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FINITE ELEMENT TECHNIQUE FOR SOLUTION OF THERMO-CONTACT
PROBLEMS AND ITS APPLICATION IN NUMERICAL ANALYSIS OF DEVICES
WORKING WITH INDUCTION HEATING

Purpose. To develop an effective approach for the numerical solution of transient thermo-contact problems and present a typical
example of its utilization regarding devices working on the principle of thermoelasticity produced by induction heating and spe-
cific technological processes intended for assembly and disassembly of systems containing shrink fits. Methodology. A finite ele-
ment technique for solution of 2D multiphysics (electromagnetic, thermal and structural) problems is developed, taking into ac-
count temperature dependences of material properties and continuous variations of the contact surfaces. Modeling of the contact
interaction between two parts is based on the concept of a special contact finite element having no thickness. The functional for
the temperature problem is supplemented with components corresponding to the thermal conductivity of this contact layer. The
heat generated due to mutual sliding of both parts can also be taken into account, but the heat capacity (specific heat) of the con-
tact layer is neglected. Using a special 1D 4-node finite elements a system of equations for the description of the thermo-contact
problem is obtained. Originality. Relatively simple analytical formulae for calculation of the contact thermal resistances occur-
ring in specific parts of electrical machines are known. The paper offers an alternative approach for the numerical solution of
transient thermo-contact problems based on the concept of a special 1D contact finite element having no thickness. Results. The
presented technique is applied for the computer simulation of assembly and disassembly of a shrink fit using induction heating.
Conclusions regarding the choice of technological modes are made. Comparative computations for drills made from hard alloy
and alloyed tool steel are carried out. References 8, figures 6.
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Onucana memoouKka pewienus Memoo0OM KOHEUHbIX IIEMEHINO06 MYIbMUPU3UUECKUX (INEKMPOMAZHUMHbIX, MEN08bIX U MeXd-
HUYeCKUX) 3a0au ¢ y4emom 3aeUcUMOCHell CEOIICHE MAMEPUATIO8 OM MEMREPAMYPbl U USMEHEHUA KOHMAKMHbIX NOGEPXHO-
cmeii. IIpeonoscennlit ROOX00 UCNONBL306aH 0114 YUCTIEHHO20 AHATIU3A YCIPOICME, (PYHKUUOHUDYIOWUX HA Da3e A6IeHUs mep-
Moynpyzocmu 6 npoyecce UHOYKUUOHHO20 HAZPEGA U OPUSUHATILHBIX MEXHOI02UYECKUX NPOUecco8, NPEOHA3HAYEHHBIX O
cOopKu u pazdoopku KOHCMPYKYUIL ¢ HanpaiceHHbimu nocaokamu. Ilpumenenue pazpadomannoii memoouKu npounIiocmpupo-
6ano Ha KoHKpemnom npumepe. Ilpuseden ananu3z nonyyennvix pesynromamos. bu6n. §, puc. 6.

Kniouesvie ciosa: AHAYKINOHHBII HArpeB, TEPMOYNPYTroCcTh, MyJIbTH(HU3NYECKHE 3aa4H, YHCIEHHBI aHAJIN3, METO] KOHe4-
HBIX 3JIEMEHTOB.

Introduction. Investigation of behavior of numer-
ous electrical devices in different operation regimes often
requires considering relevant multiphysics phenomena of
electromagnetic, thermal and structural origins. In many
cases, multiphysics analysis of such devices must also
include the influence of thin insulation layers and contact
thermal resistances for obtaining more realistic results.
Thin layers occur, for example, in the form of various
bandages [1], contact resistances (of thermal origin) play
a significant role in different shrink fits [2] and devices
for a number of industrial purposes [3].

Relatively simple analytical formulae for calculation
of the contact thermal resistances occurring in specific
parts of electrical machines are presented in [1]. These
can directly be used as material parameters during the
solution of the temperature problem.

The paper offers an alternative approach for the nu-
merical solution of transient thermo-contact problems.
Currently the proposed technique is used for solving such
problems in 2D Cartesian and axisymmetric systems. A
similar technique for solving 3D problems is being devel-
oped nowadays. The aim of the paper is to describe this
technique in detail and present a typical example of its
utilization.

Formulation of technical problem. Many modern
industrial technologies are based on the principle of in-
duction heating. The paper, however, will focus on its
application in production of shrink fits for specific pur-
poses. Typical is, for example, setting the disks on shafts,
fixing high-speed machine tools, or connecting pipes by

fixing sleeves, which always represent connecting of two
metal parts with an interference whose value is decisive
for the transferrable mechanical force or torque.

The process of manufacturing shrink fits starts with
induction heating of one of the parts, which leads to in-
crease of its dimensions. Then it is connected with an-
other part and the whole system is cooled. The shrink fit
is obtained after cooling. A typical example of fixing a
drilling tool in the chuck is depicted in Fig. 1.
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Fig. 1. Arrangement of drilling machine:
I — heating of chuck and inserting of shank into it
II — cooling of system and fixing of shank in chuck
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From the physical viewpoint, the process represents
a strongly nonlinear and nonstationary multiphysics prob-
lem characterized by mutual interaction of magnetic field,
temperature field and field of thermoelastic displacements
(and corresponding strains and stresses). Another aspect
to be involved in the model is the contact problem that
plays an important role when quantifying transfer of heat
between both connected parts.

The numerical solution of the model should provide
a sufficiently accurate idea about the whole process and
mainly the steady-state parameters of the system under
investigation.

Continuous mathematical model. The mathemati-
cal model of the process consists of three partial differen-
tial equations (PDEs) describing three involved physical
fields and relations describing the contact problem.

Magnetic field. Distribution of magnetic field in the
system may be described using several formulations [4].
When using, for example, the magnetic vector potential
A, the above field obeys the equation

curl(icurlA) + }/a—A =Jexts (1)
Y7 ot

where u is the magnetic permeability, y stands for the
electric conductivity and J represents the current den-
sity applied to the inductor. The boundary condition along
a sufficiently distant artificial boundary is of the Dirichlet
type and reads 4 = 0.

The eddy currents produced by time-variable mag-
netic field in electrically conductive bodies (whose den-
sity is given by the second term on the left-hand side in
(1)) give rise to the volumetric Joule losses wy (the influ-
ence of magnetization losses being neglected)
oAl

ot
whose magnitude decreases roughly exponentially with
the distance from the surface of the heated body.

In fact, the complete solution of (1) is practically un-
feasible due to relatively long time of the heating process.
That is why the model was simplified by considering the
magnetic field harmonic. Now (1) can be rewritten in
terms of the phasor 4 of the magnetic vector potential A
in the form

) 2)

wy =7

curl(curlé)+ J-oyuA= A oyt , 3)

where j=+/—1 and ® denotes the angular frequency.

The computations must be now, however, carried
out iteratively, and at every step the permeability p in any
element containing ferromagnetic material has to be ad-
justed to the real value of the local magnetic flux density.

Temperature_field. The temperature field 7T is de-
scribed by the equation [5]

div(AgradT) = pcp?a—f— wy, 4)

where A is the thermal conductivity, p denotes the mass
density and c, stands for the specific heat at a constant
pressure.

The boundary condition on the surface of system is
given by the formula

oT
_ﬂa:agen(T_Text)’ )

where n denotes the outward normal, ¢, is a coefficient
generally quantifying both convection and radiation and
Tex: stands for the temperature of sufficiently distant envi-
ronment.

Thermoelastic problem. Mechanical status of structural
parts of the considered devices is described by the following
system of three-dimensional tensor equations [6]

ot fji=0,
1

gij :E(Ui’j +uj,i)’ (6)
E v

o =—(&:: +——38:.e s

v 1+v(’f 1-2v i)

where oj is the tensor of mechanical stresses, &; is the tensor
of mechanical strains, u is the vector of mechanical dis-
placements, f'is the vector of the external volumetric forces,
E is the temperature-dependent modulus of elasticity of the
material, vis the temperature-dependent Poisson ratio of the
material, J; is the Kronecker delta, and e = g4 (k =1, ).

The first part of (6) is the system of equilibrium eq-
uations describing the correlation between the mechanical
stress tensor

011921031
0jj =| 012022032 (7
013023933
and given volumetric forces components f.
The second part of (6) is the system of cinematic

equations representing the correlation between the strain
tensor
£1142131
&jj =| £1262263 (®)
£13623633
and components u; of the mechanical displacement vector.
The third part of (6) is the constitutive equations
presenting the correlation between the mechanical stress
tensor oy and strain tensor &;.
In the system of equations (6) the following tensor
and vector operations are used
_ oo ij _ aul. _ Ou j 9
i = M T it O
X ox j axl'
where i = 1,2, 3 and j = 1, 2, 3 are the indices of the co-
ordinate axes.
In the axisymmetric case, the mechanical deformed state
of the device is described by the system of equations [6, 7]

86rr_|_6'tzr_(';rr_
or oz r

ot oo T
I'Z+ ZZ+ Iz

(&)
% +fr =0;

+f,=0;
or Oz r /2 (10)
ou, Ou
Brr =g, T
Ou, Ou, u,
= —4 ;8 =—,
Vre oz  or N7

where o;,, 0., 0y, 7;. are the radial, axial, circumferential
and shear mechanical stresses, respectively, &,, &, &o, /-
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are the radial, axial, azimuthal and tangential mechanical
strains, respectively, u, and u, are the radial and axial me-
chanical displacements, and f;, f; are the given radial and
axial forces, respectively.

In order to simulate the mechanical state of the
structure under consideration, elastic, plastic and thermal
deformations are generally considered. Therefore, the
strain tensor g; is presented as a sum of the elastic &,
plastic &/ and thermal &;" components [7], thus

i =& +€l]p+€l]T (11)

i l.'ie
The elastic strains are described in the following
way [6]

1
where k=1, .
The thermal strains are represented in the form
& =aAlsy, (13)

where a is the temperature-dependent coefficient of the
temperature expansion of the material, and AT is the dif-
ference of temperatures.

Irreversible and, therefore, unacceptable plastic de-
formations described by tensor &/ are not considered in
this paper.

Final remark. Many material parameters are signifi-
cantly dependent on temperature. Mentioned can be, for
example, electric conductivity, magnetic permeability,
thermal conductivity, specific heat, coefficient of linear
expansion, etc. All these dependences (as far as they are
known) are included in the computations.

Numerical solution. Magnetic field is solved in a
classic way using second-order finite element method.
The discretization mesh must cover not only the system,
but also its relatively large neighborhood. It is calculated
independently and takes into account only temperature
variations of the electric conductivity y and magnetic
permeability . The mesh remains the same in the course
of the calculations, the geometric changes due to thermoe-
lastic dilatation are neglected.

Solution of the temperature field is carried out by an
algorithm based on the generalized Crank—Nicolson me-
thod that respects the temperature variations of parame-
ters A and pc,,.

The solution of the thermoelastic problem by the fi-
nite element method uses at every time step a linearized
Lagrange variational equation for increments [7] in the
form
[[(a07 8¢, + 0" 5An, — AF 5w, ) r-dS = [ AP SAu;r-dl +
S, I,

+Jj(oy5Aeij —Fié'Aul-)r-dS—jPié'Auir-dl =0;
5 I

0 0

j j (457 8hey; +0¥ 5An; — AF! Su; yrdS j AP SAu;rdL +
SO LO

j j (07 5Aey; — F' 5u; yrdS - JPi5AuirdL, (14)

So Ly
where Sy and L, are the surface and boundary of the me-

ridian cross—section of the structure, o’ and Ao’ denote
the components of the stress tensor and their increments,

Ae; and Az stand for the increments of the linear and
nonlinear parts of the strain tensor, Au;; are the increments
of components of the displacement vector, f* and Af" are
the components of the volume loads (for example gravita-
tional) and their increments in one time step and, finally,
P' and AP’ denote the components of the surface load and
their increments.

Unfortunately, in the devices under consideration,
from time to time it is necessary to take into account the
exchange of heat inside the gap between individual struc-
tural parts of the device. This exchange is realized
through the contact zone that varies in time and that must
be determined in the course of solution of the thermoelas-
tic problem. There are several possibilities to take into
account the dependence of the contact thermal conductiv-
ity K, on the contact pressure p..

In many cases it is enough to use only two values of
K, For p.=0 (absence of the contact) we put

K,(T,p.)=K, , for p.<0 (presence of the contact)

K,(T.p)=K; .
Here, K,,' is a relatively small value (or even zero)
describing the heat conductivity of the contact layer

through the ambient environment, while K, =A/h,

where A is the thermal conductivity of the layer, and 4
denotes its roughness.

For more accurate computations it is recommended
to use more complicated empirical formulae such as that
given in [8].

Even when the mechanical problem is considered to
be linear (without plastic deformations), searching of the
unknown contact domain (or domains) between both parts
in each step is realized by means of an iterative process.

Contact problem. Modeling of the contact interac-
tion between two parts is based on the concept of a spe-
cial contact finite element having no thickness. The func-
tional for the temperature problem is supplemented with
components corresponding to the thermal conductivity of
this contact layer. The heat generated due to mutual slid-
ing of both parts can also be taken into account, but the
heat capacity (specific heat) of the contact layer is ne-
glected. Using a special 1D 4-node finite elements we
obtain a system of equations for the description of the
thermo-contact problem.

The functional of the temperature problem for the
contact layer can be written in the form [7]

I :% I[K,,(S#,a,,XTQ ~T P+ 0[S 400,01 + Q(S#,a,z,v)Tz]rOdP
L,

K

- _[ql(S,u’o-n)TerdT - _[qZ(Sy’O-n)TZFOdT +

Llll L‘/Z

+ _[OCl(Su’O-nITI _Tw(Sy’o'n)]TerdT +
L

@]

+ _[a2 (S,w On ITZ_ Ty (S,u »Op )]TZrOdf’

Ly

(15)

where K, (S ﬂ,an) is the contact thermal conductivity

(not the contact thermal resistance), which can be esti-
mated as a ratio «thermal conductivity of material of the

layer» / «thickness of the layer», S, are the subdomains

(«macro-elements») made of different materials, o, is the
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normal contact pressure, 77,7, are the surface tempera-
tures of contacting parts (bodies), Q(S ﬂ,an,v,) denotes
the internal heat source arising due to relative sliding of
surfaces at the given friction, v, stands for the relative
velocity of sliding contacting surfaces, ¢;,q, are the heat
fluxes into the contacting bodies, respectively, T, , o,

denote the temperature of the medium and heat transfer
coefficients for the first and second bodies, respectively
and 7, is the distance from the contact point to the z-axis
(for the axisymmetric problem) or the thickness of the
subdomain (for the planar problem).

The internal heat sources due to mutual sliding of
both parts are calculated as follows

Q:Gnvrff’ (16)
where f; is the coefficient of friction between both sur-
faces.

These sources can be distributed between both con-
tacting parts (bodies) by using the corresponding veloci-
ties v,; and v,, of sliding for both surfaces

O =0,V ffs O =0,V ff (17)
to take into account boundary conditions of the 2™ kind
for both surfaces at the contact point.

Taking (17) into account, the variation of the func-
tional (15) can be written in the form

ol = I[Kn(syfanXTZ_nxﬁ2_&i)]r0d7_
LK
- qu(S#,o—n)éTlrodr—i-
qu

+ Ial(Sﬂ,anlﬂ —Tw(Sﬂ,O'n)]éT]rod‘[+
L

a]

+ Ianvlf/-éﬂrodr—

LK
- jqz(S#,O'n )6T2r0d2'+
L‘IZ

+ Iaz(Sﬂ,aanz —Tw(Sﬂ,a,l)]éTerdT+
Ly,

+ J.Unl/széY'zrodT =0
L

(18)

K

The temperature distribution in the 1D 4-node finite
element can be represented in the form

h(2)=Tyi(t)+Tj9;(7) 5
Ty(7) = Tyngi (2) + Tja0; (7)., (19)
where T;;,T;5,7;,T;, are the nodal temperatures on the

contact surfaces of both bodies, respectively, and
@;(7),9,(7) are the coordinate functions
T;— T—1T:
9T =~ 9;(0) = — (20)
Tj —7; T 7;

Substituting (19) into (20) and collecting terms at
the same variations, we can obtain a system of equations
for the thermo-contact element as follows

AT+ A Ty + 4 T+ A jq Ty = by
A, ;T + AL + A T + A jn L = b

AjiTi+Aj T +A4; ; T+ A; j0 T =by; (21)

Ajri T+ Ajpyin T + Aj T+ Aj T =0
where

Aeg = j K, (8,0, 9F (D)rg(t)dz +
L

K

[er(Sun0m) pR (Do (D)
L

o]

At = sk == [ Kn(S00) 07 (D (D)
L

K

Agigen = [ Kn(S0) R (D (D)d 7 +
L

K

+ [@x(8,,0,)0F (O (D)

La,

Ay =A== [ Ky (8,,0,) 0000 (g (D)7 +
L

K

+ [1(8,,00) 90, (O (D)
Ly,
i1, i1 = Aji :—JKn(Sﬂ,Un)(ﬂi(T)wj(T)Fo(f)df+
L

K

+ [aar(S00) 0100 (I (2)drs
L

a2

A A = A. =A4.

i,j+l = i+l,j i+l =

=~ [Ku(S4-0) 0:(D)p; (D)o (1)
L

K

by = jal (S 1s )T (S 420, 1 (D) (2)d T +
L

aj

+ [018,.0) 0@ (@)dr+ [0,V fron (D)o (D)7
L L

q1 K

bt = [ @30S0 (S, 0,0k (D)1 (1)d 7 +

Ly,

J+Li

[0S us o)1 (D)o (D)7 + (22)

L‘] 2

+ [o, (VoS o @y (D)

LK
where k =1, j;

After discretizing the model consisting of (15) — (22),
it remains to cope with the displacements and mechanical
strains and stresses along particular sliding surfaces (see
Figs. 2 and 3).

At the points of the interpenetration of contact sur-
faces in the normal direction with condition

1 2
U, —u, —5,1 < 0; (23)

where ui,,u,% are the displacements of the contact sur-

faces and 9, is the width of the gap in the direction of the
normal, we introduce sufficiently high contact stiffness C,
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in the normal direction in order to prevent the surfaces
from penetrating each other. Should friction be taken into
account, we further introduce an analogous tangential
stiffness C,.

r n
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Fig. 2. Contact length L; and gap J, between contacting
bodies 1 and 2
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Fig. 3. Nodal displacements of the contact surfaces

The stresses in the contact layer are now given by
the formulae

1.2 1.2
0,=C,(u,—u;,=95,); o, =C,(u; —u; —o,). (24)
As far as the condition o, f < |o-,| of slipping is
satisfied, the tangential stresses are expressed as
: 1 2
Or = Unff sign(u; —uz —6;), (25)

where u',, u?, are the shifts of both surfaces and &, is their
difference at the beginning of the contact. In the zone of
slipping the tangential stiffness is equal to zero and the
functional is supplemented with the work of the friction
forces on the corresponding shifts.

Ilustrative example. A typical example is solved
concerning the problem of assembly and disassembly of
high-speed machine tools. The basic axisymmetric ar-
rangement of the system is depicted in Fig. 4, together
with the principal dimensions. The interference between
the two connected parts is 0.01 mm.

During the process of assembly the chuck spindle
has to be heated by the inductor until the internal diameter
of the bore exceeds the diameter of the shank. The drill
shank is then put into the bore and the system is cooled
until we obtain a shrink fit.

On the other hand, the process of disassembly is
characterized by fast heating of the system that causes
different displacements in the chuck (that are relatively
high) and in the drill shank (much lower). In a short time
the pressed joint is released and the shank can be drawn
out of the hole.

chuck inductor drill shank

~

50

I T T T T TTTTTTTT

10[7 17 A
- N
2211220 e e
0 20 40 60 80 100 120
AB =40 mm
Fig. 4. Basic disposition of investigated system (dimensions in mm)
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The chuck is made from steel. Comparative compu-
tations for drills made from hard alloy and alloyed tool
steel are carried out, the inductor remaining the same.

The principal data of the problem follow (at the
room temperature 7 = 20 °C):

o steel chuck: electric conductivity 59 =3.2 - 10° S/m,
thermal conductivity Ay = 47 W/mK, heat capacity
PCr20 = 4-10° J/m’K, coefficient of linear thermal expansion
amo = 2107 / K, modulus of elasticity E» = 2-10'"" Pa,
Poisson ratio v=0.3.

e Hard alloy: electric conductivity 159 = 2.8:10° S/m,
thermal conductivity 4,0 = 85 W/mK, heat capacity
PCp20 = 2:10° J/m3K, coefficient of linear thermal expan-
sion amy = 0510° / K, modulus of elasticity
Ey =5.3-10"! Pa, Poisson ratio v=0.25.

e Alloyed tool steel: electric conductivity 79 = 2.5-10°
S/m, thermal conductivity 4,y = 37 W/mK, heat capacity
PCp20 = 3.2-10° J/m3K, coefficient of linear thermal expan-
sion o = 1.1'110° / K, modulus of elasticity
E»y=1.9-10"" Pa, Poisson ratio v=0.3.

e Field current density J., = 28.275 A/m?, f= 1 kHz.

e Cooling by forced air: & =200 W/m’K.

The contact mechanical problem is the main part of
numerical analysis. Fig. 5 and 6 represent the calculated
distributions of temperature and contact pressure at vari-
ous time instants of the assembly and disassembly proc-
esses for drills made from hard alloy and alloyed tool
steel. The maps were performed for the cross section
z = 85 mm. Some preliminary results can be found in [2].
The most important conclusions follow:

e Regarding assembly for both of materials (hard alloy
or alloyed tool steel) of the drill: the chuck has to be
heated during 3.5 s. Maximal temperature in it is 228 °C,
maximal difference through the thickness is 86 °C.

e Regarding disassembly:

- Drill made of hard alloy: complete disassembly of
the joint takes place in about 4 s after switching on the
inductor. Maximum temperature in the chuck is 231 °C
(external edge of its face), in the drill is 85 °C.

- Drill made of alloyed tool steel: duration of treat-
ment is about 4.25 s.
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Fig. 5. Temperature distribution along joint radius (z = 85 mm)
at various time levels (in s):
up — assembly, bottom — disassembly.
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Fig. 6. Contact pressure distribution at various time levels (in s):

up — assembly, bottom — disassembly
—drill made of hard alloy, - - - drill made of alloyed tool steel
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Conclusions. A 2D finite element technique for so-
Iution of multiphysics (electromagnetic, thermal and
structural) problems taking into account contact interac-
tion between structural parts is proposed. The contact
problem solution is based on a concept of a special 1D
contact finite element (layer) having no thickness. The
presented technique is applied for the computer simula-
tion of assembly of a shrink fit.

REFERENCES
1. Driesen J.,, Belmans R.J.M., Hameyer K. Finite-element
modeling of thermal contact resistances and insulation layers in
electrical machines. IEEE Transactions on Industry Applica-
tions, 2001, vol.37, no.1, pp. 15-20. doi: 10.1109/28.903121.
2. Shulzhenko N.G., Gontarowsky P.P., Matyukhin Yu.L,
Pantelyat M.G., Dolezel 1., Ulrych B., Bene§ K. Computer model-
ing of induction heating-based assembly and disassembly of
shrink fits. Acta Technica CSAV, 2004, vol.49, no.2, pp. 169-183.
3. Dolezel 1., Karban P., Ulrych B., Pantelyat M.G., Matyukhin
Yu.l., Gontarowsky P.P., Shulzhenko N.G. Limit operation re-
gimes of actuators working on principle of thermoelasticity.
IEEE Transactions on Magnetics, 2008, vol.44, no.6, pp. 810-
813. doi: 10.1109/tmag.2007.916226.
4. Chari M.VK., Salon S.J. Numerical Methods in Electro-
magnetism. Academic Press, New York, 2000. ISBN 978-
0126157604.
5. Holman J.P. Heat Transfer, 10" edition. McGraw-Hill, New
York, 2002. ISBN 978-0073529363.
6. Timoshenko S., Goodier J.N. Theory of Elasticity, 3" Edi-
tion. McGraw Hill, New York, 1970. ISBN 978-0070701229.
7. Podgorny A.N., Gontarowsky P.P., Kirkatsch B.N., Ma-
tyukhin Yu.l., Khavin G.L. Zadachi kontaktnogo vzaimodeist-
viia elementov konstruktsii [Tasks of contact interaction in con-
struction elements]. Kiev, Naukova Dumka Publ., 1989. ISBN
5-12-000891-7. (Rus).
8. Schlykov Yu.P., Ganin E.A., Carevskij S.N. Kontaktnoe
termicheskoe soprotivienie [Contact thermal resistance]. Mos-
cow, Energiya Publ., 1977. (Rus).

Received 15.03.2016

M.G. Pantelyat', Candidate of Physics and Mathematics,
Associate Professor,

Ivo Dolezel, Professor,

!"National Technical University «Kharkiv Polytechnic Institute»,
21, Kyrpychova Str., Kharkiv, 61002, Ukraine,

e-mail: m150462@yahoo.com

2Czech Academy of Sciences, Institute of Thermomechanics,

5, Dolejskova, 182 00 Praha 8, Czech Republic,

e-mail: dolezel@fel.cvut.cz

Pantelyat M.G., Dolezel 1. Finite element technique for solution of thermo-contact problems and its application in nu-
merical analysis of devices working with induction heating. Electrical engineering & electromechanics, 2016, no.4, pp.

22-27. doi: 10.20998/2074-272X.2016.4.03.

ISSN 2074-272X. Electrical Engineering & Electromechanics. 2016. no.4 27



