct method 
based on inverting the matrix of the left-hand sides and 
further multiplying the inverse matrix by a column vector 
of the right-hand sides. 

In the second block we find the radial and axial 

projections of H

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and then the module of H


 at each point inside the core. 
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In formulas (7) and (8), the functions Sr(Q, M) and 
Sz(Q, M) are determined using the same expressions as the 
kernel of the integral equation (5), respectively, Q  l1 
and Q  l2  l3. 

In the third block, we determine average over the 
volume of each cylindrical element the relative and 
absolute magnetic permeabilities 

  ,
2
2

)(
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kS
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k

j
kr dSMr

bR
   

)(
0

)( j
kr

j
k   , (9, 10) 

where Sk is the meridian area of the k-th cylindrical 
element; j is the iteration number. 

To determine µr, we use the magnetization curve of 
permalloy 50N [2] 

J(H) = aH/(H + c),         (11) 
from which with the help of a known connection between 

B


, H


 and J


 on the basis of the model of magnetization 
by molecular currents, we find 

µr(H) = 1 + a/(H + c).   (12) 
In dependencies (11), (12), shown using the 

logarithmic scale in Fig. 2 (a, b), J, H are the modules of J


, 

H


; a, c are the constants, a = 1.25·106 A/m, c = 40 A/m. 

Then we take 
)()( j

k
j

k    and return to the first block of 

the algorithm. We continue iterations until the condition 

|µk
(j) – µk

(j-1)| < Δ, j = 1,2,…, nit, oNk ,1 ,     (13) 

where Δ is the specified discrepancy; nit is the iteration 
number.  
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Fig. 2. Dependencies J(H) – a and µr(H) – b for permalloy 50N 

 
It is established that the iteration process converges 

to some values of µk
(it) for any µk

(0), for which we have a 
numerical solution of (6). As explained below, the 
magnetic moment of the core is determined by the axial 

projection of the magnetization Jz. After determining σm 
this projection can be calculated using formula (4), taking 
into account (8) and (12). The convergence of the 
iterations is illustrated by the curves in Fig. 3, constructed 
for the following initial data: R = 5 mm (this size is 
assumed to be the same in subsequent calculations); 
b = 330 mm; z* = z/b. The values of bk are hereinafter 
assumed to be the same. We see that with increasing No, 
the distributions of Jz converge. If it is necessary to clarify 
the influence of edge effects, the cylindrical elements at 
the edges of the core can be replaced by a set of ring 
elements. Note that in the work [5], when the integral 
equation regarding tangential projection of the 
magnetization was numerically solved in accordance with 
the recommendations of [14], the entire volume of the 
core was divided into ring elements. 

 

A/m
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0.4

0.6

0.8

0.1 0.2 0.3 0.4 0.5  
Fig. 3. Distribution of the axial projection of magnetization 

along the core axis at different No for H0 = 1646.66 A/m (curves 
1-4) and H0 = 6586.62 A/m (curves 5-8); for curves 1 and 5, 2 
and 6, 3 and 7, 4 and 8 values of No respectively equal to 1, 8, 

15, 25 
 

The influence of the level of the external magnetic 
field and the length of the core on its magnetic 
moment. Due to the axial symmetry of the field, the 

magnetic moment vector M


 of the core under 
consideration has only an axial projection in cylindrical 
coordinates 

 
S

MzMz dSMJrM 4 ,  (14) 

where S is the part of the area of the meridian section in 
the positive half-plane z > 0.  

Table 1 shows the values of Mz and the relative 
discrepancies ξ between Mz at No = 25 (conventionally 
exact values) and Mz at smaller No. It follows from the 
above data that to ensure ξ ≤ 1% for all considered levels of 
H0 and values b = 80, 165 and 330 mm, No should be taken 
equal to 4, 8 and 8, respectively. Note that for a core with a 
length 80 mm with No = 1 the value of ξ  (1 ÷ 6) % 
(obviously, this is also true for cores of not very different 
length).  

Fig. 4, 5 show the influence of the level of the 
external field and the core length on the value of Mz 
(values of H0 are marked with dots on the abscissa axis in 
Fig. 4, and the corresponding values of Mz are shown on 
the curves). Calculations show that at each point of the 
core, with increasing H0 the strength of the resulting field 
always increases, but the magnetization depends on which 
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part of the magnetization curve Hz falls into (Fig. 2). In 
section a of the µr(H) curve (Fig. 2,b), the magnetic 
permeability is maximum, which leads to large values of 
Hm and, as a consequence, small values of H. In the same 
part of the initial magnetization curve (Fig. 2,a), the latter 
corresponds to small values of J. At b = 80 mm, this leads 
to relatively small magnetic moments Mz = 0.5 ÷ 2.8 A·m2 
(Fig. 4, curve 1; Fig. 5). 

 

Table 1 
Values at different b, H0, No 

H0, A/m b, mm; 
b/R 

No 
1646.66 3293.31 6586.62 9879.93 

25 0.500 0.989 1.937 2.845 

8 0.4998 0.9886 1.9342 2.8396 

ξ, % 0.0392 0.0742 0.1348 0.1863 

4 0.499 0.986 1.926 2.822 

ξ, % 0.150 0.294 0.562 0.803 

1 0.495 0.970 1.862 2.686 

80; 16 

ξ, % 1.006 1.985 3.838 5.587 

25 3.090 5.927 10.839 13.043 

15 3.088 5.921 10.825 13.026 

ξ, % 0.050 0.094 0.135 0.127 

8 3.083 5.904 10.776 12.972 

ξ, % 0.213 0.396 0.585 0.540 

1 2.963 5.486 9.537 12.591 

165; 33 

ξ, % 4.084 7.445 12.019 3.462 

25 17.863 25.330 28.394 29.546 

15 17.834 25.288 28.342 29.481 

ξ, % 0.164 0.166 0.182 0.220 

8 17.765 25.186 28.202 29.331 

ξ, % 0.551 0.568 0.677 0.728 

1 15.796 24.538 31.252 31.964 

330; 66 

ξ, % 11.571 3.126 10.067 8.184 
 

A/m2 

0.5 

1.5 

2.5 

A/m2 

A/m

A/m

 
Fig. 4. Dependencies Mz(H0) at No = 25: 

curve 1 – b = 80 mm, 2 – 165 mm, 3 – 330 mm 

With an increase in the length of the core, we 
observe a significant increase in the magnetic moment 
(Fig. 4, curves 2, 3; Fig. 5), since the core points are 
magnetized either in all parts of the magnetization curve 
(b = 165 mm), or in sections c, d (b = 330 mm) with 
significantly larger J (Fig. 2,a). However, the growth of 
Mz of cores of greater length with increasing H0 slows 
down, since an increasing part of them is in a state of 
saturation. From Fig. 5 it follows that at b/R = (33 ÷ 66), 
to achieve Mz ≤ 18 A·m2, H0 = 1646.66 A/m is sufficient. 
For larger values of Mz, up to 25 A·m2, H0 = 3293.31 A/m 
is required. 

 

A/m2

 
Fig. 5. Dependencies Mz (b/R) at No = 25:  

curve 1 – H0 = 1646.66 A/m, 2 – 3293.31 A/m,  
3 – 6586.62 A/m, 4 – 9879.93 A/m 

 
Conclusions. 

1. The choice of the sizes of the cylindrical cores of 
electromagnets of spacecraft control systems must be 
carried out on the basis of a given maximum value of the 
axial projection of the magnetic moment Mz and the 
magnetization curve of the core material. 

2. The coil of an electromagnet should provide such 
levels of an external magnetic field at which the strength 
of the resulting magnetic field on the predominant part of 
the core is outside the saturation region of the 
magnetization curve and corresponds to a higher 
magnetization. 

3. At R = 5 mm, cores with a relative length of b/R < 33 
provide Mz ≤ 13 Am2. In cases of b/R > 33, an increase in 
Mz can be achieved by increasing b/R at certain levels of 
the external magnetic field, which do not lead to the 
saturation of a significant part of the core (Fig. 4, 5).  
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