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MATHEMATICAL MODEL OF ELECTROMAGNETIC PROCESSES IN LEHERA LINE 
AT OPEN-CIRCUIT OPERATION 
 
Purpose. The work proposed for the modeling of transients in Lehera line uses a modified Hamilton-Ostrogradskiy principle. The 
above approach makes it possible to avoid the decomposition of a single dynamic system that allows you to take into account some 
subtle hidden movements. This is true for systems with distributed parameters, which in the current work we are considering. 
Methodology. Based on our developed new interdisciplinary method of mathematical modeling of dynamic systems, based on the 
principle of modified Hamilton-Ostrogradskiy and expansion of the latter on the non-conservative dissipative systems, build 
mathematical model Lehera line. The model allows to analyze transient electromagnetic processes in power lines. Results. In this 
work the model used for the study of transients in the non-working condition Lehera line. Analyzing the results shows that our 
proposed approach and developed based on a mathematical model is appropriate, certifying physical principles regarding electro-
dynamics of wave processes in long power lines. Presented in 3D format, time-space distribution function of current and voltage 
that gives the most information about wave processes in Lehera line at non-working condition go. Originality. The originality of 
the paper is that the method of finding the boundary conditions of the third kind (Poincare conditions) taking into account all 
differential equations of electric power system, i.e. to find the boundary conditions at the end of the line involves all object equa-
tion. This approach enables the analysis of any electric systems. Practical value. Practical application is that the wave processes 
in lines affect the various kinds of electrical devices, proper investigation of wave processes is the theme of the present work.  
References 12, figures 12. 
Key words: mathematical modeling, Hamilton-Ostrogradskiy principle, Euler-Lagrange equation, electric power system, 
power line with distributed parameters. 

 
В работе, на основе обобщенного междисциплинарного (интердисциплинарного) метода математического моделиро-
вания, основанного на модификации интегрального вариационного принципа Гамильтона-Остроградского, предложе-
на математическая модель двухпроводной длинной линии электропередач, которая работает на холостом ходу. 
Представлены результаты компьютерной симуляции переходных процессов в виде рисунков, которые анализируются. 
Библ. 12. рис. 12. 
Ключевые слова: математическое моделирование, принцип Гамильтона-Остроградского, уравнение Эйлера-
Лагранжа, электроэнергетическая система, линия электропередач с распределенными параметрами. 

 
Introduction. Mathematical modeling of complex 

electrical systems today is an important technical prob-
lem. With mathematical simulation device can analyze 
electromagnetic and electromechanical transient processes 
in electrical facilities and systems, not using for the latest 
expensive full-scale experiments. No exception here and 
electricity. 

In the current work as an example Lehera system 
analysis [1] uses a long line with distributed parameters 
that runs on direct current. We know that these lines have 
found their proper place in power systems around the 
world. Transmission of electricity in this way: it reduces 
losses in the lines (due absence of skin effect phenome-
non) makes possible association between local power 
systems that operate with varying frequency and reduces 
the cost of construction for large distances due to fewer 
wires and auxiliary fittings, etc. 

Unfortunately, in our country for some reason, how-
ever, and economic, in 2014 were brought down the only 
DC line Volgograd-Donbass, which has been designed for 
a voltage of 800 kV. But in highly developed foreign 
countries mentioned lines are not only effective, but 
commissioned new due to certain advantages mentioned 
above. Here we can mention the following lines: Line 
Pacific DC power 1400 MW, ± 400 kV voltage, length of 
1362 km for the transmission of electricity from hydro-
power plants in Oregon grid in Los Angeles; power 
transmission line HPP «Xiangjiaba» – China's Shanghai   
± 800 kV voltage guarantees transmitting 6400 MW over 
a distance of 2000 km; Canada three transmission line 

length of about 900 km, built by HPP Nelson River, lo-
cated in the Arctic Circle, to the city Winnipeg in the 
South of country. Epps was the third power of 2000 MW 
at a voltage of ± 500 kV; Brazil put into operation two 
chains of the line of HPP Itaipu of throughput of 3,150 
MW at a voltage of ± 600 kV. The length of each circuit 
of about 800 km, and others [2]. 

Analysis of last investigations. Among a number of 
scientific papers devoted to the analysis of transient proc-
esses in power systems look at some of them, next to the 
theme of this work. 

In [3] developed a mathematical model of two- and 
three wire power line AC to study transient processes and 
phenomena of overvoltage in a 500 kV line. Based on the 
software code АТР-ЕМТР transients were calculated and 
investigated the phenomenon over during the emergency 
state line. 

A practical approach in the study of transient elec-
tromagnetic processes in [4] is represented. After describ-
ing the many cases of simulation modeling for selected 
items grid requirements are presented. Also, a compara-
tive analysis of studies of transient electromagnetic proc-
esses in the correct and incorrect model grid is made. 

In [5] the mathematical model of electromagnetic 
transients in electrical systems that is based on discrete 
nodal equations in phase coordinates and implicit numeri-
cal integration methods, which enables modeling tran-
sients with symmetric and asymmetric switching and inju-
ries in electrical networks of any configuration. 
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The work [6] covers a wide range of analysis and 
derivatives re-established processes in electricity under 
the original angle. Materials book is based on the classical 
approach to the modeling of electric-energy-systems. Un-
fortunately, apparently because of the limitation of the 
volume of the book, the latter did not present the results 
of computer simulation of wave processes in lines. 

The goal improvement on the base of utilization of 
variation approaches, methods of mathematical modeling 
of transients in Lehera line which operates on a non-
working pace, and due to this more correctly simulation 
of wave processes. 

Variation model of the Lehera line. To build 
mathematical models of objects under consideration with 
a high level of adequacy to properly use basic fundamen-
tal laws applied physics, applied in the relevant fields of 
science [9]. In our case this is electrodynamics [1, 6, 7]. 

Mathematical modeling is usually using two ap-
proaches. The first – a classic approach based on the law 
of conservation of energy and the second – variation 
based on minimizing functional of the system [9]. Each of 
these approaches has its advantages and drawbacks, but 
when used properly leads to reliable results [8]. In other 
words, the roads leading to the final model is differ but 
obtained the result – the same. Usually, choosing the right 
approach to modeling is a proper of researcher. 

We offer analysis of transients in line Lehera use 
modified Hamilton-Ostrogradskiy principle (variation 
technique) [9]. The above approach allows you to avoid 
decomposition of single dynamic system, and to obtain 
initial state equation energetic exclusively on a single 
approach, enhanced by constructing Lagrange function 
[9]. In other words, the proposed way allows you to build 
dynamic systems models based on interdisciplinary ap-
proaches. This is especially true for systems with distrib-
uted parameters, and in that long transmission lines, as in 
the equations of the facility it is necessary to consider: 
electrostatic effects (arc phenomenon), thermodynamic 
effects (conductors heating, especially during melting ice) 
mechanical impacts on wires, in particular, various oscil-
lations (especially resonant and close to resonance (beat 
fluctuations) processes) and others. In the current work 
we do not consider the above mentioned effects, but these 
effects, we plan to further consider our investigations ac-
tually for that we offer this approach. 

A key element of the principle of modified Hamil-
ton-Ostrogradskiy is extended non-conservative Lagran-
gian. We present its analytical form [8, 10]: 

***** ~
DPTL  ,                      (1) 

where L* is the modified Lagrange function, *~
T  is the 

kinetic co-energy, P* is the potential energy, Φ* is the 
dissipation energy, D* is the energy of external on-
potential forces. 

We have already mentioned that the line Lehera 
generally seen as a system with distributed parameters 
[10, 11]. Then the elements of the modified Lagrange 
function will not feature power, and their respective den-
sities [1]. So, functional of action by Hamilton-
Ostrogradskiy will have a form [9]: 
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where S is the action by Hamilton-Ostrogradskiy, Ll is the 
linear density of the modified Lagrange function, I is the 
energetic functional.  

We write components of the expanded Lagrange 
function (mean linear density) [9]: 
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where i(x, t) is the current in the line, R0, g0, C0, L0 are the 
line parameters, Φl3 is the external energy dissipation, ΦlB 
is the internal energy dissipation, Q(x,t) is the charge of 
the line. 

 

 
Fig. 1. Electric circuit of the Lehera line at open-circuit 

operation 
 

It is important to note that in equation (4) minus sign 
appears! This is due to the fact that the function external 
dissipation depends on the leakage current that flow be-
tween the line wires. Obviously, the electric transmission 
line during the transfer of energy from the source to the 
consumer consumes the energy dissipated in in space. In 
other words, energy is transferred exclusively via the 
electromagnetic field lines and wires only indicate the 
direction of electromagnetic wave propagation [1]. 

Taking into account the equations (3), (4) the energy 
functional will look like [9]: 
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We write the variation of the energy functional (5) 
and equate it to zero 
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Next, for each element of integrand expressions 
we use the rule of integration by parts, also known as 
Gauss-Ostrogradskiy theorem. Then, for the first 
bracket will be [9]: 
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and for the second one: 
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where Ωt, Ωx are the boundary conditions for the func-
tional (5). 

From here we can write 
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It is easy to see that variation of energy functional 
can be zero only when equality to zero of integrand or 
variations function of the charge of the line. As δQ 
never can be equal to zero [9, 12] the energy functional 
(9) obtains a stationary value only in the case when 
integrand equals zero, i.e. at presence of the Euler-
Poisson equation [9, 12] 
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We write for the equation (10) an expression of 
steady-state connections [1, 10] 
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Taking into account the expression [1] 
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we obtain finally the commonly known telegraph equa-
tion [1, 10] 
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The equation of the Lehera line (telegraph equation) 
is written for the function of the charge of the line. How-
ever, it is easily transformed to the common telegraph 
equation 
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Experience shows that for more optimal descrip-
tion of physical processes in the line it is useful to use 
as a general function a function of voltage, i.e.             
λ = u(x,t) [1, 10]. 

We rewrite (14) in such a way: 
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The most important problem solving equations (15) 
is to determine the initial (v(x,t)|t=tо) and boundary 
(u(x,t)|x=0 and u(x,t)|x=l) conditions. As to the first, then the 
problem is solved in the accustomed way (they calculate 
their from previous research or take zero). The main prob-

lem is to find the boundary conditions. In general, the 
voltage at the beginning u(x,t)|x=0 and at the end u(x,t)|x=l. 
Of the line are unknown. In the particular case (on the 
current work) voltage is known at the beginning of the 
line, while at the end of the line – no. Actually finding 
this voltage we loan. 

We write equations (11) in such a way (taking into 
account Qx(x,t) = C0u(x,t)): 
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Further, for the power transmission line we write 
equations (15), (16) in the discrete space (we discretize 
them by the line method) 
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We rewrite equations (17), (18) for the N-th node of 
discretization in the correspondence with Fig. 1 in such a 
form: 
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where uN+1 is the discretization node voltage function at 
the fictitious layer [10] which will be found from the 
equation (21).  

Then,  

11   NN uu .                         (22) 

Taking into account (20) and (22) we write the final 
equation of the long line for the N-th node 
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An important functional dependence that is interest-
ing for the potential users is current value in elements of 
the Lehera line. Its calculation is possible in such a way. 
Discretizing equation (16) by the line method (right de-
rivative) we have: 
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From here we obtain finally 
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Compatible integration is subject to this system of 
differential equations: (17), (19), (23), (24), (26). 
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Computer simulation results. Computer simulation 
is carried out for the Lehera line at DC at open-circuit 
operation. The line has the following parameters:  
R0 = 0.86·10-1 /km, L0 = 0.134·10-12 H/km,  
C0 = 0.85·10-8 F/km, g0 = 0.375·10-7 S/km, length of the 
line l = 600 km. The line is supplied by the DC voltage 
u(x,t)|x=0 = 400 kV. 

In Fig. 2-4 spatial distribution of the electromagnetic 
wave as functional dependences of currents (1) and volt-
ages (2) is presented. From these Figures we can see 
physical basics of electromagnetic processes in the long 
Lehera line. Let us analyze these processes.  

 

 
Fig. 2. Distributions of current (1) and voltage (2) in the line at 

 t = 0.002 s 
 

 
Fig. 3. Distributions of current (1) and voltage (2) in the line at  

t = 0.004 s 
 

Fig. 2 shows the spatial distribution of functions of 
current and at time 0.002 s. Analyzing the mentioned Fig-
ure it is easy to see that the function of voltage begins to 
decrease, and the central line rises sharply upward. A 
stream function in the same place on the contrary – falls. 

 

  
Fig. 4. Distributions of current (1) and voltage (2) in the line at 

 t = 0.1 s 

 
Fig. 5. Representation of the voltage transient function in the 

central point of the line  
 

Recall that although the line is at open-circuit opera-
tion, leakage currents and currents in cell lines will be 
present. Actually the reason – is capacitive currents be-
tween the wires line. Obviously, at the end of the trans-
mission line current will equal zero because the line is 
unloaded. 

 

 
Fig. 6. Representation of the current transient function 

in the central point of the line 
 

Fig. 3 shows the same, but in time 0.004 s. If at time 
0.002 s (see Fig. 2) function of voltage increased to      
460 kV but at time 0.004 s this growth was 750 kV. Volt-
age has almost doubled. As for the current, they fell by 
almost four times. 

 

Fig. 7. Representation of the voltage transient function at the 
end of the line 
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Fig. 8. Representation of the current transient function at the end 
of the line 

 
Fig. 4 shows again the same as in Fig. 2 and 3 at the 

time when the transition process is almost completed. Of 
the Figure shows that deviation of functions of voltage 
and current almost took a minimum value. In other words, 
the amplitude of the electromagnetic wave due dissipative 
process significantly decreased. Oscillation process prac-
tically attenuates. 

 

 
Fig. 9. Temporal-spatial distribution of the voltage function  

at t  [0; 0.02] s 
 

Fig. 5-8 show transient functional dependences of 
voltage and current (temporal distribution). The first two 
Figures concern central node of the line for voltage and 
the central segment of the line for line. The second two 
Figures – the penultimate node of the line and penultimate 
discrete circuit of the line. 

Through a comparative analysis of the above Figures 
it is easy to see that the function of voltage (see Fig. 5 and 
7) changes little. See quite a different picture (see Fig. 6 
and 8) regarding currents. The current changes almost 8 
times. This is because the line power transmission line is 
(open-circuit operation). 

 

 
Fig. 10. Temporal-spatial distribution of the voltage function  

at t  [0.02; 0.04] s 

 
Fig. 11. Temporal-spatial distribution of the current function  

at t  [0; 0.02] s 
 

Fig. 9 and 10 represent the line voltage as a function 
of time and spatial coordinates. These figures are pre-
sented in 3D format. Notably relatively high information 
content of these figures, which is that the spatial and tem-
poral distribution of creating three-dimensional space. It 
is advisable to analyze the Figures mentioned in compari-
son with Fig. 2-5 and 7. 

 

 
Fig. 12. Temporal-spatial distribution of the current function  

at t  [0.02; 0.04] s 
 

Fig. 11 and 12 show the same as the previous two, 
but the function of current. As we see the function of 
voltage and current are in opposite phase. Because the 
nature of the stress associated with the electric field and 
the magnetic current we can make a conclusion of space 
perpendicular fields E and B which maintains the classic 
electrodynamics [1]. The presented figures it is advisable 
to analyze in comparison with Fig. 2-4, 6, 8. 

Conclusions. 
1. Variation approaches to modeling processes in long 

power lines make it possible to avoid the decomposition 
of a unified system, while the final form of the equation 
of state exclusively from single energy approach by build-
ing Lagrange expanded function. 

2. An important point in the solution of differential 
equations of state of long line is a search of boundary 
conditions that often is veiled, incorrectly set, and the use 
of boundary conditions Neumann and Poincare boundary 
conditions. Finding these conditions entails full engage-
ment of system of differential equations of studied object 
including transformers, reactors, compensation devices, 
etc., which greatly complicates the calculation of tran-
sients in a long line.  

3. Experience shows that during the analysis of local 
power systems as the best option long line the telegraph 
equation it is advisable to write in a function of voltage. 
In the case of modeling of local energy systems where 
they use electromagnetic model elements of these systems 
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(Ψ – type and A – type) have difficulty with utilization of 
known method of nodal voltages which makes impossible 
to determine voltage at the beginning and end of the line 
and therefore it is impossible to correctly solve the equa-
tion. All this calls into question the degree of adequacy o 
eventual results that are obtained by known engineering 
program Mathematica, MatLab, etc., a especially the use 
of these programs becomes impossible when considering 
the circuit-field model elements. In this case, each actual 
task we must use appropriate apparatus of mathematical 
modeling. 

4. Based on the results of computer simulation we can 
make a number of conclusions:  

 voltage function has the greatest amplitude of oscil-
lations at the end of the line when the current function – at 
the beginning of the line; 

 spatial distribution of functional dependence of the 
line of sending (Fig. 2, 3 and 4) confirms the physical 
principles regarding electrodynamics of wave processes in 
long lines of power supply; 

 presented in 3D format temporal-spatial distribution 
of functions of current and voltage provides most infor-
mation on wave processes in Lehera line at open-circuit 
operation. 

Materials of this work will be used in further studies 
that will cover long three-phase power lines with various 
kinds and types of loads. 
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