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CALCULATION OF TRANSIENTS IN ELECTRICAL CIRCUITS WITH «INCORRECT»
INITIAL CONDITIONS WITH THE HELP OF THE DUHAMEL INTEGRAL AND
DISCONTINUOUS FUNCTIONS

A technique for calculating transients using the Duhamel integral and discontinuous functions is presented. On specific
examples, the procedure for calculating «incorrect» problems with respect to differential equations, compiled according to
Kirchhoff laws, and using the Duhamel integral is presented. In this case, the Kirchhoff law and the transition characteristic in
the Duhamel integral are written using unitary discontinuous functions for the electrical circuit as a whole (before and after
commutation). It is shown that the application of discontinuous functions for describing piecewise continuous input signals and
switching in an electric circuit extends the domain of applicability of the Duhamel integral. References 9, figures 3.
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H3nazaemcs memoouka pacuema nepexoOnbiX NPOUECcos ¢ UCHONb306anuem unmezpana Jioamens u paspvienvix Qynkyui. Ha
KOHKDEMHbIX NPUMEPAX U31azaemcs NOPAOOK pacuema «HEKOPPEKMHbBIX)» 3a0ai no Oudghepenyuansuvim ypagHeHusm,
cocmaenaemvim no 3axonam Kupxzogha, u ¢ nomowpro unmezpana /[ioamenn. Ilpu smom 3axonvt Kupxzoghpa u nepexoonasn
xapakmepucmuka ¢ unmezpane /{ioamens 3anucvléaiomcs ¢ ROMOWbI0 eOUHUYHBIX PA3PBIGHBIX PYHKUUIL O1A IIeKMPUYEeCKOil
uenu ¢ yenom (00 u nocie kommymauuu). Iloxazano, umo npumenenue paspvléHbIX QYHKYUI 018 ORUCAHUA KYCOUHO-
HenpepvlBHBIX 6X00HBIX CUZHAO8 U NEPEKTIOYEHUNl 8 INEKMPUYECKOU Yenu pacuiupaem 001acms RPUMEHUMOCIU UHMeZPana

Mwamena. bubn. 9, puc. 3.

Kniouesvie cnosa: nepexoiaHsle npoueccsl, uHTerpas Jlioamesi, pa3pbiBHble QyHKIMH.

The state of the art and problem definition. In
theoretical electrical engineering, the basic methods for
calculating transients in electrical circuits are: classical,
operator, frequency (spectral) and based on the use of the
Duhamel integral [1]. The domain of preferential
application of the Duhamel integral is electrical circuits
with an input signal of arbitrary shape.

In recent years, publications have appeared in which
the Duhamel integral is used to calculate the process of
propagation of the electromagnetic field (lightning
discharges, industrial interferences, etc.) in an
inhomogeneous medium [2, 3]. In this case, the field
problem is represented by a substitution circuit in the
form of a long line or a four-terminal network [3, 4]. The
transition characteristic required for the Duhamel integral
is determined by the substitution circuit. In [5], the
Duhamel integral is used in the calculation of the
electromagnetic field in a layered medium. Thus, the
Duhamel integral remains a sought-after method and the
extension of its applicability range (in this case to electric
circuits with «incorrect» initial conditions, when the
switching laws in the formulation for current in the
inductance and the voltage on the capacitance are not
applicable) is relevant.

The drawbacks of the Duhamel integral include the
requirement of zero initial conditions and the
impossibility of taking into account the switching that
changes the structure of the electrical circuit. These
constraints can be leveled by using discontinuous
(stepwise) functions to describe piecewise continuous
input signals and changes in the structure of the circuit
during switching.

The connection of an electric circuit at a constant
voltage U, at zero initial conditions can be considered as
an action of the input voltage U = 1(#)U, in the circuit
already switched on [1], where 1(¢) is the Heaviside unit
function (connection function) (see Fig. 1). This
statement is also true for the variable input voltage

u(t) = u(t) = 1(¢)-u;(¢). Then the Duhamel integral can be
represented in the form of the integral
t t
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Here, the filtering property of the unit function and
the ofunction is taken into account. ® is the time of
occurrence of voltage surges into which the input voltage
u)(f) in accordance with the physical meaning of the
Duhamel integral is divided, (¢ — ©) is the time of action
of each of the voltage jumps, A(z — ©) is the transition
conductivity for each of the voltage jumps.

Formula (2) is one of the varieties of the Duhamel
integral. Formulas (1), (2) are written for the current. But
the output function can be voltage (or current) in any
branch of the electrical circuit and then the transition
conductivity A(t — ©) should be replaced by the
corresponding voltage (or current) transition function.

If the input signal u,() starts to act at # < 0, then in
the formulas (1), (2) the lower limit of integration can be
referred to infinity £ = co.
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It was shown in [6, 7] that the transient occurring in
an electrical circuit under the action of a complex
piecewise continuous signal (including the one starting to
act at £ = £, < 0) can be calculated in two ways:

1. Description of the input signal and the general form
of the solution by one analytical expression with the help
of single stepwise functions and substitution of the
general form of the solution in the differential equation
for the sought value.

2. By the formulas of the Duhamel integral. In this
case, the description of the input signal by one analytical
expression with the help of discontinuous (stepwise)
functions allows us to use the Duhamel integral for
signals that begin to act also for # = #, < 0.

Examples of such calculations are given in [6, 7].

Non-zero initial conditions take place in the
electrical circuit when the transient occurs as a result of a
change in the structure of the circuit (connection or
disconnection of individual circuit elements). The
transient can also be calculated in the following two
ways:

1. The change in the parameters of the electric circuit is
described by means of discontinuous functions and is
found in the differential equation for the sought value.
The input voltage is assumed to be switched on in some
preceding commutation time ¢ = £, < 0. We write the
solution of the differential equation with the aid of
discontinuous functions as consisting of two parts (for
t < 0 and ¢ > 0) and substitute it into the differential
equation. If the process is assumed to be steady before the
commutation (¢ = 0), then this will be the initial state of
the circuit with non-zero initial conditions (in this case,
only the forced component is used in the solution for
t<0).

2.In the formulas of the Duhamel integral, the input
voltage is also considered to begin to act at the time ¢ = ¢,
< 0 which is written using discontinuous functions. The
transient function A(f) (with respect to current or voltage)
is written using discontinuous functions as consisting of
two parts, corresponding to the circuits before and after
commutation.

In [6, 7], examples are given with switching in
circuits that change the active resistance R. The question
of transients for the general case, with switching changes
in the inductance L and capacitance C (when the
switching laws in the formulation for the current in the
inductance and the voltage in the capacitor not applicable)
remains unresolved, which is the subject of this paper.

The goal of the paper is to justify the possibility of
calculating transients in an electrical circuit with
«incorrect» initial conditions using the Duhamel integral
and discontinuous functions.

Main part. To describe the sudden changes in the
voltages, currents and parameters of the electrical circuit,
we use discontinuous functions written with the aid of the
modulo function [6] (Fig. 1):
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We also calculate the differential equations,

compiled according to Kirchhoff laws, and the Duhamel
integral. In the first case, Kirchhoff laws are compiled
for the electrical circuit as a whole (before and after
commutation), and the difference of these circuits is
taken into account for by unitary discontinuous
functions.

In the second case, the transition characteristic in the
Duhamel integral is written for the circuit as a whole
(before and after commutation) by means of unit
discontinuous functions.

We consider the circuit (Fig. 2), in which the current
in the inductance changes abruptly.

R L R L, —2,
R;
L I
U 3
—
o
Fig. 2
Kirchhoff laws for such a circuit:
o dip diy
Riy+Li—+Ryihy+L,—==U,; 3
it =t Ryl + Ly — 3)
di
Ryir + L, —= = R3i3; 4
2iy + Ly — == Rai “4)
1, I
iy =iy +iy—| 11— | 5
1=0 32( t) Q)

Here we took into account the change in the
structure of the parallel section with the help of single
discontinuous functions, and written Kirchhoff laws for
the circuit as a whole (before and after switching).

From (4) we find

R L, di
i M2, 2

Ry 2 Ry dt’

We solve the problem with respect to the current i,:
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Then from equation (5) we obtain:

(1_”)(1 sl [ II]
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2 t R; Ry dt 2 t

We substitute this in equation (3):

1, K 1+ 82 i, Rup, o |, 1+ dig
2 t R; Ry © dt dt
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We equate multipliers for the same discontinuous

functions:
di
+ & L j +
dt

t
by )RR
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Equation (6) is the differential equation of the circuit
before commutation:

2.
L L R
Lﬂ{_u

R;+R ]
+ 3° 2L1+L2 ﬂ+
dt

2
Ry dr* R R
R;+R
+ 3+ 2R1i0+R2i0 :U.
3

Its solution:

iO(t): Iforce + Ifree = iforce +Ale v +dpe
where g, ifee are the forced and free current
components respectively.
But before commutation, we are interested in the
steady-state process, i.€. ifyce = const:

UR .
> =5(0-)
(R + R3)Ry + Ry Ry
Equation (7) is the differential equation of the circuit
after commutation. Its solution:

kzt

Iforce =10 =

t
——  +de T, T:M' (10)
+R2 R1+R2

In equation (8) we take into account that diy/dt = 0,

i(t ) = Iforce +Ifree =

sSince iy = igyee = const and R3; L) ip =] (0 —). Then
3
Liig(0-)+ Lyir (0-) = (Ly + Ly ) (0+),

since in our notation i(0) = i,(0+).

Thus, equation (8) is the first commutation law for
flux linkages.

We substitute values:

R, +R UR
(21: 3L1+L2JR(R 3 _
3 1(Ry + R3)+ Ry R,

U
= AL +L
(R1+R2+ ](1+ 2)

We found the constant A:
U (Ry+Ry)Ly +RyLy u
Ll +L2 RI(RZ +R3)+R2R3 Rl +R2
_ URy (LiRy =Ly Ry)
(Ly + Ly XRy + Ry XRi Ry + Ry Ry + RyRy)

The same solution was obtained in [8].

If R; = 0, i.e. before switching the section (R, — L,)
was short-circuited, then

_ ULRy ~LyRy)
(Ly+ Ly R + Ry )R

which coincides with the solution given in [1].

We solve this problem using the Duhamel integral

and obtain the same result. We believe that the electrical
circuit before switching was switched on to the voltage U

at the time t = —#, <0
t+t
MJU'

1
=—1
u(t) 2( ’ t+1

Assuming that the transient from the switching on
to the time of commutation ¢ = 0 has already ended, we
write the transient conductivity of the circuit before
commutation for the current i, by the forced
component (9):

Ry
ho(t)= RR :
149 + R1R3 + R2R3

an

(12)

The transient conductivity for the circuit after
commutation, according to (10), (11), is equal to:

t
( 1 Ry(LiRy —LyRy) ”

= T
R +R, (Ll +Ly Ry +Ry R iRy + R\ Ry +R2R3)e ‘

Then, according to (1), we obtain:

0= Ju

el ot

IU5®+t){ [ i) Ry +l[l+HJx
)Rle +R1R3 +R2R3 2 t

_lo

do' =

o] Ry(LiRy ~ LhRy)
Rl + R2 (Ll + L2 )(Rl + R2 )(RIRZ + R1R3 + R2R3)
(1-0-1))
— t
xe T 0 =1 N RU
2 R1R2 + R1R3 + R2R3
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Here: ®' = © + 1, is the input signal coordinate

t t
[o©+10)d0=1; [5(0+15)fd0=f(-10).
1o 1

Here: the lower limit —#; is less than —, by an

infinitesimal value (i.e. —ty =—#;—0);
[ ||j 1 (at ¢+ < 0) is the current multiplier

before commutation;
1 ¢ . -
E(1+Uj:1 (at ¢ > 0) is the current multiplier
t

before commutation;

These multipliers do not take part in integration with
respect to ©, since they separate the range of the formulas
of the transient conductivity of the output signal before
and after switching.

We consider a circuit with a capacitive energy
storage device, where commutation changes the
capacitance in the circuit (Fig. 3).

<
] Lis (]

Ci ::luc R, = G

R, i
—

—

Fig. 3

Initial data: U = 60 V, R, = R, =
C,=1pF, C,=2 pF. We determine .

Kirchhoff laws for the circuit as a whole (before and
after switching):

1 kQ,

Rlil-i-u :U,

l] —l2 +—[1+| |j l3 +l4

. du
h =0 —< 5

dt
We substitute the currents into the first equation:

RcldL+u +— 1+|| due +ﬁ”c =U
di d R

. (13)

We write the voltage u, as the sum of the voltages
before and after the commutation separated by unit
discontinuous functions.

1 t 1 t
l/tc(f)z E[l —|—t|]u0 +5(1+g]u

We substitute into the differential equation (13)

¢ du
5( —QJ{uo +Ric TIO} = 5(e)Ryequg +

1 i R d
+5[1 +4JH1 +R_;ju +R (cl +cy )73} +

+5(f)R1(Cl +02)M =U.
We equate multipliers for the same discontinuous
functions:

|l‘| duy
1 —[1- Riey —2 1y =U,; 14
) 2( IJ 11 dt 0 (14

du R
2) [ ||j R1c1+c2)z+(1+R2Ju:U;(15)

3) 5(t): = Rycyug + Ry(c; + ¢ u=0. (16)
The solution of equation (14) for the circuit before
commutation has the form:
_t ~(t+1)
up(t)=U+4de T =U-Ue * ;

r=—

Ricy

Since before the commutation at some time ¢ = —#, <0

the circuit (R; — ¢;) was switched on to the voltage U,

then this transient is considered to be completed before
the time ¢ = 0. Then:

w0lt)= 1, (0-)=U.
The solution of equation (15) for the circuit after
commutation is:

.

—t -t
UR - -
ug(t)=——2—+Ae?® =30+4e? ;
R2 + Rl
R{R _
r=(c;+¢y )—2-=15-107
Rl +R2
Equation (16) is the second commutation law for
charges
cyug(0-)= (g +cp Ju(0+),
ie.

cytg, (0-) = (eg + 3 Jue (0+).

After substitution, we obtain equality for the
determination of the constant A

UR
C‘lU:(Cl-i-Cz 2 +A4].
R1+R2

From here:

d=v] R :60(1—1J -10.
C1+6‘2 R1+R2 3 2

Then:

uelt)=

(RPN P
—[1-—160+—| 1+ 30— 10
2 t 2 t
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The source current:

du. u “210%
it (£)=(c; +c3) n +R—02:3-10‘2+10‘2e 3

The same result was obtained in [9].

We solve the same problem with the help of the
Duhamel integral. The transient response of the circuit for
the voltage before and after commutation has the form:

h(t)zé[l_@jﬂ%[l#}hm .
1+ Ry
R, j—(t—@)

C
+ 1 —— 7
(S R1+R2

We assume that the circuit was switched on at a
certain time ¢ = —f) < 0 by the voltage (12) before the
commutation, and this transient ended before the
commutation time ¢ = 0. Then the Duhamel integral (1)
has the form:

| | 1, W
u.(t)= Iu’(®')h(t—®')d®'zj U5(®+t0)|:5[ —7J+

-0 ~ty

t
L l+—| Ry @ R
2 t Rl +R2 (&) Rl +R2

—(t-0-15)
xe 7 d@zl[l—H]U+l[l+H}<
2 t 2 t

X

—t
RV U - Ry et |
R1+R2 ct+cey R1+R2

The same solution for u, was obtained above. If in
this solution R,—»o0, then we obtain a solution for the
circuit (Fig. 3) without R,, which is given in [1]:

—t
uc(t):U+U( a —ljef.
Cl+02

Conclusions.

1. For the first time, the possibility of calculating
transients in an electric circuit with «incorrect» initial
conditions with the help of the Duhamel integral and
discontinuous functions is justified.

How to cite this article:

2. The proposed solution of the problem of calculating
transients in the electrical circuit with non-zero and
«incorrect» initial conditions with the help of the
Duhamel integral is more compact than the known ones.
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