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CALCULATION OF TRANSIENTS IN ELECTRICAL CIRCUITS WITH «INCORRECT» 
INITIAL CONDITIONS WITH THE HELP OF THE DUHAMEL INTEGRAL AND 
DISCONTINUOUS FUNCTIONS 
 
A technique for calculating transients using the Duhamel integral and discontinuous functions is presented. On specific 
examples, the procedure for calculating «incorrect» problems with respect to differential equations, compiled according to 
Kirchhoff laws, and using the Duhamel integral is presented. In this case, the Kirchhoff law and the transition characteristic in 
the Duhamel integral are written using unitary discontinuous functions for the electrical circuit as a whole (before and after 
commutation). It is shown that the application of discontinuous functions for describing piecewise continuous input signals and 
switching in an electric circuit extends the domain of applicability of the Duhamel integral. References 9, figures 3. 
Key words: transients, Duhamel integral, discontinuous functions. 
 
Излагается методика расчета переходных процессов с использованием интеграла Дюамеля и разрывных функций. На 
конкретных примерах излагается порядок расчета «некорректных» задач по дифференциальным уравнениям, 
составляемым по законам Кирхгофа, и с помощью интеграла Дюамеля. При этом законы Кирхгофа и переходная 
характеристика в интеграле Дюамеля записываются с помощью единичных разрывных функций для электрической 
цепи в целом (до и после коммутации). Показано, что применение разрывных функций для описания кусочно-
непрерывных входных сигналов и переключений в электрической цепи расширяет область применимости интеграла 
Дюамеля. Библ. 9, рис. 3. 
Ключевые слова: переходные процессы, интеграл Дюамеля, разрывные функции. 
 

The state of the art and problem definition. In 
theoretical electrical engineering, the basic methods for 
calculating transients in electrical circuits are: classical, 
operator, frequency (spectral) and based on the use of the 
Duhamel integral [1]. The domain of preferential 
application of the Duhamel integral is electrical circuits 
with an input signal of arbitrary shape. 

In recent years, publications have appeared in which 
the Duhamel integral is used to calculate the process of 
propagation of the electromagnetic field (lightning 
discharges, industrial interferences, etc.) in an 
inhomogeneous medium [2, 3]. In this case, the field 
problem is represented by a substitution circuit in the 
form of a long line or a four-terminal network [3, 4]. The 
transition characteristic required for the Duhamel integral 
is determined by the substitution circuit. In [5], the 
Duhamel integral is used in the calculation of the 
electromagnetic field in a layered medium. Thus, the 
Duhamel integral remains a sought-after method and the 
extension of its applicability range (in this case to electric 
circuits with «incorrect» initial conditions, when the 
switching laws in the formulation for current in the 
inductance and the voltage on the capacitance are not 
applicable) is relevant. 

The drawbacks of the Duhamel integral include the 
requirement of zero initial conditions and the 
impossibility of taking into account the switching that 
changes the structure of the electrical circuit. These 
constraints can be leveled by using discontinuous 
(stepwise) functions to describe piecewise continuous 
input signals and changes in the structure of the circuit 
during switching. 

The connection of an electric circuit at a constant 
voltage U1 at zero initial conditions can be considered as 
an action of the input voltage U = 1(t)U1 in the circuit 
already switched on [1], where 1(t) is the Heaviside unit 
function (connection function) (see Fig. 1). This 
statement is also true for the variable input voltage 

u(t) = u(t) = 1(t)u1(t). Then the Duhamel integral can be 
represented in the form of the integral 
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Here, the filtering property of the unit function and 
the -function is taken into account.  is the time of 
occurrence of voltage surges into which the input voltage 
u1(t) in accordance with the physical meaning of the 
Duhamel integral is divided, (t – ) is the time of action 
of each of the voltage jumps, h(t – ) is the transition 
conductivity for each of the voltage jumps.  

Formula (2) is one of the varieties of the Duhamel 
integral. Formulas (1), (2) are written for the current. But 
the output function can be voltage (or current) in any 
branch of the electrical circuit and then the transition 
conductivity h(t – ) should be replaced by the 
corresponding voltage (or current) transition function. 

If the input signal u1(t) starts to act at t < 0, then in 
the formulas (1), (2) the lower limit of integration can be 
referred to infinity t0 = . 
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It was shown in [6, 7] that the transient occurring in 
an electrical circuit under the action of a complex 
piecewise continuous signal (including the one starting to 
act at t = t0 < 0) can be calculated in two ways: 

1. Description of the input signal and the general form 
of the solution by one analytical expression with the help 
of single stepwise functions and substitution of the 
general form of the solution in the differential equation 
for the sought value. 

2. By the formulas of the Duhamel integral. In this 
case, the description of the input signal by one analytical 
expression with the help of discontinuous (stepwise) 
functions allows us to use the Duhamel integral for 
signals that begin to act also for t = t0 < 0. 

Examples of such calculations are given in [6, 7]. 
Non-zero initial conditions take place in the 

electrical circuit when the transient occurs as a result of a 
change in the structure of the circuit (connection or 
disconnection of individual circuit elements). The 
transient can also be calculated in the following two 
ways:  

1. The change in the parameters of the electric circuit is 
described by means of discontinuous functions and is 
found in the differential equation for the sought value. 
The input voltage is assumed to be switched on in some 
preceding commutation time t = t0 < 0. We write the 
solution of the differential equation with the aid of 
discontinuous functions as consisting of two parts (for 
t < 0 and t > 0) and substitute it into the differential 
equation. If the process is assumed to be steady before the 
commutation (t = 0), then this will be the initial state of 
the circuit with non-zero initial conditions (in this case, 
only the forced component is used in the solution for 
t < 0). 

2. In the formulas of the Duhamel integral, the input 
voltage is also considered to begin to act at the time t = t0 
< 0 which is written using discontinuous functions. The 
transient function h(t) (with respect to current or voltage) 
is written using discontinuous functions as consisting of 
two parts, corresponding to the circuits before and after 
commutation.  

In [6, 7], examples are given with switching in 
circuits that change the active resistance R. The question 
of transients for the general case, with switching changes 
in the inductance L and capacitance C (when the 
switching laws in the formulation for the current in the 
inductance and the voltage in the capacitor not applicable) 
remains unresolved, which is the subject of this paper. 

The goal of the paper is to justify the possibility of 
calculating transients in an electrical circuit with 
«incorrect» initial conditions using the Duhamel integral 
and discontinuous functions. 

Main part. To describe the sudden changes in the 
voltages, currents and parameters of the electrical circuit, 
we use discontinuous functions written with the aid of the 
modulo function [6] (Fig. 1): 
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Fig. 1 
 

We also calculate the differential equations, 
compiled according to Kirchhoff laws, and the Duhamel 
integral. In the first case, Kirchhoff laws are compiled 
for the electrical circuit as a whole (before and after 
commutation), and the difference of these circuits is 
taken into account for by unitary discontinuous 
functions. 

In the second case, the transition characteristic in the 
Duhamel integral is written for the circuit as a whole 
(before and after commutation) by means of unit 
discontinuous functions. 

We consider the circuit (Fig. 2), in which the current 
in the inductance changes abruptly. 

 

 
Fig. 2 

 
Kirchhoff laws for such a circuit: 
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Here we took into account the change in the 
structure of the parallel section with the help of single 
discontinuous functions, and written Kirchhoff laws for 
the circuit as a whole (before and after switching). 

From (4) we find 
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We solve the problem with respect to the current i2: 
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Then from equation (5) we obtain: 
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We substitute this in equation (3): 
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We equate multipliers for the same discontinuous 
functions: 
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Equation (6) is the differential equation of the circuit 
before commutation: 
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Its solution:  
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where iforce, ifree are the forced and free current 
components respectively. 

But before commutation, we are interested in the 
steady-state process, i.e. constforce i : 
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Equation (7) is the differential equation of the circuit 
after commutation. Its solution: 
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In equation (8) we take into account that di0/dt = 0, 
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Thus, equation (8) is the first commutation law for 
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We found the constant А: 
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The same solution was obtained in [8]. 
If R3 = 0, i.e. before switching the section (R2 – L2) 

was short-circuited, then 
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which coincides with the solution given in [1]. 
We solve this problem using the Duhamel integral 

and obtain the same result. We believe that the electrical 
circuit before switching was switched on to the voltage U 
at the time t = –t0 < 0 
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Assuming that the transient from the switching on 
to the time of commutation t = 0 has already ended, we 
write the transient conductivity of the circuit before 
commutation for the current i2 by the forced 
component (9): 

 
323121

3
0 RRRRRR

R
th


 . 

The transient conductivity for the circuit after 
commutation, according to (10), (11), is equal to: 
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Here:  =  + t0 is the input signal coordinate 
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before commutation; 
These multipliers do not take part in integration with 

respect to , since they separate the range of the formulas 
of the transient conductivity of the output signal before 
and after switching.  

We consider a circuit with a capacitive energy 
storage device, where commutation changes the 
capacitance in the circuit (Fig. 3). 

 

 
Fig. 3 

 
Initial data: U = 60 V, R1 = R2 = 1 k, 

C1 = 1 μF, C2 = 2 μF. We determine i1. 
Kirchhoff laws for the circuit as a whole (before and 

after switching): 
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We substitute the currents into the first equation: 
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We write the voltage uc as the sum of the voltages 
before and after the commutation separated by unit 
discontinuous functions. 
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We substitute into the differential equation (13) 
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We equate multipliers for the same discontinuous 
functions: 
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3)          :t   0211011  uccRucR .            (16) 

The solution of equation (14) for the circuit before 
commutation has the form: 
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Since before the commutation at some time t = –t0 < 0 
the circuit (R1 – c1) was switched on to the voltage U, 
then this transient is considered to be completed before 
the time t = 0. Then: 
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The solution of equation (15) for the circuit after 
commutation is: 
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Equation (16) is the second commutation law for 
charges 
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i.e. 
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After substitution, we obtain equality for the 
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From here: 
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The source current: 
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The same result was obtained in [9]. 
We solve the same problem with the help of the 

Duhamel integral. The transient response of the circuit for 
the voltage before and after commutation has the form: 
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We assume that the circuit was switched on at a 
certain time t = –t0 < 0 by the voltage (12) before the 
commutation, and this transient ended before the 
commutation time t = 0. Then the Duhamel integral (1) 
has the form: 
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The same solution for uc was obtained above. If in 
this solution R2, then we obtain a solution for the 
circuit (Fig. 3) without R2, which is given in [1]: 
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Conclusions. 
1. For the first time, the possibility of calculating 

transients in an electric circuit with «incorrect» initial 
conditions with the help of the Duhamel integral and 
discontinuous functions is justified. 

2. The proposed solution of the problem of calculating 
transients in the electrical circuit with non-zero and 
«incorrect» initial conditions with the help of the 
Duhamel integral is more compact than the known ones. 
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