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ORTHOGONAL COMPONENTS OF THE THREE-PHASE CURRENT
AT ASYMMETRICAL ACTIVE-REACTIVE LOAD IN 4-WIRE CIRCUIT

Purpose. For the unbalanced sinusoidal mode with asymmetric voltage in 3-phase 4-wire to receive the orthogonal 4-component
decomposition of 3-phase current, are classified symmetry/asymmetry of active and reactive load elements separately.
Methodology. The methodology is based on the vector approach, which with one voice allows to analyze the energy characteristics
of a 4-wire and 3-wire circuits as balanced and unbalanced modes. At asymmetrical voltage the matrix representation
methodology of the equivalent conductivities is used. Results. For 3-phase 4-wire network with a sinusoidal unbalanced mode
with asymmetric voltage obtained 4-component orthogonal decomposition of the 3-phase current. The components have a clear
electro-energetic sense and are classified irrespective by the load condition. Originality. The resulting decomposition current
develops the theory Currents' Physical Components (CPC) for 4-wire circuit with asymmetric voltage. For the first time the
unbalanced current is classified by activity and reactivity of asymmetry load elements. Practical value. Practical value of the
obtained orthogonal decomposition current and the power equation is a possibility of their utilization for the increase both quality
of delivery and quality of consumption of electrical energy. References 8, figures 1.

Key words: three-phase circuit, active and reactive power, power shift, power equation, unbalanced current and mode, active-
reactive asymmetrical load, asymmetrical voltage, currents' physical components (CPC).

Mna  3— aznonn  cxemvl  21eKMPOCHAOIHCEHUA  PACCMOMPEH  CUHYCOUOANbHBIL  Hecummempuunvlii  pexcum. Ilpu
HECUMMEMPUYHOM HARPANCCHUU U ACCUMEMPUYHOI AKMUBHO-PEAKMUGHOI HAzpy3Ke 015 4— NPOBOOHON cemu NOyYeHO
opmozonanvnoe  pasnodycenue mpexgaznozo moka. Uemvipe cocmagnaOwue  PaA3noONceHUs  KIACCUPUUUPOBAHbL
AKMUGHOCMbIO/PEAKMUGHOCHIBIO U cCUMMempuUell/acummempuei HAZPy3KU U UMEIOM 0OHO3HAYHbBLI IJIEKMPOIHEPZEMUYECKULL
cemoien. /s 4— npoeoonoii yenu ¢ HeCUMMEMPUYHOU HAZPY3KOU RPU HECUMMEMPUYHOM HANPANCEHUU NOTYYEHHOE YPAGHEHUE
MOWgHOCIU pa3eueaem meopuio mokosvix usuueckux cocmasnarouiux (Currents’ Physical Components — CPC). bu6n. 8, puc.
1.

Kniouesvle cnosa: Tpex(pasHasi nenb, aKTHBHAsi M PeaKTUBHAs MOIIHOCTh, MOIIHOCTh CIBUra, YPaBHEHWE MOIIHOCTH,
HeCOAIAHCHPOBAHHBINH TOK H PEKUM, AKTHBHO-PEAKTHBHASA HECHMMETPHYHAs HArpy3Ka, HECHMMETPHYHOE HANpSKEHHe,
Currents’ Physical Components (CPC).

Introduction. Active-reactive unbalanced load
not only consumes electrical energy (EE) of active
power, but also the EE of inactive components of total
power (TP) which leads to additional losses. An
effective solution to the problem of reducing losses and
increasing the accuracy of accounting EE is the
combined use of compensating devices and differential
accounting means consumption EE. However, even in a
sinusoidal mode, taking into account existing means of
measuring energy efficiency they measure EE due to
only the symmetry of the load active and reactive
elements (active power and reactive power of shift). In
real conditions of asymmetry voltage components of
TP due to the asymmetry of the active-reactive load
elements lead to additional losses, however, are not
measured are not counted and will not be compensated.

Problem definition. Compensation, measuring and
accounting for components of TP are related,
complementary objectives of effective EE consumption.
These tasks are the same positions should be solved
within the framework of the general theory of power
using orthogonal decomposition of 3-phase current [1-6]
The mutual orthogonal component decomposition can
uniquely estimate the losses caused by them
independently. Widely used power theory Currents’
Physical Components (CPC) [2, 4-6] uses a methodology
of orthogonal decomposition. At the sinusoidal
unbalanced mode, 3-phase current comprises two
orthogonal components: balanced and unbalanced.
Balanced component (due to the symmetry of the active-
reactive load elements) comprises orthogonally reactive
current and active for three, and for a 4-wire circuit. The

asymmetry of the active-reactive load elements, both in
symmetric and asymmetric under voltage leads to
unbalance current.

Unfortunately, even in a sinusoidal mode CPC
theory developed either for 3-wire or 4-wire circuits with
a symmetrical voltage [2, 4-6]. Thus, for 3-wire circuit is
decomposed into two components with unbalanced
voltage in the CPC power theory of unbalance current,
using the method of symmetrical components [6], which
is not shared by the asymmetry of the load active and
reactive elements explicitly.

The goal of the work is for unbalanced mode with
asymmetric voltage in 3-phase 4-wire to obtain
orthogonal 4-component decomposition of the 3-phase
current, are classified by symmetry/asymmetry of
separate active and reactive load elements separately.

Periodic power processes. When considering
a 3-phase 4-wire circuit we assume that the voltage in the
phases are measured relative to the neutral (Fig. 1).
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Fig. 1. 3-phase 4-wire power supply
with unbalanced load — sinusoidal mode
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At any time, instantaneous values (i.v.) of
voltages (relative to a «neutral» conductor) and i.v. of
currents in the phases are considered as 3-dimensional
vectors (matrix columns) of an arithmetic 3-
dimensional space R®

u(t) =[u, () up(t) u.OF , i) =i, ) i) i. O] , (1)
hereinafter 7 is the transposition sign.

Steady power mode in a 3-phase section <4, B, C> is
determined by 3-D T-periodic curves of current and
voltage:

ul)=u(t+T)> i(t)=i(t+T)-

An ensemble of 3-D (3-phase) T-periodic vector

curves

x(t) =[x, (1) x,(0) x (O], te(yv+T) (2)
with finite root mean square (rms) value
v+T

I .
x| 7jx(t) x(0)dt < 3)

form a Hilbert space
LT ={x(), te@y+T):lxlke}. @)
For vector curves x(t), y(¢) € L(23)(T ) a scalar
product (SP) is determined

v+T v+T

<xps=— [x0 0t =— [0 )

as integral averaged of scalar products of i.v. in a 3-D

space R®.
In particular, for active power
1 v+T | v+T
<iu>=— J.i(t)ru(t)dt - J' (i(0),u(t)dt=P. (6)
v P v

Instantaneous power

p(t) = iru = ia (t)ua (t) + ib (t)ub(t) + lc(t)uc(t) (7)
equals to the electricity rate through the section
<4, B, C>. In the space (4) the inequality of Cauchy-
Schwarz is correct

<xy><|x|-[xl. ®)
In particular, active power does not exceed the
apparent (total) power
P=<iu> < |ul-|i].
Sinusoidal mode and 3-complexes.
3-D curves of i.v. sinusoidal processes of voltage and
current

u()) =N2RAU' ], i(t) = 2RI ). (9)

are T-periodic (Tw = 2n) and fully determined by
3-complexes of voltage and current

Ua U, eV ['a I, e
U=|U, |=|Ue" |, I=|1,|=]|1,e/* (10)
UC U, elVe ['C I. /%

— vectors of complex rms of voltage and current.
3-complexes (10) are calculated by 3-D curves of i.v.
of sinusoidal processes of voltage and current

U:£v+T £v+T
T

ju(z)e—f i, 1= j i(edr. (11)

An ensemble of 3-form a 3-D complex space c®
with a complex SP
(X,2)=X"Z"=X,Z, + X, Z, + X .Z.. (12)
Hereinafter * is a sign of complex conjugation.
Thus, for rms

2 * y * 2 2 2
IxP=X"X" =" X,4,=> X,=IXF=x".

In particular,

lulHUI=U, |[i|=1]|=1. (13)

For a couple of sinusoidal processes x(),
HOLG L(23)(T ) the equality is correct

<xz>=Re[X Z']=Re[Z°X"]. (14)

So, if 3-complexes are orthogonal then

corresponding 3-D curves are orthogonal, too. The
converse is not true.

From (14) it follows that at the sinusoidal mode
active power is adequately represented in terms of 3-
complexes of voltage and current

P=<iu>=Re[I'U |=Re[UT]. (15)

The temporal shift of 3-D curve of i.v. of sinusoidal

voltage u, (1)=u(t—T/4) is equivalent to a rotation of

the 3-complex of voltage in the space C ) to 90°

u, (£) = \2Re[U, &/*" 1= 2Re[- jU’'].. (16)

Here | u, ||=||u| . Because of

<uju>=Re[-jU U 1=Re[-j|U1=0,
3-D curves of voltages are orthogonal (u L u, ).

Integral determination of reactive power (known as
power of shift) is represented in terms of 3-complexes of
voltage and current

O=<iu, >=Re[-jU T )=ImU'T*]. (17)

Powers (15) and (17) are connected by complex

power — SP of 3-complexes of voltage and current
S=UT =Re[UI']+ jIm[U T*|=P+ jO. (18)

At the sinusoidal mode at symmetrical load the

equation of powers is correct
P?+ Q% =i|-[|u]- (19)
Equivalent conductivities of load current. At the
sinusoidal mode 3-complexes of current and voltage

permit to determine equivalent conductivities of current in
the section <4, B, C>

Ty =Gy = By =, metabe}  (Q0)

m
and represent a 3-complex of 3-phase current in the
matrix form

uy,| |Y, o o]|U,
I= Ube =0 Yb 0 Ub -YU (21)
uy.| |0 o Y, |U,
by using a diagonal matrix
Y = diag{Y,.¥,.Y,} 22)

For a 4-wire circuit with a star-type load equivalent
conductivities (20) in the section <4, B, C> equal to
conductivities of phase loads.
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Active power and power of shift are adequately
represented by quadratic forms of the 3-complex of
voltage

P=Re[UY'U"], 0=Im[UY'U"]. (23)
Active power (power of shift) depends only on
conductivities of active (reactive) load elements

P=3% G,|U,f.0=) B,IU,F.
Losses of total 3-phase current per one QQ
lilF=RelI"T"1=) (Gy+B)IU, (25
Active and reactive current. For 3-D curve of
sinusoidal current (9) it is correct
i(t) = \2Re[YU/*"], I =YU . (26)

Algebraic form of complex equivalent conductivities
(20) permits to resolute the diagonal matrix (22)

Y=G-jB, (27)
G =diag(G,,G,,G,} , B=diag{B,,B,,B,}  (28)

and divide 3-complex of current into two components
associated with active and reactive load elements

24

I=1,+1,,1,=GU, I,=—jBU=BU,. (29)
Resolution of 3-D curve of current (26)
i) =i,(t)+ig(t) (30)

into active and reactive current
i () =2Re[GU" ], iy (1) = 2Re[ BU /'] (31)
is orthogonal in the space of 3-D curves (4).
Because of the quantity
i1 =(GUY (- jBU) = j ) U.G,B,
is pure imaginary then 3-D curves (31) are orthogonal
<igip>=Re[I{Iz]=0 = i, Liy. (33)
Because of orthogonality of the resolution (29) for
losses per one Q2 the Pythagoras equality is correct

(32)

ilP=1li P +1ig I - (34)

Losses of active and reactive current
lipP=RelIiT31=) Gu|U,F, (35
lir.IP=Re[I}Iz]= ) By |U, [ (36)

determine losses of total current (25). Here
liglP <1 lig IP <117
Active current guarantees EE supply with active
power of total current (24)
<wmi,>=Re[UI)]=Re[U'GU"] =

=Y G, |0, =<iu>=P. (37)

Reactive current guarantees EE transmission of
power of shift of total current (24)

<igu, >=Re[-jU I,]=ImU'BU | =

=Y B,|U,[=<iu >=0. (38)
m

In the resolution (30) active (reactive) current is
caused by summarily symmetry and asymmetry of active
(reactive) load elements.

Balanced current component. A sinusoidal mode
is balanced if 3-complexes of current and voltage (10) are
collinear (parallel I||U)[7, 8]

HU < I=pU (B=F+jp", B#0). (39)
A mode is really balanced [7, 8] if Jm[f]="=0.

If the load is symmetrical then the mode is balanced at
any unbalanced voltage.

For an unbalanced mode the 3-complex of
components of current balanced with 3-phase voltage
equals to projection of 3-complex of voltage in the

space c®
-
I =(I0" )= % : (40)
Hereinafter:
v=[0, v, O, lv)P=v2+v}+v2=1 (4])
is the ort of the 3-complex of voltage
U=|U|v, U, =Us, (me{a,b,c}). (42)

In terms of conductivities of the 3-complex of
balance current (40)

[S:M:(S*/UZ).U:})SU. (43)
Hereinafter:
Vs =S /U =Y 0} + Y0 + Y0} (44)

is the equivalent complex conductivity of the balanced
current component;
"= =I1'v =UYU"
is the complex conjugate power.
In terms of the ort of the 3-complex of voltage (42)
the active and reactive power have equivalent form of
representation:

P=Re[S]=U'GU" =U? (45)
Q=Im[$]=U'BU"=U>)" B,v,.  (46)
m

Equivalent complex conductivity (44) of 3-D curve

of balance current
i,(t) =\2Rely U], I, =y U (47)

in all phases is the same and equal to weighted average
sum of equivalent complex phase conductivities (20).
Weighting factors are determined by the ort of the 3-
complex of voltage (42).

If voltage is symmetric with direct sequence (DS)
then

2.
G,Up 5

v=(1/BN " af,v>=v}=0>=1/3, 48)

where o =e/? =—1/2+ j+3/2.
If the load is unbalanced
Vs #Y,, Vs %YV, Vs 2 ¥},
then the mode is unbalanced at any voltage

The complex conductivity of the balance
current (47)

(49)

ys:gs_jbsv (50)
determines conductivities associated with symmetry of
active and reactive load elements

9s =G> +Gop + Gk (51)
bs = B0 + B,vj + B.v? . (52)

These conductivities equal to weighted average
sums of phase conductivities. If the load is unbalanced
then
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gs;tGa’ gsiGb’gsiGc; (53)
b,#B,, by #B,, by #B,. (54)
Conductivities (51, 52) characterize the symmetry of
active and reactive load elements by phases for the
3-phase voltage.
3-complex (43) of the balanced component has two
components: active and reactive

ISA :gsU$ IsR :_ijU:bSUJ_ (56)
and guarantees resolution of the balanced current
£(1) = i, (0) +ip () (57)

into components associated with active and reactive load
elements:

iy (1) =V29Re[ I 4e’™ | =2Re[gUe’™ ], (58)

iz (£) = 2Re[I e’ 1=2Re[b U, e/*']. (59)
3-D curves (58) u (59) are orthogonal because

<igig>=Rel[j ) Upgbsl=0 (40

Because of orthogonality of the resolution (57) for
current component the Pythagoras equality is correct

i) Lig() = Iy+Ig=17;  (61)
I =g3U%, I=biU*.
From (58) it follows
<wiy>=Re[U I, 1=Re[UQU1=P (5

Because of balanced active current is really parallel
with voltage (I, ||U = [I,,=9U) it guarantees EE
supply of active power (62) with minimal losses [7]

liga 1< Iliy [ 1121

Here P=<u,i > =|ul|-|liy|.

(63)

Balanced reactive current guarantees EE supply of
power of shift

<upig>=Re[-jU T l=<u,i>=0 (64
Because of balanced reactive current is really
I U, =
supply of reactive power of shift with minimal losses
iz I<lig <1l ]| Here

parallel with voltage it guarantees EE

1O |=I<uy,ig >[=llull-lig || (65)

Unbalanced current and asymmetry of load
conductivities. At the unbalanced mode the unbalanced
component of the 3-complex of current (unbalance
current) is determined as an orthogonal complement to the
balanced component (40)

Ip=1-1I¢,(I,L1Is). (66)

Unbalanced component (66) can be represented
by using vector product in the space of 3-complexes

c® 17, 8].
From (21) and (47) it follows
In=1-I;=YU-y U= -y)U=YU. (67)
5/_/
Yo

The matrix form of the 3-complex of unbalance
current

Vo, 0 0]0

a

In=YyU=| 0 vyp, O |U,]|. (68)
0 0 Yp|U.
Uses a complex diagonal matrix
Yo = diag{YDasyD;,aYDc} (69)
of equivalent conductivities of the unbalance current
VYo, =Y, = Vs, meia,b,c}. (70)

If the voltage is symmetric to DS then (48) and
Yo, =V, =Y Y3, mefabei. (D)

Complex conductivities (70) characterize dissipation
by phases of load conductivities regarding balance
conductivity. Unbalance (asymmetry) determines the
unbalanced current

i, (1) =\2Re[ I e’ ™1,
which is orthogonal to voltage

<wi, >=Re[U{ ypU) 1=Re[U*) v (T, ~Ys)l=

(72)

= Re[U* () 0p%,)=Vs)1=0. (73)
N
Vs
Here from (67) the resolution follows
I=I+1,,i(t)=i()+i, (). (74)

Dissipation (unbalance) by phases of separately
active and reactive load elements

9on =G, —9s » bp,, =B, —bs, me{a,b,c} (75)
is represented by diagonal matrices of conductivities of
active and reactive load elements:

9p =diag{9p,.9p;-90.} »
bp = diag{bp,bp,:Pp, } -

Unbalance by phases (asymmetry of phase
conductivities) separately of active and reactive load
elements determines resolution of 3-complex of
unbalance current into two components

ID = IDA + IDR > (76)

IDA = QDU = [gDaUa ngUb gDcUc]T > (77)

1,,=-jbpU =—jlbp,U, bpU, bpU.J. (78)
The resolution of the unbalanced current is correct

i, () =i, (1) + i, (1) | (79)
where iuA(t) _ \/EERQ[IDAejM] — \/EERQ[QDUejwl] , (80)

i (1) =\2%Re[ I ppe’®' 1= 2%e[bpU, ™'] (81)
are the components determined by asymmetry of active
and reactive load elements.

3-D curves (80) and (81) are orthogonal because

<y >=RelIp,Ipp]=Relj ) UpGp,bp,]=0.

Because of orthogonality of the resolution (79) the
Pythagoras equality is correct

i) Lig(t) = Ipg+1pg=1p, (82)
2 2,22 2.2 2.2

IDA =U (UagDa +0,9Dp T U, gDc) S (83)

Ipp = U (ugbp, + 030, +07b,) (84)
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So, for the resolution of current two dichotomous
factors are used:

o the first factor is determined by activity and
reactivity of load elements;

e the second factor is determined by symmetry and
asymmetry of load elements by phases.

Resolution of 3-phase current and power
equation of unbalanced mode. Combination of values of
two factors classifying the load:

o «activity/reactivity» — the first factor)
i=i,+ig;
¢ («symmetry/asymmetry» — the second factor)
i=i +i, ,
permitted to obtain four mutually orthogonal components
of 3-phase current

b by Lgs Bugs
which guarantee resolution into four mutually orthogonal
3-phase current components

P=ig+ip = +i,)+(p+ig).
\—ﬂ.,_—/ \—ﬁ./__d

Iy r

(85)

Because of current resolution (85) is orthogonal then
identity (equation of losses per one Q) is correct

=i 17 + W I+ D I + e 1P (86)

Multiplication of equation (86) by square of rms of

voltage ||u|° gives the equation for powers of sinusoidal
unbalanced mode

St =P*+0*+D%:+Dj. (87)
Here:
Sy =[[E]]-llul] (88)
is the total power;
P=ligll-[lull=<iu> (89)

is the active balance power determined by symmetry of
active load elements;

O Flig I-lu[|= <bu, > (90)
is the reactive balance power determined by symmetry of
active load elements;

Dg =i |- llull on
is the unbalance power determined by asymmetry of
active load elements;

Dg =i [|-[|ull 92)
is the unbalance power determined by asymmetry of
reactive load elements;

Power equation (87) generalizes the equation for the
sinusoidal unbalanced mode [7]

I*-U*=P*+Q*+D?, 93)
because of D} = D¢ + Dj .
Practical value of the received orthogonal

decomposition of current and power equations is the ability

How to cite this article:

to use them not only for separated measurement and
recording of inactive components of TP but also to solve
the compensation problem at sinusoidal unbalanced mode.

Conclusions. For a 3-phase 4-wire network with a
sinusoidal unbalanced mode at asymmetric voltage a 4-
component orthogonal decomposition of the 3-phase
current is obtained. Components having a clear power
sense independently classify the load condition. The
resulting decomposition expands the CPC theory to 4-
wire circuits with unbalanced voltage imbalance by
resolution of the unbalance current into two components
determined by the asymmetry of the active and reactive
load elements.
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