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ORTHOGONAL COMPONENTS OF THE THREE-PHASE CURRENT 
AT ASYMMETRICAL ACTIVE-REACTIVE LOAD IN 4-WIRE CIRCUIT 
 
Purpose. For the unbalanced sinusoidal mode with asymmetric voltage in 3-phase 4-wire to receive the orthogonal 4-component 
decomposition of 3-phase current, are classified symmetry/asymmetry of active and reactive load elements separately. 
Methodology. The methodology is based on the vector approach, which with one voice allows to analyze the energy characteristics 
of a 4-wire and 3-wire circuits as balanced and unbalanced modes. At asymmetrical voltage the matrix representation 
methodology of the equivalent conductivities is used. Results. For 3-phase 4-wire network with a sinusoidal unbalanced mode 
with asymmetric voltage obtained 4-component orthogonal decomposition of the 3-phase current. The components have a clear 
electro-energetic sense and are classified irrespective by the load condition. Originality. The resulting decomposition current 
develops the theory Currents' Physical Components (CPC) for 4-wire circuit with asymmetric voltage. For the first time the 
unbalanced current is classified by activity and reactivity of asymmetry load elements. Practical value. Practical value of the 
obtained orthogonal decomposition current and the power equation is a possibility of their utilization for the increase both quality 
of delivery and quality of consumption of electrical energy. References 8, figures 1. 
Кey words: three-phase circuit, active and reactive power, power shift, power equation, unbalanced current and mode, active-
reactive asymmetrical load, asymmetrical voltage, currents' physical components (CPC). 
 
Для 3– фазной схемы электроснабжения рассмотрен синусоидальный несимметричный режим. При 
несимметричном напряжении и ассиметричной активно–реактивной нагрузке для 4– проводной сети получено 
ортогональное разложение трехфазного тока. Четыре составляющие разложения классифицированы 
активностью/реактивностью и симметрией/асимметрией нагрузки и имеют однозначный электроэнергетический 
смысл. Для 4– проводной цепи с несимметричной нагрузкой при несимметричном напряжении полученное уравнение 
мощности развивает теорию токовых физических составляющих (Currents’ Physical Components – CPC). Библ. 8, рис. 
1. 
Ключевые слова: трехфазная цепь, активная и реактивная мощность, мощность сдвига, уравнение мощности, 
несбалансированный ток и режим, активно-реактивная несимметричная нагрузка, несимметричное напряжение, 
Currents’ Physical Components (CPC). 
 

Introduction. Active-reactive unbalanced load 
not only consumes electrical energy (EE) of active 
power, but also the EE of inactive components of total 
power (TP) which leads to additional losses. An 
effective solution to the problem of reducing losses and 
increasing the accuracy of accounting EE is the 
combined use of compensating devices and differential 
accounting means consumption EE. However, even in a 
sinusoidal mode, taking into account existing means of 
measuring energy efficiency they measure EE due to 
only the symmetry of the load active and reactive 
elements (active power and reactive power of shift). In 
real conditions of asymmetry voltage components of 
TP due to the asymmetry of the active-reactive load 
elements lead to additional losses, however, are not 
measured are not counted and will not be compensated. 

Problem definition. Compensation, measuring and 
accounting for components of TP are related, 
complementary objectives of effective EE consumption. 
These tasks are the same positions should be solved 
within the framework of the general theory of power 
using orthogonal decomposition of 3-phase current [1-6] 
The mutual orthogonal component decomposition can 
uniquely estimate the losses caused by them 
independently. Widely used power theory Currents' 
Physical Components (CPC) [2, 4-6] uses a methodology 
of orthogonal decomposition. At the sinusoidal 
unbalanced mode, 3-phase current comprises two 
orthogonal components: balanced and unbalanced. 
Balanced component (due to the symmetry of the active-
reactive load elements) comprises orthogonally reactive 
current and active for three, and for a 4-wire circuit. The 

asymmetry of the active-reactive load elements, both in 
symmetric and asymmetric under voltage leads to 
unbalance current. 

Unfortunately, even in a sinusoidal mode CPC 
theory developed either for 3-wire or 4-wire circuits with 
a symmetrical voltage [2, 4-6]. Thus, for 3-wire circuit is 
decomposed into two components with unbalanced 
voltage in the CPC power theory of unbalance current, 
using the method of symmetrical components [6], which 
is not shared by the asymmetry of the load active and 
reactive elements explicitly. 

The goal of the work is for unbalanced mode with 
asymmetric voltage in 3-phase 4-wire to obtain 
orthogonal 4-component decomposition of the 3-phase 
current, are classified by symmetry/asymmetry of 
separate active and reactive load elements separately. 

Periodic power processes. When considering 
a 3-phase 4-wire circuit we assume that the voltage in the 
phases are measured relative to the neutral (Fig. 1). 

 

C

A

B

n

aU

bU

сU

aI

bI

сI

  
Fig. 1. 3-phase 4-wire power supply 

with unbalanced load – sinusoidal mode 
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At any time, instantaneous values (i.v.) of 
voltages (relative to a «neutral» conductor) and i.v. of 
currents in the phases are considered as 3-dimensional 
vectors (matrix columns) of an arithmetic 3-

dimensional space )3(R  

 )()()()( tututut сbau ,  )()()()( tititit сbai , (1) 

hereinafter  is the transposition sign. 
Steady power mode in a 3-phase section <A, B, C> is 

determined by 3-D Т-periodic curves of current and 
voltage: 

)()( Ttt  uu , )()( Ttt  ii . 

An ensemble of 3-D (3-phase) Т-periodic vector 
curves  

)]()()([)( txtxtxt сbax , ),( Tvvt       (2) 

with finite root mean square (rms) value 
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For vector curves )(tx , )(ty )()3(
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as integral averaged of scalar products of i.v. in a 3-D 

space )3(R . 
In particular, for active power 
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Instantaneous power 

)()()()()()()( tutitutitutitp сcbbaa  ui      (7) 

equals to the electricity rate through the section 
<A, B, C>. In the space (4) the inequality of Cauchy-
Schwarz is correct 

||||||||, yxyx  .                      (8) 

In particular, active power does not exceed the 
apparent (total) power 

|||||||| iuui  ,P . 

Sinusoidal mode and 3-complexes. 
3-D curves of i.v. sinusoidal processes of voltage and 
current  

][2)( tjeet Uu  , ][2)( tjeet Ii  .       (9) 

are Т-periodic (T = 2) and fully determined by 
3-complexes of voltage and current  
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– vectors of complex rms of voltage and current.  
3-complexes (10) are calculated by 3-D curves of i.v. 

of sinusoidal processes of voltage and current 
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An ensemble of 3-form a 3-D complex space )3(С  

with a complex SP  
****),( ccbbaa ZXZXZX   ZXZX  .     (12) 

Hereinafter   is a sign of complex conjugation. 
Thus, for rms  

222**2 |||||| XXXX
m mm mm   XXXx  . 

In particular,  
U |||||| Uu , I |||||| Ii .               (13) 

For a couple of sinusoidal processes )(tx , 

)(tz  )()3(
2 TL  the equality is correct 

]Re[]Re[ ** XZZXzx   , .            (14) 
So, if 3-complexes are orthogonal then 

corresponding 3-D curves are orthogonal, toо. The 
converse is not true. 

From (14) it follows that at the sinusoidal mode 
active power is adequately represented in terms of 3-
complexes of voltage and current 

]Re[]Re[ ** IUUIui   ,P .          (15) 
The temporal shift of 3-D curve of i.v. of sinusoidal 

voltage )4()( Ttt  uu  is equivalent to a rotation of 

the 3-complex of voltage  in the space )3(С to 90 

][2][2)( tjtj ejeeet  UUu   . (16) 

Here |uu| ||||||  . Because of 

0]|[][ 2  
 |UUUuu jeje,  , 

3-D curves of voltages are orthogonal (  uu ). 

Integral determination of reactive power (known as 
power of shift) is represented in terms of 3-complexes of 
voltage and current 

]Jm[][ 
  IUIUu jei,Q .       (17) 

Powers (15) and (17) are connected by complex 
power – SP of 3-complexes of voltage and current 

jQPjS   ]Jm[]Re[* IUIUIU  .  (18) 

At the sinusoidal mode at symmetrical load the 
equation of powers is correct  

||||||||22 ui QP .                      (19) 

Equivalent conductivities of load current. At the 
sinusoidal mode 3-complexes of current and voltage 
permit to determine equivalent conductivities of current in 
the section <A, B, C> 
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and represent a 3-complex of 3-phase current in the 
matrix form  
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by using a diagonal matrix 

},,{ˆ
сba YYYdiagY  .                     (22) 

For a 4-wire circuit with a star-type load equivalent 
conductivities (20) in the section <A, B, C> equal to 
conductivities of phase loads.  



64 ISSN 2074-272X. Electrical Engineering & Electromechanics. 2016. no.3 

Active power and power of shift are adequately 
represented by quadratic forms of the 3-complex of 
voltage 

]ˆRe[ **UU YP  , ]ˆJm[ *UU  YQ  .          (23) 

Active power (power of shift) depends only on 
conductivities of active (reactive) load elements  

 m mm UGP 2||  ,  m mm UBQ 2||  .      (24) 

Losses of total 3-phase current per one  

 
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. (25) 

Active and reactive current. For 3-D curve of 
sinusoidal current (9) it is correct 

]ˆ[2)( tjeYet Ui  , UI Ŷ .             (26) 

Algebraic form of complex equivalent conductivities 
(20) permits to resolute the diagonal matrix (22) 

BjGY ˆˆˆ  ,                           (27) 
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and divide 3-complex of current into two components 
associated with active and reactive load elements  
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Resolution of 3-D curve of current (26)  
)()()( ttt RA iii                           (30)  

into active and reactive current 

]ˆ[2)( tj
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is orthogonal in the space of 3-D curves (4).  
Because of the quantity 

  mmm mRA BGUjjBG  2*)ˆ( UUII *          (32) 

is pure imaginary then 3-D curves (31) are orthogonal 
0]Re[  *IIii RARA,     RA ii  .             (33) 

Because of orthogonality of the resolution (29) for 
losses per one  the Pythagoras equality is correct 

222 |||||||||||| RA iii  .                       (34) 

Losses of active and reactive current  
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determine losses of total current (25). Here 
22 |||||| i|i| A  , 22 |||||| i|i| R . 

Active current guarantees EE supply with active 
power of total current (24) 
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Reactive current guarantees EE transmission of 
power of shift of total current (24) 
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In the resolution (30) active (reactive) current is 
caused by summarily symmetry and asymmetry of active 
(reactive) load elements. 

Balanced current component. A sinusoidal mode 
is balanced if 3-complexes of current and voltage (10) are 
collinear (parallel U||I ) [7, 8] 

UIU||I   (   j , 0 ).    (39) 

A mode is really balanced [7, 8] if 0][  Jm . 

If the load is symmetrical then the mode is balanced at 
any unbalanced voltage. 

For an unbalanced mode the 3-complex of 
components of current balanced with 3-phase voltage 
equals to projection of 3-complex of voltage in the 
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is the ort of the 3-complex of voltage  
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In terms of conductivities of the 3-complex of 
balance current (40) 
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Hereinafter: 
222*
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is the equivalent complex conductivity of the balanced 
current component;  

**** ˆ)( UUUIIU YS     

is the complex conjugate power.  
In terms of the ort of the 3-complex of voltage (42) 

the active and reactive power have equivalent form of 
representation: 
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
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Equivalent complex conductivity (44) of 3-D curve 
of balance current  

][2)( tj
s eet Ui sy , UI sys            (47)  

in all phases is the same and equal to weighted average 
sum of equivalent complex phase conductivities (20). 
Weighting factors are determined by the ort of the 3-
complex of voltage (42).  

If voltage is symmetric with direct sequence (DS) 
then  

 ]1)[31( υ , 31222  cba  ,     (48) 

where 2321
0120 je j  . 

If the load is unbalanced  

aY sy , bY sy , bY sy ,                    (49) 

then the mode is unbalanced at any voltage 
The complex conductivity of the balance 

current (47) 
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determines conductivities associated with symmetry of 
active and reactive load elements 
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222
ccbbaa BBB  sb .                   (52) 

These conductivities equal to weighted average 
sums of phase conductivities. If the load is unbalanced 
then  
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aGsg , bGsg , cGsg ;                (53) 

aBsb , bBsb , cBsb .                 (54) 

Conductivities (51, 52) characterize the symmetry of 
active and reactive load elements by phases for the 
3-phase voltage. 

3-complex (43) of the balanced component has two 
components: active and reactive  

UI ssA g ,  UUI ss bbjsR              (56) 

and guarantees resolution of the balanced current  
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][2][2)( tjtj
sAsA eeeet  UIi sg ,      (58) 

][2][2)( tjtj
sRsR eeeet 

 UIi sb .   (59) 

3-D curves (58) и (59) are orthogonal because  
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Because of orthogonality of the resolution (57) for 
current component the Pythagoras equality is correct  
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From (58) it follows 
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Because of balanced active current is really parallel 

with voltage ( UIU||I sg sAsA ) it guarantees EE 

supply of active power (62) with minimal losses [7] 
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Here |||||||| sAsA,P iuiu  . 

Balanced reactive current guarantees EE supply of 
power of shift  
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Because of balanced reactive current is really 

parallel with voltage U||IsR  it guarantees EE 

supply of reactive power of shift with minimal losses 
|||||||||||| iii  RsR . Here 
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Unbalanced current and asymmetry of load 
conductivities. At the unbalanced mode the unbalanced 
component of the 3-complex of current (unbalance 
current) is determined as an orthogonal complement to the 
balanced component (40) 

SD III  , ( SD II  ).                  (66) 

Unbalanced component (66) can be represented 
by using vector product in the space of 3-complexes 
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From (21) and (47) it follows  

UUUUIII D
y

ss yyy
D

ˆ)ˆ(ˆ

ˆ

 
 YYSD .     (67) 

The matrix form of the 3-complex of unbalance 
current  


































c

b

a

c

b

a

D

U

U

U










D

D

D

D

y
y

y
y

00

00

00
ˆ UI .           (68) 

Uses a complex diagonal matrix 
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of equivalent conductivities of the unbalance current 
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If the voltage is symmetric to DS then (48) and  
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Complex conductivities (70) characterize dissipation 
by phases of load conductivities regarding balance 
conductivity. Unbalance (asymmetry) determines the 
unbalanced current  
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which is orthogonal to voltage 
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Here from (67) the resolution follows 
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Dissipation (unbalance) by phases of separately 
active and reactive load elements  

sD gg  mm G  , sD bb  mm B , },,{ cbam    (75) 

is represented by diagonal matrices of conductivities of 
active and reactive load elements: 

},,{ˆ
cbadiag DDDD gggg  , 

},,{ˆ
cbadiag DDDD bbbb  . 

Unbalance by phases (asymmetry of phase 
conductivities) separately of active and reactive load 
elements determines resolution of 3-complex of 
unbalance current into two components 

DRDAD III  ,                           (76) 
][ˆ ccbbaa UUUDA


DDDD gggg  UI ,       (77) 

][ˆ
ccbbaa UUUjjDR DDDD bbbb  UI .  (78) 

The resolution of the unbalanced current is correct  

)()()( ttt uRuAu iii  ,                     (79) 

where ]ˆ[2][2)( tjtj
DAuA eeeet  UIi Dg ,       (80) 

]ˆ[2][2)( tjtj
DRuR eeeet 

 UIi Db  (81) 

are the components determined by asymmetry of active 
and reactive load elements. 

3-D curves (80) and (81) are orthogonal because  

0]Re[]Re[ 2   mmm mDRDAuRuA Uj, DD bg*IIii  . 

Because of orthogonality of the resolution (79) the 
Pythagoras equality is correct 

)()( tt uRuA ii     222
DDRDA III  ,             (82) 

)( 22222222
ccbbaaDA UI DDD ggg   ,            (83) 

)( 22222222
ccbbaaDR UI DDD bbb   .               (84) 
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So, for the resolution of current two dichotomous 
factors are used: 

 the first factor is determined by activity and 
reactivity of load elements; 

 the second factor is determined by symmetry and 
asymmetry of load elements by phases. 

Resolution of 3-phase current and power 
equation of unbalanced mode. Combination of values of 
two factors classifying the load: 

 «activity/reactivity» – the first factor)  

RA iii  ; 

 («symmetry/asymmetry» – the second factor)  

us iii   ,  

permitted to obtain four mutually orthogonal components 
of 3-phase current 

uRsRuAsA iiii ,,, , 

which guarantee resolution into four mutually orthogonal 
3-phase current components  


RA

uRsRuAsARA

ii

iiiiiii )()(  .            (85) 

Because of current resolution (85) is orthogonal then 
identity (equation of losses per one ) is correct 

22222 ||i||||i||||i||||i||||i|| uRsRuAsA  .      (86) 

Multiplication of equation (86) by square of rms of 
voltage 2|| u ||  gives the equation for powers of sinusoidal 

unbalanced mode  
22222
BGT DDQPS  .                     (87) 

Here: 
|||||||| ui TS                             (88) 

is the total power; 
 ui,ui |||||||| sAP                    (89) 

is the active balance power determined by symmetry of 
active load elements;  

||||||||||||   ui,uisRQ                (90) 

is the reactive balance power determined by symmetry of 
active load elements;  

|||||||| ui  uAGD                              (91) 

is the unbalance power determined by asymmetry of 
active load elements;  

|||||||| ui  uRGD                              (92) 

is the unbalance power determined by asymmetry of 
reactive load elements;  

Power equation (87) generalizes the equation for the 
sinusoidal unbalanced mode [7] 

22222
uDQPUI  ,                       (93) 

because of 222
BGu DDD  . 

Practical value of the received orthogonal 
decomposition of current and power equations is the ability 

to use them not only for separated measurement and 
recording of inactive components of TP but also to solve 
the compensation problem at sinusoidal unbalanced mode. 

Conclusions. For a 3-phase 4-wire network with a 
sinusoidal unbalanced mode at asymmetric voltage a 4-
component orthogonal decomposition of the 3-phase 
current is obtained. Components having a clear power 
sense independently classify the load condition. The 
resulting decomposition expands the CPC theory to 4-
wire circuits with unbalanced voltage imbalance by 
resolution of the unbalance current into two components 
determined by the asymmetry of the active and reactive 
load elements. 
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