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TESTING OF NUMERICAL SOLUTION OF THE PROBLEM OF DETERMINING
SOURCES OF MAGNETOSTATIC FIELD IN MAGNETIZED MEDIUM

Purpose. Testing of numerical solution algorithm for integral equation for calculation of plane meridian magnetostatic field
source distribution at interfaces of piecewise homogeneous magnetized medium by means of electrostatic analogy. Methodology.
The piecewise homogeneous medium consists of three regions with different magnetic permeabilities: the shell of arbitrary
meridian section, external unlimited medium outside the shell, and the medium inside the shell. For testing external
homogeneous magnetic field effect on spherical shell is considered. The analytical solution of this problem on the basis of
electrostatic analogy from the solution of the problem uniform electrostatic field effect on dielectric shell is obtained. We have
compared results of numerical solution of integral equation with the data obtained by means of analytical solution at the
variation of magnetic permeabilities of regions of medium. Results. Integral equation and the algorithm of its numerical solution
for calculation of source field distribution at the boundaries of piecewise homogeneous medium is validated. Testing of integral
equations correctness for calculation of fictitious magnetic charges distribution on axisymmetric boundaries of piecewise
homogeneous magnetized medium and algorithms of their numerical solutions can be carried out by means of analytical
solutions of problems of homogeneous electrostatic field effect analysis on piecewise homogeneous dielectric medium with central
symmetry of boundaries — single-layer and multilayer spherical shells. In the case of spherical shell in wide range of values of the
parameter Ay, including close to + 1, numerical solution of integral equation is stable, and relative error in calculating of fictitious
magnetic charges surface density and magnetic field intensity inside the shell is from tenths of a percent up to several percent
except for the cases of very small values of these quantities. Originality. The use analytical solutions for problems of calculation
of external electrostatic field effect on piecewise homogeneous dielectric bodies for testing integral equations of magnetostatics
and algorithms for their numerical solutions. Practical value. The described method of testing integral equations of
magnetostatics and their numerical solutions can be used for calculation of magnetic fields of spacecraft control system
electromagnets. References 12, tables 2, figures 3.

Key words: plane meridian magnetostatic field, piecewise homogeneous magnetized medium, integral equation, electrostatic
analogy, fictitious magnetic charge.

Boinonnena nposepka npasunbHoCmu UHMEZPAIbLHOZ0 YPAGHEHUA 6MOPOZO POOA 0/ PACHEmdA PACHPeOeneHUsl UCHOYHUKOG
HIOCKOMEPUOUAHHO020 MAZHUMOCIAMUYECKO20 NOJIA HA ZPAHUUAX PA30eNd KYCOYHO-00HOPOOHOI HAMAZHUYUGAEMOU CPeObl U
€20 uuciennozo pewenus. /s 3moz0 ucCnoNb306anbl IIEKMPOCMAMUYECKASA AHANI0ZUA U AHATUMUYECKOe peulenue 3a0auu o
6030eiicmeuu 00HOPOOHO20 INEKMPOCMAMUYECKO20 NOJIA HA CHEPUUECKYI0 OUIIEKMPUUECKYIO 00010UKY 8 KYCOUHO-00HOPOOHOI
ousnekmpuueckoit cpede. Iloomeeprcoena npaguILHOCMb UHMEZPATILHO20 YPAGHEHUA U €20 YUCTEHHO20 PeUleHUs NPU NOMOuU
annpokcumupyloujeii cucmemsl anzeopauveckux ypasuenuii. Coenan ananu3 6GIUAHUA MACHUMHBIX NPOHUUAEMOCHIEN]
00HOPOOHBIX 0On1acmeli cpedvl HaA pacnpedesienue UKMUGHBIX MACHUMHBIX 3APA00E HA NOBEPXHOCMAX U HANPAHCEHHOCHD
MAZHUMHO20 NOAA 6HYmMpPU chepuyeckoii 06onouku. buodin. 12, rabdn. 2, puc. 3.

Kniouesvie cnosa: NI0CKOMepHMINAHHOE MATrHUTOCTATHYECKOe I0Jie, KYCOYHO-OJHOPOAHAsI HAMarHHMYHBaeMasl cpena,
HHTErpajibHOE YPaBHEHHE, YIEKTPOCTATHYECKAs] aHAIOrMsl, GUKTUBHBII MATHUTHBIN 3apsi.

Introduction. For the calculation of magnetostatic
fields in inhomogeneous magnetized media, the use of
integral equations of the second kind with respect to the
density of fictitious magnetic charges in the volume and
on the interfaces of the sections of the medium is effective
[1-3]. Integral equations are approximated on a spatial
mesh by systems of algebraic equations of high order,
which are solved using computers. As in the formulation
of integral equations, and with their approximation, errors
can be made, connected, for example, with
inconsistencies in the directions of vectors, integrating on
the elementary part of the computational domain with the
singular point of the kernel of the integral equation.

The relevance of this work is due to the need to
verify the correctness of the used algorithms and labor-
intensive computation procedures using tasks that have
analytical (exact) solutions — testing. The number of such
solutions in magnetostatics is relatively small. In the
known papers, exact solutions of problems of calculating
analogous physical fields are not fully utilized, giving
preference to more accurate, in the opinion of the authors,
numerical methods.

The goal of the work is use of electrostatic analogy
for testing the algorithm for the numerical solution of the

integral equation for the surface density of fictitious
magnetic charges at the interfaces of homogeneous
regions of a piecewise homogeneous magnetized medium
in the case of a plane meridian magnetostatic field.

Main equations and formulae. Let it be required to
test the algorithm for solving a problem for a piecewise
homogeneous medium consisting of three homogeneous
regions with different constant absolute magnetic
permeabilities u; (k = 1,3). The shell of an arbitrary
meridian section (region 2) divides the unbounded
environment into regions 1 and 3, respectively, outside
and inside the shell (Fig. 1). In the particular case, region
3 is absent, i.e. there is an axisymmetric body in an
unbounded medium, for example, the core of an
electromagnet. Using the electrostatic analogy of the
problem under consideration [1, 4-6], we represent the
scalar potential ¢, of the magnetostatic field due to the
magnetic properties of the medium in the form [3, 7, 8]:

On (M)FMK(k) dlM , (1)

JZQ-ZM)Z o+ P

where O, M e [ are the point of observation and point
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with current coordinates, respectively; i, is the magnetic
constant; o,(M) is the surface density of fictitious
magnetic charges; /, dl), are the total contour of the
meridian section of the shell and its element with center at
the point M, respectively; [ = I, +1, [;, are the outer and
inner parts of the total contour, respectively; K(k) is the
complete elliptic integral of the first kind of module & [9];

}"QI”M

J()Z()z |

ro, 'y and zp, zjy are the radial and axial cylindrical
coordinates of points O and M.

The strength of the magnetic field due to the
magnetic properties of the medium, and the resulting
magnetic field are respectively equal [1]

H,, =—gradg,, 2

and
H=Hy+H,, 3)
where H, o 1s the external magnetic field strength.

Following the idea of the method [1], we note that in
order to perform calculations using formulae (1) — (3), it
is necessary to find an unknown function o,(Q), O € [/ by
solution of the integral equation

ow(0)- 2 [, (IS0 Mty <211074 0, (0), )
!
where

S(0.M)=
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X(Ml{z - lJE(k)} cos(I,,ﬁQ )+ (5)
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1., 1, are the orts of cylindrical coordinates r and z;
sz is the unit normal to the contour / in the point Q € /;

E(k), k' is the complete elliptic integral of the second kind
of the module £ and the additional module of complete

elliptic integrals [9]; k' =v1—k> ;
ﬂfk — Hi+1 — Hi Jk=1,2;
Hie1 + Hy
H,(Q) is the normal projection of H 0-
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Fig. 1. An axisymmetric shell in a piecewise homogeneous
magnetized medium

The particular case of the problem under
consideration. For testing, we consider a particular case
of the problem described above — the effect of external
constant homogeneous magnetic field directed along the
axial coordinate z on the spherical shell in a piecewise
homogeneous magnetized medium (Fig. 2). The meridian
section of this shell is symmetric about the r axis,
therefore, for the points M and M~ with such symmetry
on(M’) = —0,,(M) and the domain of definition of ¢,,(M) is
halved. We transform the integral equation (4) for this
case to the form:

oul0) 2 [onrkstenn)-slou fu =
!
=2ug A Hpsin G,

where 6 is the spherical coordinate of elevation angle
(Fig. 2).
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Fig. 2. A spherical shell in a piecewise homogeneous
magnetized medium

The total integration contour / in equation (6)
consists of two halves /; and [, symmetric about the r-axis,
located in the region z > 0. The functions S(Q, M) u S(Q,
M) entering the kernel of this equation, we determine by

formula (5), having adopted in it cos L,sz =cosd,
cos(IL.iip)=sin@, zy=—z)7, 1y =ny . In addition, it

is necessary to take into account the change in the
z-coordinates of the symmetric points M’ in calculating
the modulus k. After solving equation (6), the intensity of
the homogeneous magnetic field at an arbitrary point Q
inside the shell (region 3) is found using the formula that
follows from (1) — (3):

1
H{(Q) = Hy+—— [ ,,(M)x
8714y 1
| ™)
x ————(8) = S )dly.
FQ FQVM
where
k3
81 =(z0 - 2u )kTE(k) . (8)

The function S; in the integrand of the second term
(7) is determined by formula (8), replacing in it, as well as
in the formula for determining %, the coordinate z), on z,.
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When forming the functions S(Q, M) and S(Q, M’)
entering the kernels of equations (4), (6), formulas were
used to calculate the projections of the plane meridian
electrostatic field from [3, 8]. The contour / was divided
into N elementary regions with nodal points M, at their

center, which form a spatial mesh, andk =1,N; at

My € lyand k=N;+1,N at M; € I, (Fig. 2). Equation (6)
was transformed into a system of algebraic equations on a
mesh using the quadrature formula of rectangles. The
diagonal elements of the NxN matrix of this system of
equations, corresponding to the elementary sections of the
contour with the singular point of the kernel of equation
(6), were determined by the method described in [10].
The system of algebraic equations was solved by a direct
method based on the inversion of the matrix of the left-
hand sides and the subsequent multiplication of the
inverse matrix by the column vector of the right parts.

Analytical solution of a similar electrostatic problem
of the action of an external homogeneous electric field on
a dielectric spherical shell is known [11]. Using this
solution, we obtain formulas for calculating the
distribution of the surface density of fictitious magnetic
charges on the boundary surfaces, as well as the intensity
of the homogeneous magnetic field H; inside the
magnetized shell:

2 .
O'm(Rl,e) = 'UO[F(BI —Bz)‘f' HO +A2jsm9; (9)
1

3
L Ry | [ 4

H,=-9H,/|c 1(+2j—2c 2[—] [——1] ,(11)
l /{ﬂ My AR )

where R}, R, are the radii of the boundary surfaces (Fig. 2);
R ’
_p3 2 . _ 3 4.
Bl_Rl H0+A2 1+C/u[?1j ’BZ_CIURZAZ’

Cul =ﬂ3/ﬂ2 +2;Cy2=1—ﬂ3/ﬂ2 5Cy :CyZ/Cﬂl;
A2 :Hicﬂ1/3.

The values of o, and H; obtained by numerical
solution of the integral equation (6) and calculations by
the formula (7) will be called approximate, and using
(9) — (11) — exact.

Table 1, 2 show the values of 6,, = 6,, / (uoH,) and
H'=H,/H,, respectively, and Fig. 3 shows the variation
curves for o, vs 6 [0, 7/2] on the boundary surfaces of
the shell at u; = uo, Ro/R; = 0.95 and the variation of .
The data in columns 1 are approximate, and in columns 2
— exact. For the data given in the numerators of columns 1
of Table 1, it was assumed that N = 80, in the
denominators — 2160. The curves in Fig. 3 are built from
the results of a numerical solution of equation (6) with
N=2160.

From Table 1, 2 it follows that in wide ranges of
variation of the magnetic permeabilities x4, u ¢z when the
step of the spatial mesh is reduced the absolute
discrepancies of the exact and approximate values of g,

2B, ) 51 H,-* are of the order of 107. In this case, the relative
On(Ry,0) = tip| —-+H; = 4y |sinf ; (10) discrepancies vary from 0.1% to several percent, except
R;
for very small values of the calculated value.
Table 1
The values of the surface density of fictitious magnetic charges g,, on the surfaces of a spherical shell
Mo = 50,uo, }vl = 0961 M3 = Ho
_ _ _ Ur = 50/1() Ur = 500/1(] Mo = 2000/10
? ) e P 4, =-0.961 4, =-0.996 4, =-0.999
1 2 1 2 1 2 1 2 1 2 1 2
0.7312 0.8288 0.8457 0.6067 0.7823 0.8048
0.2945 0.7490 0.8350 0.8498 0.6383 0.8362 0.8617
0.7483 0.8348 0.8497 0.6370 0.8339 0.8594
1.4404 1.6326 1.6658 1.1951 1.5412 1.5855
0.6086 1.4753 1.6447 1.6739 1.2573 1.6470 1.6974
1.4739 1.6443 1.6736 1.2548 1.6426 1.6928
2.0087 2.2765 2.3229 1.6668 2.1499 22117
Outer 0.9228 2.0572 2.2935 2.3342 1.7532 2.2967 2.3670
2.0553 2.2929 2.3338 1.7497 2.2906 2.3605
2.3812 2.6977 2.7525 1.9765 2.5502 2.6236
1.2369 2.4378 2.7178 2.7660 2.0776 2.7216 2.8049
2.4355 27171 2.7656 2.0735 2.7144 2.7972
2.5335 2.8539 2.9033 2.1023 2.7249 2.8047
1.5510 2.5798 2.8762 2.9272 2.1986 2.8802 2.9683
2.5774 2.8754 2.9267 2.1943 2.8725 2.9602
—-0.0507 0.0103 0.0208 —-0.1286 —0.0441 —-0.0329
0.2945 —0.0443 0.0089 0.0181 —0.1128 -0.0173 —0.0045
—0.0446 0.0090 0.0182 -0.1134 -0.0184 —0.0057
—0.0999 0.0203 0.0410 —0.2533 —0.0868 —0.0647
0.6086 —0.0872 0.0176 0.0357 -0.2222 —0.0340 —0.0089
—0.0878 0.0177 0.0359 -0.2234 —0.0362 -0.0112
—0.1393 0.0282 0.0572 —-0.3530 —0.1206 —0.0898
Inner 0.9228 -0.1217 0.0246 0.0497 —0.3098 —0.0474 -0.0124
—0.1224 0.0247 0.0501 -0.3116 —0.0505 —0.0156
—0.1646 0.0334 0.0678 -0.4174 —0.1410 —-0.1044
1.2369 —0.1442 0.0291 0.0590 —0.3671 —0.0562 —0.0147
—0.1450 0.0293 0.0593 -0.3692 —0.0598 —0.0185
—0.1319 0.0139 0.0150 —0.3902 —0.0764 —0.0349
1.5510 —0.1526 0.0308 0.0624 —0.3885 —0.0595 —0.0155
—0.1534 0.0310 0.0627 -0.3906 —0.0632 —0.0195
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Table 2
The values of the magnetic field intensity H;"
penetrated inside the spherical shell

U= 50/!0, j.[ =0.961 Us = Uo
- _ =500 | p2=500u,
N T Ok s 00| 20961 | 4 =0.996
2 ’ s Jo=-0.961 | 1,=-0.996
1 2 1 2 1 2 1 2
80 |0.2179 0.0363 0.4502 0.1507
240 | 0.2006 0.0325 0.4159 0.0935
0.1908 0.0308 0.3965 0.0596
720(0.1941 0.0314 0.4031 0.0711
2160] 0.1919 0.0310! 0.3987 0.0634
on A
2.57
2 4
1.5+
1 +
0.51
0 ! i -
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Fig. 3. The distributions of 6,, on the outer () and inner b)
surfaces of the spherical shell: for curve 1
2 = 100u0, 13 = po, 2 — pp = 100019, u3 = pto, 3 — pa = 10110,
#3 = 50000

Increasing the accuracy of the numerical solution
can also be achieved by using more precise quadrature
formulas. From Table 1 and Fig. 3 it follows that the
numerical solutions are stable for values of the parameter
A close to £ 1. Thus, with the help of an analytical
solution of a similar electrostatic problem, the correctness
of the compilation of the original integral equation (4) and
the algorithm for its numerical solution was confirmed.
We note that analytical solutions of problems of the effect
of external homogeneous electrostatic field on multilayer
dielectric spherical shells are known [12], which can be
used to test the algorithm for solving the integral equation
in the case of multilayer axisymmetric magnetized shells.

The features of the variation of 6,,” and H;" with
the variation of u; in the case of a spherical shell. The
values of ¢,, on the calculated part of the contour of the
outer surface of the spherical shell (z > 0) are positive for
all u; and vary insignificantly for large wu,. On the
calculated part of the contour of the inner surface of the

shell for u; < uy (4, < 0), the values of G, are negative,
and for u3 > u, (4, > 0) are positive (Table 1). Naturally,
on the part of the contour symmetric about the r-axis, the
signs of g, are opposite.

At large u, > 100y, the shell shields region 3, which
results in small values of H,~* and a,,,*. An increase in u;
leads to an additional decrease in H;” (Table 2).

The described features of the changes of o, and H;"
can also be useful in the analysis of the magnetostatic
field in the case of axisymmetric shells and solid bodies
of a different shape.

Conclusions.

1. Testing the correctness of integral equations for
calculating the distribution of fictitious magnetic charges
on the axisymmetric boundaries of a piecewise
homogeneous magnetized medium and the algorithms of
their numerical solutions can be carried out using
analytical solutions of problems of analyzing the action of
homogeneous electrostatic field on a piecewise
homogeneous dielectric medium with a central symmetry
of boundaries — single-layer and multilayer spherical
shells.

2. In the case of a spherical shell in a wide range of
values of the parameter 4, including those close to £ 1, the
numerical solution of the integral equation is stable, and
when reducing the mesh step, the relative error in
calculating the surface density of fictitious magnetic
charges and the magnetic field strength inside the shell is
from the tenths percentages to a few percent, except for
very small values of these values.
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