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TESTING OF NUMERICAL SOLUTION OF THE PROBLEM OF DETERMINING 
SOURCES OF MAGNETOSTATIC FIELD IN MAGNETIZED MEDIUM 
 
Purpose. Testing of numerical solution algorithm for integral equation for calculation of plane meridian magnetostatic field 
source distribution at interfaces of piecewise homogeneous magnetized medium by means of electrostatic analogy. Methodology. 
The piecewise homogeneous medium consists of three regions with different magnetic permeabilities: the shell of arbitrary 
meridian section, external unlimited medium outside the shell, and the medium inside the shell. For testing external 
homogeneous magnetic field effect on spherical shell is considered.  The analytical solution of this problem on the basis of 
electrostatic analogy from the solution of the problem uniform electrostatic field effect on dielectric shell is obtained. We have 
compared results of numerical solution of integral equation with the data obtained by means of analytical solution at the 
variation of magnetic permeabilities of regions of medium. Results. Integral equation and the algorithm of its numerical solution 
for calculation of source field distribution at the boundaries of piecewise homogeneous medium is validated. Testing of integral 
equations correctness for calculation of fictitious magnetic charges distribution on axisymmetric boundaries of piecewise 
homogeneous magnetized medium and algorithms of their numerical solutions can be carried out by means of analytical 
solutions of problems of homogeneous electrostatic field effect analysis on piecewise homogeneous dielectric medium with central 
symmetry of boundaries – single-layer and multilayer spherical shells. In the case of spherical shell in wide range of values of the 
parameter λk, including close to ± 1, numerical solution of integral equation is stable, and relative error in calculating of fictitious 
magnetic charges surface density and magnetic field intensity inside the shell is from tenths of a percent up to several percent 
except for the cases of very small values of these quantities. Originality. The use analytical solutions for problems of calculation 
of external electrostatic field effect on piecewise homogeneous dielectric bodies for testing integral equations of magnetostatics 
and algorithms for their numerical solutions. Practical value. The described method of testing integral equations of 
magnetostatics and their numerical solutions can be used for calculation of magnetic fields of spacecraft control system 
electromagnets. References 12, tables 2, figures 3. 
Key words: plane meridian magnetostatic field, piecewise homogeneous magnetized medium, integral equation, electrostatic 
analogy, fictitious magnetic charge. 
 
Выполнена проверка правильности интегрального уравнения второго рода для расчета распределения источников 
плоскомеридианного магнитостатического поля на границах раздела кусочно-однородной намагничиваемой среды и 
его численного решения. Для этого использованы электростатическая аналогия и аналитическое решение задачи о 
воздействии однородного электростатического поля на сферическую диэлектрическую оболочку в кусочно-однородной 
диэлектрической среде. Подтверждена правильность интегрального уравнения и его численного решения при помощи 
аппроксимирующей системы алгебраических уравнений. Сделан анализ влияния магнитных проницаемостей 
однородных областей среды на распределение фиктивных магнитных зарядов на поверхностях и напряженность 
магнитного поля внутри сферической оболочки. Библ. 12, табл. 2, рис. 3. 
Ключевые слова: плоскомеридианное магнитостатическое поле, кусочно-однородная намагничиваемая среда, 
интегральное уравнение, электростатическая аналогия, фиктивный магнитный заряд. 
 

Introduction. For the calculation of magnetostatic 
fields in inhomogeneous magnetized media, the use of 
integral equations of the second kind with respect to the 
density of fictitious magnetic charges in the volume and 
on the interfaces of the sections of the medium is effective 
[1-3]. Integral equations are approximated on a spatial 
mesh by systems of algebraic equations of high order, 
which are solved using computers. As in the formulation 
of integral equations, and with their approximation, errors 
can be made, connected, for example, with 
inconsistencies in the directions of vectors, integrating on 
the elementary part of the computational domain with the 
singular point of the kernel of the integral equation. 

The relevance of this work is due to the need to 
verify the correctness of the used algorithms and labor-
intensive computation procedures using tasks that have 
analytical (exact) solutions – testing. The number of such 
solutions in magnetostatics is relatively small. In the 
known papers, exact solutions of problems of calculating 
analogous physical fields are not fully utilized, giving 
preference to more accurate, in the opinion of the authors, 
numerical methods. 

The goal of the work is use of electrostatic analogy 
for testing the algorithm for the numerical solution of the 

integral equation for the surface density of fictitious 
magnetic charges at the interfaces of homogeneous 
regions of a piecewise homogeneous magnetized medium 
in the case of a plane meridian magnetostatic field. 

Main equations and formulae. Let it be required to 
test the algorithm for solving a problem for a piecewise 
homogeneous medium consisting of three homogeneous 
regions with different constant absolute magnetic 

permeabilities µk (k = 3,1 ). The shell of an arbitrary 
meridian section (region 2) divides the unbounded 
environment into regions 1 and 3, respectively, outside 
and inside the shell (Fig. 1). In the particular case, region 
3 is absent, i.e. there is an axisymmetric body in an 
unbounded medium, for example, the core of an 
electromagnet. Using the electrostatic analogy of the 
problem under consideration [1, 4-6], we represent the 
scalar potential φm of the magnetostatic field due to the 
magnetic properties of the medium in the form [3, 7, 8]:  
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where Q, M  l are the point of observation and point 
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with current coordinates, respectively; µ0 is the magnetic 
constant; σm(M) is the surface density of fictitious 
magnetic charges; l, dlM are the total contour of the 
meridian section of the shell and its element with center at 
the point M, respectively; l = l1 +l2, l1,2 are the outer and 
inner parts of the total contour, respectively; K(k) is the 
complete elliptic integral of the first kind of module k [9]; 
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rQ, rM and zQ, zM are the radial and axial cylindrical 
coordinates of points Q and M.  

The strength of the magnetic field due to the 
magnetic properties of the medium, and the resulting 
magnetic field are respectively equal [1] 

mmH grad


        (2) 

and 

mHHH


 0 ,      (3) 

where 0H


 is the external magnetic field strength. 

Following the idea of the method [1], we note that in 
order to perform calculations using formulae (1) – (3), it 
is necessary to find an unknown function σm(Q), Q  l by 
solution of the integral equation 

       QHdlMQSMQ nk
l

Mm
k

m 002, 

   ,  (4) 

where 

   

   

    ;,1cos
2

,1cos1
2

1

2
,

2

2

23



















































Qz
M

MQ

Qr
M

QM

M

Q

nkE
k

k

r

zz

nkEk
r

rr

k
kKr

r

k
MQS




          (5) 

r1


, z1


 are the orts of cylindrical coordinates r and z; 

Qn


 is the unit normal to the contour l in the point Q  l; 

E(k), k is the complete elliptic integral of the second kind 
of the module k and the additional module of complete 

elliptic integrals [9]; 21 kk  ; 
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H0n(Q) is the normal projection of 0H


.  

 
Fig. 1. An axisymmetric shell in a piecewise homogeneous 

magnetized medium 

The particular case of the problem under 
consideration. For testing, we consider a particular case 
of the problem described above – the effect of external 
constant homogeneous magnetic field directed along the 
axial coordinate z on the spherical shell in a piecewise 
homogeneous magnetized medium (Fig. 2). The meridian 
section of this shell is symmetric about the r axis, 
therefore, for the points M and M’ with such symmetry 
σm(M’) = σm(M) and the domain of definition of σm(M) is 
halved. We transform the integral equation (4) for this 
case to the form:  
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where θ is the spherical coordinate of elevation angle 
(Fig. 2). 

 
Fig. 2. A spherical shell in a piecewise homogeneous 

magnetized medium 
 

The total integration contour l in equation (6) 
consists of two halves l1 and l2 symmetric about the r-axis, 
located in the region z ≥ 0. The functions S(Q, M) и S(Q, 
M’) entering the kernel of this equation, we determine by 

formula (5), having adopted in it   cos,1cos Qr n


, 

  sin,1cos Qz n


, MM zz  , MM rr  . In addition, it 

is necessary to take into account the change in the 
z-coordinates of the symmetric points M’ in calculating 
the modulus k. After solving equation (6), the intensity of 
the homogeneous magnetic field at an arbitrary point Q 
inside the shell (region 3) is found using the formula that 
follows from (1) – (3): 
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The function S1
' in the integrand of the second term 

(7) is determined by formula (8), replacing in it, as well as 
in the formula for determining k, the coordinate zM on zM’. 



 

44 ISSN 2074-272X. Electrical Engineering & Electromechanics. 2017. no.6 

When forming the functions S(Q, M) and S(Q, M’) 
entering the kernels of equations (4), (6), formulas were 
used to calculate the projections of the plane meridian 
electrostatic field from [3, 8]. The contour l was divided 
into N elementary regions with nodal points Mk at their 

center, which form a spatial mesh, and 1,1 Nk   at 

Mk  l1 and NNk ,11   at Mk  l2 (Fig. 2). Equation (6) 
was transformed into a system of algebraic equations on a 
mesh using the quadrature formula of rectangles. The 
diagonal elements of the N×N matrix of this system of 
equations, corresponding to the elementary sections of the 
contour with the singular point of the kernel of equation 
(6), were determined by the method described in [10]. 
The system of algebraic equations was solved by a direct 
method based on the inversion of the matrix of the left-
hand sides and the subsequent multiplication of the 
inverse matrix by the column vector of the right parts. 

Analytical solution of a similar electrostatic problem 
of the action of an external homogeneous electric field on 
a dielectric spherical shell is known [11]. Using this 
solution, we obtain formulas for calculating the 
distribution of the surface density of fictitious magnetic 
charges on the boundary surfaces, as well as the intensity 
of the homogeneous magnetic field Hi inside the 
magnetized shell: 
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where R1, R2 are the radii of the boundary surfaces (Fig. 2); 
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The values of σm and Hi obtained by numerical 
solution of the integral equation (6) and calculations by 
the formula (7) will be called approximate, and using 
(9) – (11) – exact.  

Table 1, 2 show the values of σm
* = σm / (µ0H0) and 

Hi
* = Hi / H0, respectively, and Fig. 3 shows the variation 

curves for σm
* vs θ [0, π/2] on the boundary surfaces of 

the shell at μ1 = μ0, R2/R1 = 0.95 and the variation of μ2,3. 
The data in columns 1 are approximate, and in columns 2 
– exact. For the data given in the numerators of columns 1 
of Table 1, it was assumed that N = 80, in the 
denominators – 2160. The curves in Fig. 3 are built from 
the results of a numerical solution of equation (6) with 
N = 2160. 

From Table 1, 2 it follows that in wide ranges of 
variation of the magnetic permeabilities μ2 и μ3 when the 
step of the spatial mesh is reduced the absolute 
discrepancies of the exact and approximate values of σm

* 
и Hi

* are of the order of 10–3. In this case, the relative 
discrepancies vary from 0.1% to several percent, except 
for very small values of the calculated value. 

 

Table 1 
The values of the surface density of fictitious magnetic charges σm

* on the surfaces of a spherical shell 
µ2 = 50µ0, λ1 = 0.961 µ3 = µ0 

µ3 = 10µ0 
λ2 = –0.667 

µ3 = 100µ0 
λ2 = 0.333 

µ3 = 1000µ0 
λ2 = 0.905 

µ2 = 50µ0 
λ1 = 0.961 
λ2 = –0.961 

µ2 = 500µ0 
λ1 =0.996 
λ2 = –0.996 

µ2 = 2000µ0 
λ1 = 0.999 
λ2 = –0.999 

The shell 
surface 

θk, рад 

1 2 1 2 1 2 1 2 1 2 1 2 

0.7312 0.8288 0.8457 0.6067 0.7823 0.8048
0.2945 

0.7483 
0.7490 

0.8348 
0.8350

0.8497
0.8498

0.6370
0.6383

0.8339 
0.8362 

0.8594
0.8617 

1.4404 1.6326 1.6658 1.1951 1.5412 1.5855
0.6086 

1.4739 
1.4753 

1.6443 
1.6447

1.6736
1.6739

1.2548
1.2573

1.6426 
1.6470 

1.6928
1.6974 

2.0087 2.2765 2.3229 1.6668 2.1499 2.2117
0.9228 

2.0553 
2.0572 

2.2929 
2.2935

2.3338
2.3342

1.7497
1.7532

2.2906 
2.2967 

2.3605
2.3670 

2.3812 2.6977 2.7525 1.9765 2.5502 2.6236
1.2369 

2.4355 
2.4378 

2.7171 
2.7178

2.7656
2.7660

2.0735
2.0776

2.7144 
2.7216 

2.7972
2.8049 

2.5335 2.8539 2.9033 2.1023 2.7249 2.8047

Outer 

1.5510 
2.5774 

2.5798 
2.8754 

2.8762
2.9267

2.9272
2.1943

2.1986
2.8725 

2.8802 
2.9602

2.9683 

–0.0507 0.0103 0.0208 –0.1286 –0.0441 –0.0329
0.2945 

–0.0446
–0.0443 

0.0090 
0.0089

0.0182
0.0181

–0.1134
–0.1128

–0.0184 
–0.0173 

–0.0057
–0.0045

–0.0999 0.0203 0.0410 –0.2533 –0.0868 –0.0647
0.6086 

–0.0878
–0.0872 

0.0177 
0.0176

0.0359
0.0357

–0.2234
–0.2222

–0.0362 
–0.0340 

–0.0112
–0.0089

–0.1393 0.0282 0.0572 –0.3530 –0.1206 –0.0898
0.9228 

–0.1224
–0.1217 

0.0247 
0.0246

0.0501
0.0497

–0.3116
–0.3098

–0.0505 
–0.0474 

–0.0156
–0.0124

–0.1646 0.0334 0.0678 –0.4174 –0.1410 –0.1044
1.2369 

–0.1450
–0.1442 

0.0293 
0.0291

0.0593
0.0590

–0.3692
–0.3671

–0.0598 
–0.0562 

–0.0185
–0.0147

–0.1319 0.0139 0.0150 –0.3902 –0.0764 –0.0349

Inner 

1.5510 
–0.1534

–0.1526 
0.0310 

0.0308
0.0627

0.0624
–0.3906

–0.3885
–0.0632 

–0.0595 
–0.0195

–0.0155



 

ISSN 2074-272X. Electrical Engineering & Electromechanics. 2017. no.6 45 

Table 2 
The values of the magnetic field intensity Hi

* 
penetrated inside the spherical shell 

µ2 = 50µ0, λ1 = 0.961 µ3 = µ0 

µ3 = 10µ0 
λ2 = –0.667 

µ3 = 100µ0 
λ2 = 0.333 

µ2 = 50µ0 
λ1 = 0.961 
λ2 = –0.961 

µ2 = 500µ0 
λ1 =0.996 
λ2 = –0.996 

N 

1 2 1 2 1 2 1 2 

80 0.2179 0.0363 0.4502 0.1507

240 0.2006 0.0325 0.4159 0.0935

720 0.1941 0.0314 0.4031 0.0711

2160 0.1919 

0.1908 

0.0310 

0.0308 

0.3987 

0.3965 

0.0634

0.0596
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Fig. 3. The distributions of σm

* on the outer (a) and inner (b) 
surfaces of the spherical shell: for curve 1 

μ2 = 100μ0, μ3 = μ0, 2 – μ2 = 1000μ0, μ3 = μ0, 3 – μ2 = 10μ0, 
μ3 = 5000μ0 

 

Increasing the accuracy of the numerical solution 
can also be achieved by using more precise quadrature 
formulas. From Table 1 and Fig. 3 it follows that the 
numerical solutions are stable for values of the parameter 
λk close to ± 1. Thus, with the help of an analytical 
solution of a similar electrostatic problem, the correctness 
of the compilation of the original integral equation (4) and 
the algorithm for its numerical solution was confirmed. 
We note that analytical solutions of problems of the effect 
of external homogeneous electrostatic field on multilayer 
dielectric spherical shells are known [12], which can be 
used to test the algorithm for solving the integral equation 
in the case of multilayer axisymmetric magnetized shells. 

The features of the variation of σm
* and Hi

* with 
the variation of µk in the case of a spherical shell. The 
values of σm

* on the calculated part of the contour of the 
outer surface of the spherical shell (z > 0) are positive for 
all µk and vary insignificantly for large µ2. On the 
calculated part of the contour of the inner surface of the 

shell for µ3 < µ2 (λ2 < 0), the values of σm
* are negative, 

and for µ3 > µ2 (λ2 > 0) are positive (Table 1). Naturally, 
on the part of the contour symmetric about the r-axis, the 
signs of σm

* are opposite.  
At large µ2 ≥ 100µ0, the shell shields region 3, which 

results in small values of Hi
* and σm

*. An increase in µ3 
leads to an additional decrease in Hi

* (Table 2). 
The described features of the changes of σm

* and Hi
* 

can also be useful in the analysis of the magnetostatic 
field in the case of axisymmetric shells and solid bodies 
of a different shape. 

Conclusions. 
1. Testing the correctness of integral equations for 

calculating the distribution of fictitious magnetic charges 
on the axisymmetric boundaries of a piecewise 
homogeneous magnetized medium and the algorithms of 
their numerical solutions can be carried out using 
analytical solutions of problems of analyzing the action of 
homogeneous electrostatic field on a piecewise 
homogeneous dielectric medium with a central symmetry 
of boundaries – single-layer and multilayer spherical 
shells. 

2. In the case of a spherical shell in a wide range of 
values of the parameter λk including those close to ± 1, the 
numerical solution of the integral equation is stable, and 
when reducing the mesh step, the relative error in 
calculating the surface density of fictitious magnetic 
charges and the magnetic field strength inside the shell is 
from the tenths percentages to a few percent, except for 
very small values of these values. 
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