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INSTANTANEOUS AND INTEGRAL POWER EQUATIONS OF NONSINUSOIDAL 
3-PHASE PROCESSES 
 
Purpose. To identify the mathematical relationship between the instantaneous powers (classical and vectorial) and integral pow-
ers in non-sinusoidal mode and to get complex form of instantaneous powers in 3-phase 4-wire power supply in terms of the spec-
tral approach. Methodology. We have applied the vector approach with one voice allows you to analyze the energy characteristics 
of 3-phase power supply circuits (for 4-wire and 3-wire circuits) in sinusoidal and non–sinusoidal mode, both the time domain 
and frequency domain. We have used 3-dimensional representation of the energy waveforms with the complex multi-dimensional 
Fourier series. Results. For 4-wire network with a non-sinusoidal (regardless of their symmetry) processes, we have developed the 
mathematical model one-dimensional representations of the complex form for the active (scalar) instantaneous power (IP) and 3-
dimensional form (inactive) vectorial IP. It is possible to obtain two dual integral power equations for complex scalar and vector 
integrated power of non-sinusoidal modes. The power equations generalize generalizes the equations of sinusoidal modes for 4-
wire network. Originality. In addition to the classification of energy local regimes in the time domain for the first time we spent 
the classification of non-sinusoidal modes in the spectral region and showed the value and importance of the classification of 
regimes based on the instantaneous powers. Practical value. The practical value the obtained equations is the possibility of their 
use for improving the quality of electricity supply and the quality electricity consumption. References 3, figures 3.  
Key words: three-phase circuit, classical instantaneous power, vector instantaneous power, complex 3-dimensional Fourier 
series, active and reactive power, complex vector power, apparent power, complex pulsation power, power equation, 
unbalanced mode, non-sinusoidal mode, 3-phasor. 
 
Для 3– фазной схемы электроснабжения рассмотрены несинусоидальные режимы, классифицируемые скалярной и 
векторной мгновенными мощностями (ММ). В рамках временного и спектрального подходов теории мощности полу-
чены комплексные формы активной (скалярной) ММ и (неактивной) векторной ММ. Для 4– проводной сети получены 
уравнения мощности комплексных скалярных и комплексных векторных мощностей несинусоидальных режимов. 
Уравнения мощностей обобщают соответствующие уравнения синусоидальных несимметричных режимов в 4- про-
водной сети. Библ. 3, рис. 3. 
Ключевые слова: трехфазная цепь, классическая мгновенная мощность, векторная мгновенная мощность, комплекс-
ный 3-мерный ряд Фурье, активная и реактивная мощность, комплексная векторная мощность, кажущаяся мощ-
ность, комплексная мощность, уравнение мощности, несбалансированный режим, несинусоидальный режим, 
трехмерный комплексный коэффициент. 
 

Introduction. Non-ideal (active-reactive, nonsym-
metrical and nonlinear) load consumes not only electrical 
energy (EE) of active power but and EE of non-active 
components of apparent power (AP). For a number of such 
loads, consumption of EE of non-active components is 
caused by technological reasons and guarantees a long-
term normal mode of the non-ideal (distorting) load opera-
tion. Non-active components of the AP cause additional 
losses in the power network making worse the power sup-
ply quality but they is not accounted and rested of.  

An effective solution of the problem of the losses 
decrease and the EE account precision’s increase is joint 
utilization of compensating devices (CD) and EE account-
ing tools. Existing accounting tools measure EE caused 
by the symmetry and linearity of the load’s elements. 
Non-active TP components caused by the non-symmetry 
and nonlinearity of active-reactive load’s element are not 
measured and accounted. Compensation, measurement 
and account of AP components are coupled, supplement-
ing each other problems which from different economical 
points of view solve a problem of the effective EE con-
sumption and should be solved in the frame of the general 
power theory (PT) at real conditions of failure of the 
symmetry and the sinusoidality of the supply and con-
sumption mode.  

Problem definition. Increasing theoretical and prac-
tical interest for the PT definitions, interpretations of the 
reactive power conception interpretations, physical sense 
search, ambiguity of the apparent power determination in 
multiphase systems, the problem difficulty have been led 

to the creation of various PT «schools» (partial bibliogra-
phy is presented in [1]). For non-sinusoidal multiphase 
processes two alternative approaches of investigation and 
analysis of the PT concepts are used: spectral (Budeanu, 
Quade, Pukhov, Emanuel, Czarnecki, Shidlovsky, 
Kuznetsov, Lev-Ari and Stanković, etc.) and temporar 
(Buchholz, Fryze, Depenbrock, Demirchan, Maevsky, 
Nabae and Akagi, Willems, Watanabe and Aredes, 
Tolber, Tonkal and Novoseltsev, etc.). 

The temporal method of the analysis is based on a 
special expansion of the 3-phase current on orthogonal 
components. One of components of such a special expan-
sion determines the active current which after the com-
pensation remains in the source’s network and guarantees 
supply of EE of active power. Temporal method used two 
approaches to the 3-phase processes investigation. The 
first approach considers 3-phase processes as 3D curves 
on the averaging interval, is connected with generalization 
on the multiphase processes of the Fryze method and uses 
integral powers (IntP). The second one is based on instan-
taneous energetic characteristics: classical (scalar) instan-
taneous power (IP) and new vectorial IP (a cross-vector 
theory). This approach has a practical value and resulted 
in the development of so-called active filters. However, 
even for the sinusoidal mode mathematical connections 
between new IP and classical integral powers of the spec-
tral approach did not finally determine [1]. 

The aim of the work is determination of the connec-
tion between the IP and integral powers and obtaining the 
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complex form of the scalar and vectorial IP for non-
sinusoidal modes classification in the 3-phase 4-wire electric 
power supply circuit in the terms of the spectral approach.  

The used methodology is based on the vector ap-
proach with from the common point of view permits to 
analyze energetic characteristics both for 4-wire and for 
3-wire circuits, both at sinusoidal and at non-sinusoidal 
mode, and both in time and in frequency domain.  

Scalar (classical) IP. At the consideration of a 3-
phase 4-wire network we assume that voltage in phase are 
measured relatively the neutral terminal (Fig. 1). In every 
time moment t voltage instantaneous values (IV) (regarding 
«neutral terminal’s» wire) and current IV in phases are 
considered as 3D vectors of an arithmetic 3D space R(3)  

  )()()()( tututut сbau ,   )()()()( tititit сbai , (1) 

here in after τ is the sign of transposition. 
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Fig. 1. Energetic processes in 4-wire electric power supply circuit 

 

Determination of the norm in the 3D arithmetic 
space R(3) in each moment of time determines the norm of 
the vector of the current and voltage IV 

222 )()()(|)(||| tututut bba  uuuu ,    (2) 

222 )()()(|)(||| tititit bba  iiii .       (3) 

A local state of the energetic mode in the 3D section 
<A, B, C> is characterized by the (classical) IP  

dt

dW
titutitutitutp ссbbaa  )()()()()()()( .    (4) 

IP is determined as a sum of pair-wise products of 
current and voltage IV of three phases and determines the 
velocity of the energy transfer W=W(t) in the section 
<A, B, C>. As appears from (4), at each moment of time 
the IP equals to the scalar product (SP) of vectors (1) in 
the space R(3)  
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Vectorial IP and an equation of IP. Product of 
norms of the vectors (2), (3) determines the apparent (to-
tal) IP of the energetic mode 

     tutittts  )()( ui .                (6) 

In the 3D space R(3) for any couple vectors the 
Cauchy-Schwarz inequality is true that for the vectors (1) 
inequality gives an implication  

|)(||)(||)()(| tttt uiui     )()( tstp  .       (7) 

The vector IP is a vector of the space R(3) which is 
introduces as the vector product (VP) of IV of vectors (1) 
of currents and voltages [1] 
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The Gram determinant [2] (composed from pair-
wise scalar products of the current and voltage IV vec-
tors) equals to square of the vectorial IP (8) 
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The geometrical sense of the Gram determinant – the 
«square of the area of the parallelogram built by current 
and voltage vectors» is shown in Fig. 2. 
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Fig. 2. Current vector, voltage vector, and the vector IP 

 
Area of such an «instantaneous» parallelogram 

equals to  
|)(sin|)(|)(sin||)(||)(|)( ttsttttq  ui ,  (10) 

here (t) is the instantaneous angle between vectors (1) in 
the space R(3) at the moment of time t.  

The area of the parallelogram is equal to zero if vec-
tors generating it are parallel (collinear, ui || ) when the 

apparent IP equals to the scalar (classical) IP. Therefore, 
norm of the VP of the current and voltage is interpreted as 
non-active IP. To underline this interpretation, the scalar 
(classical) IP (5) is named as active IP. Expansion (9) is 
invariant regarding the exchange of the vectors i and u, 
but iu = ui. In this paper (as in [1]) vectorial (non-
active) IP is determined in the correspondence with (8). 
Vectors i, u, iu create a right-hand system.  

The Gram determinant at each moment of time qua-
dratically complements the scalar IP to the total (appar-
ent) IP (6)  
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and gives an equation for instantaneous powers  

)()()( 222 tqtpts  ,                     (12) 

which is illustrated by Fig. 3. 
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Fig. 3. A triangle of instantaneous powers 

 
In the triangle of the IP two cathetus correspond to 

active and non-active instantaneous powers. If the non-
active IP is determined by sin(t), than the active IP is 
determined by cos(t) 
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The angle (t) in the triangle of the IP equals to the 
angle between current and voltage vectors introduced 
earlier. If the active IP (4) characterizes the effectiveness 
of the energetic mode, than the vector IP (13) character-
izes the losses of the energetic mode. 

Steady-state pulsed and unbalanced energetic 
mode. A steady-state energetic mode in a 3-phase section 
<A, B, C> is determined by 3D T-periodic curves of the 
current and voltage processes (waveforms): 

)()( Ttt  uu , )()( Ttt  ii .              (14) 

For T-periodic processes the (integral) average IP is 
correctly determined, and the variable component is in-
ambiguously extracted 
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If IP has no variable (pulsed) component 0)(~ tp , 

the mode is non-pulsed. In the general case 
0)()(~  ptptp  and the steady mode is pulsed. 

Like (15) in the vector IP it is possible to extract vec-
tor components: constant and variable ones  
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A mode at which the vectorial IP has no variable com-
ponent 0)(~~  tqq  is named as a balanced mode [1]. 

The mode is really balanced if the vectorial IP (non-
active IP) identically equal to zero 

0)( tq   )0)(~(&)0(  tqq .           (17) 

As a result, the mode is really balanced 
( 0|)(|)(  ttq q ) if at each moment (identically) current 

and voltage vectors (1) are parallel in the arithmetic 3D 
space R(3)  

0)( tq   ui ||  )()()( ttyt ui  .         (18) 

The scalar quantity y(t) (it has dimensionality of the 
conductivity) is not obligatory a constant.  

So, a couple of instantaneous characteristics – scalar 
(5) and vectorial (8) ones – characterize the local ener-
getic mode in the section <A, B, C>.  

Spectral analysis of the periodic processes of the 
finite energy. A set of 3D (3-phase) T-periodic vector 
curves  

 )]()()([)( txtxtxt сbax ,               (19) 

with finite-average quadratic value  
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creates a Gilbert infinite-dimensional space of 3D curves 
of the «finite energy» 

}||||:),(),({)()3(
2  xx TvvttTL . (21) 

For 3-phase vector curves x(t), y(t) )()3(
2 TL  a sca-

lar product is determined  
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as integral average scalar product of IV in 3D space R(3). 
The Cauchy-Schwarz inequality is true [2]  

||||||||, yxyx  .                    (23) 

The T-periodic curve x(t) = x(t + T) is expanded into 
the functional Fourier series of 3D harmonic components 
(sinusoidal, cosinusoidal, complex, etc.) 

....)(...)()()()( 210  ttttt kxxxxx  (24) 

For the complex Fourier series a 3D vector harmonic 
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2 TLtk x  of the k-th order 
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is calculated by using a 3D complex coefficient (3-phasor) 
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 ][ ,,, kckbkak XXX X  is the 3D vector with complex 

coordinates, )(ze   is the real part of the complex number z . 

A set of 3-phasors composes a 3D complex space 
C(3) with complex scalar product [1]  

*),( YXYX  ,                          (27) 

* is the symbol of complex conjugation (CC). Further 
let’s suppose that the constant component in the complex 
Fourier series is absent (X0 = 0) 
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The complex form of the scalar IP. The spectral 
analysis of the T-periodical energetic processes of the 
current and voltage is used their representation by the 
complex Fourier series  
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The Euler formula [2] represents components of the 
3-curves of voltage (29) and current (30) expansion by 
using the CC of the 3-phasor 
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In view of the scalar product’s linearity, the IP 
equals to the sum of partial scalar IP’s of the vector har-
monics of the current of the k-th order and of the voltage 
of the m-th order  
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Representations (31), (32) of the vector harmonics 
by using the 3-phasor and its CC for the IV of the product 
of the vector harmonics of the current of the k-th order 
and of the voltage of the m-th order give an identity 
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If the current and voltage harmonics have the same 
order (m = k) their scalar IP has both constant and vari-
able components  
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The scalar IP (4) is represented by the current and 
voltage 3-phasors as  
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and has constant and variable (pulsed) components.  
The constant component 
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equals to active (average) power of the non-sinusoidal 
mode and is represented as the real part of the complex 
(geometrical) power of all harmonics 
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The complex (geometrical) power (38) equals to the 
sum of harmonic components’ complex powers  
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The complex power (39) of the vector harmonics of 

the current and voltage of the k-th order equals to the 
complex scalar product (27) of the 3-phasor of the voltage 
and the 3-phasor of the current of the k-th order in the 
complex 3D space C(3). 

The imaginary part of the complex power (38) 
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determines the non-sinusoidal mode’s reactive power of 
the 3-phase section <A, B, C> and gives the generalization 
of the reactive power by Budeanu to 3-phase processes  
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Complex pulsation powers of the scalar IP: 
 of the harmonics of the k-th order of the even fre-

quency 2kω 

kkkN UI  ;                          (41) 

 of the harmonics of the k-th order and m-th order of 
the sum and difference frequency  
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determined the transient (pulsed) component of the scalar IP 
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If three types of the complex powers equal to zero 

0  mkmkk NNN  , ( ..,2,1, mk ), 

then the mode is non-pulsed. 

The complex form of the scalar IP of the non-
sinusoidal mode (36) expands the complex form of the 
scalar IP of the non-symmetric sinusoidal mode [1] 
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111 IU GS , 111 UI N – complex (geometrical) 

power and complex pulsation power of current and volt-
age fundamental harmonics.  

Vectorial instantaneous power of the non-
sinusoidal mode. Because of the linearity of the vector 
product, the vector IP 
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equals to the sum of vector products of the current har-
monics of the k-th order and voltage harmonics of the 
m-th order  
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If the current and voltage harmonics have the same 
order m = k, then their VP has both constant and variable 
components 
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The complex form of the vector IP is represented by 
the 3-phasors of the harmonics as 
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The 3-phasors of the current and voltage harmonics’ 
balanced power of the k-th order  

*
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determine the constant component of the vector IP.  
The variable (pulsed) component of the vector IP is 

determined by 3-phasors of the power of the unbalance:  
 of the current and voltage harmonics of the k-th or-

der of the twice frequency 2кω  

kkk UID   ( ...,2,1k );             (49.a) 

 of the current harmonics of the k-th order and the 
voltage harmonics of the m-th order of the sum and dif-
ference frequency (k, m = 1, 2, …) 

mkmk UID  , *
mkmk UID  .         (49.b)  

If 3-phasors (49) equal to zero  
0  mkmkk DDD ,                      (50) 

than the mode is balanced. 
If in addition to the conditions (50) the following 

condition is fulfilled  

0][ *  kkk ee UIK  ( ...2,1k ),         (51) 

then the mode is really balanced. 
The complex form of the vector instantaneous power 

of the non-sinusoidal mode (47) expands the complex 
form of the vector IP of the sinusoidal non-symmetrical 
mode [1] 

}{)( 2
11

tjeet  DKq , 
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where *
111 UIK  , 111 UID   are 3-phasors of the 

balanced power and the power of the unbalance of the 
current and voltage fundamental harmonic. 

Equations of the non-sinusoidal mode’s complex 
powers. For the square of the (apparent) total power the 
following equality is true 

 

















km
kmm

km
m

k m
mk UIUIIUS 2222

1 1

222 )()( .  (52) 

The connection between the scalar and vector products 
of 3-phasors X, Y  C(3) is determined by the identity [1] 

22*22 |||||||| YXYXYX   ,               (53) 

which expands the corresponding identity of vector alge-
bra of real vectors [2]. 

At X = Uk, Y = Im from the identity (53) the follow-
ing equalities follow 

22*2222 |||||||| 
 mkmk

mk

N

mkmkkmUI



 

D

IUIUIU ,     (54) 

which at m = k give 
22*2222 |||||||| 

 kkG

kk

S

kkkkkkUI

D

IUIUIU   .      (55) 

Expansion of the square of the apparent power (52) 
taking into account (54), (55) gives an equation for the 
complex scalar and vector powers including active (37) 
and reactive (40) powers of the sinusoidal mode 

)()( 22

1

2222 










km
mkmk

k
kkk DNDQPS .      (56) 

The power equation (56) generalizes the power equ-
ation for the sinusoidal non-symmetrical mode [1] 

2
1

2
1

2
1

2 DQPS  .                         (57) 

The equation (56) includes not all complex scalar 
and vector powers of the complex form of the scalar (36) 
and vector (47) IP. 

If to use a couple of sequences 1}{ kkU , 1
* }{ mmI  

then an additional equation for the complex scalar and 
vector powers which are not included in (56) is true. At 

X = Uk, 
*
mIY   from the identity (53) the following 

equalities follow 
2*222 |||||||| 

 mkmk

mk

N

mkmk



 

D

IUIUIU .         (58) 

At m = k equalities (58) give 
2*222 |||||||| 

 mm

mm

N

mmmm

K

IUIUIU   .         (59) 

 

Expansion of the square of the apparent power (52) 
taking into account (58), (59) gives an additional equation 
for the complex scalar and vector powers 

)()( 22

1

222 










km
mkmk

k
mm DNNKS .     (60) 

It is possible to show that for each harmonic the fol-
lowing implication is true  

0mD   2222
mmmm QPNK   ( ...2,1k ). 

The obtained power equation (60) generalizes the 
additional equation for the sinusoidal non-symmetrical 
mode [1] 

2
1

2
1

2 NKS  .                          (61) 

As shown in [1] at the sinusoidal mode equations 
(57), (61) are determined by two different orthogonal ex-
pansions of the 3-phase current. The problem of building 
the current’s orthogonal expansion at the sinusoidal mode 
is used for the solution of the problem of the apparent 
power’s non-active components compensation [3]. Build-
ing the orthogonal expansion which is associated with 
power equations (56), (60) is not considered in this paper 
and required additional investigations.  

The practical value of the obtained equations is a pos-
sibility of their utilization for the increase both quality of 
delivery and quality of consumption of electrical energy. 

Conclusion. For the 3-phase 4-wire network with 
non-sinusoidal (independently on their symmetry) proc-
esses the complex forms of the active (scalar) and (non-
active) vector IP are obtained. The power equations for 
complex scalar and complex vector powers of non-
sinusoidal modes are obtained. The power equations gen-
eralize the power equations for sinusoidal modes in the 
4-wire network. 
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