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INDUCTION HEATING OF ROTATING NONMAGNETIC BILLET IN MAGNETIC 
FIELD PRODUCED BY HIGH-PARAMETER PERMANENT MAGNETS 
 
Обсуждается и моделируется прогрессивный метод индукционного нагрева немагнитных  заготовок. Заготовка вра-
щается в стационарном магнитном поле, создаваемом неподвижными высококоэрцитивными постоянными магни-
тами, закрепленными на магнитопроводе соответствующей формы. Математическая модель задачи, состоящая из 
двух связанных дифференциальных уравнений в частных производных, решается численно в "жесткой" постановке. 
Вычисления выполняются с использованием собственного программного обеспечения Agros2D на основе полностью 
адаптивного метода конечных элементов высоких порядков. Наиболее важные результаты подтверждены экспери-
ментально на собственном лабораторном оборудовании. 
 
An advanced way of induction heating of nonmagnetic billets is discussed and modeled. The billet rotates in a stationary magnetic 
field produced by unmoving high-parameter permanent magnets fixed on magnetic circuit of an appropriate shape. The mathe-
matical model of the problem consisting of two coupled partial differential equations is solved numerically, in the monolithic for-
mulation. Computations are carried out using our own code Agros2D based on a fully adaptive higher-order finite element me-
thod. The most important results are verified experimentally on our own laboratory device. 
 

INTRODUCTION 
Induction heating of nonmagnetic billets (mostly of 

aluminum) belongs to widespread heat treatment tech-
nologies applied before their hot forming [1]. To the date, 
three basic modifications of the process have been intro-
duced in the industrial plants. 

The oldest way is heating of an unmoving billet in a 
system of one or more harmonic or periodic current-
carrying inductors (see Fig. 1). 

 
Fig. 1. Classical induction heating of billet in inductor 

carrying harmonic current of amplitude I and frequency f 
 

Unfortunately, the efficiency of this way is rather 
low (reported values mostly do not exceed about 45 %), 
mainly due to high Joule losses in the inductor. More in-
formation can be found, for example, in [2-4]. 

Another technology introduced much later consists in 
rotation of a billet in static magnetic field produced by one or 
more longitudinal turns carrying direct current (see Fig. 2). 

This way of heating, however, requires a very high 
magnetic field in order to obtain sufficiently high currents 
induced in the billet and corresponding Joule losses. This 
means very high field currents available only in super-
conducting systems. The Joule losses are now very low, 
but certain amount of energy is consumed by the cooling 
devices and for surpassing the drag electromagnetic 
torque. Presently, such systems work in few industrial 
plants, but their cost is high and reliability is rather poor. 
The efficiency is about 70 %. Fig. 3 shows a typical de-
vice of this kind at Weseralu (Germany) [5]. 

 
Fig. 2. Billet rotating in static magnetic field produced 

by direct-current carrying coil 

 
Fig. 3. Induction heating of billet rotating in superconducting 

system (Weseralu, Germany, 2009) 
 

In years 2009-2010, a new way of induction heating 
of the billets was suggested and investigated (Finland, Italy, 
Germany, Czech Republic), namely in static magnetic field 
produced by a system of high-parameter permanent mag-
nets, see Fig. 4. The arrangement is characterized by the 
absence of Joule losses and its efficiency exceeds 80 %. 

A year later, an inverse version of the system indi-
cated in Fig. 4 was proposed, intended for heating billets 
of larger radii: a well dynamically balanced ring with per-
manent magnets rotates around an unmoving billet. Con-
struction of such a system, however, is more complicated 
from the technological point of view. 
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Fig. 4. Billet rotating in static magnetic field produced 

by high-parameter permanent magnets 
 

FORMULATION OF TECHNICAL PROBLEM 
In 2011, after a long testing and evaluating process 

we decided to build an experimental device for heating 
billets up to diameter of 60 mm. The device is depicted in 
Fig. 5. It consists of an induction motor driving the billet 
and an active part consisting of a massive magnetic circuit 
with fixed high-parameter permanent magnets. The cross 
section of the active part, together with its principal di-
mensions in mm, is shown in Fig. 6. 

 

 
Fig. 5. View of laboratory device 

 
Fig. 6. Cross section of active part of laboratory device 

 

The paper presents the complete continuous mathe-
matical model that is solved numerically in the monolithic 
formulation and comparison of the most important results 
with relevant experimental data measured on the above 
model. 

CONTINUOUS MATHEMATICAL MODEL 
The problem is characterized by an interaction of 

two physical fields: magnetic field and temperature field. 
The volume changes of the billet due to its temperature 
rise are insignificant in this case and may be neglected. 

Magnetic field can conveniently be described in 
terms of the magnetic vector potential A. Its distribution 
in the investigated system is given by the equation [6] 
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where µ is the magnetic permeability (in ferromagnetic 
materials permeability µ = µ(B), B being the module of the 
magnetic flux density), Br denotes the remanent magnetiza-
tion (that is only considered in the permanent magnets, 
otherwise it vanishes),  stands for the electric conductivity 
and v represents the vector of the local velocity of rotation. 

The definition area is surrounded by a sufficiently dis-
tant boundary described by the Dirichlet condition A = 0. 

The distribution of temperature field T in the system 
is described by the heat transfer equation [7] 
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where  denotes the thermal conductivity,  is the specific 
mass, and cp represents the specific heat at a constant 
pressure. The equation is time-dependent. The source 
term w stands for the volumetric heat generated in the 
material by the Joule and/or magnetization losses. Its 
value is generally given by the sum of the volumetric 
Joule losses wJ and volumetric magnetization losses (in 
ferromagnetic materials) wm. Here, 

AvJJ curl,
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while the magnetization losses must be determined from 
the loss curves of the corresponding material or using an 
appropriate approximate (for example Steinmetz) formula.  

The boundary condition respects the heat convection 
and may generally be expressed by the formula 
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where n represents the direction of the outward normal to 
the surface of the volume in which heat is produced,  
denotes the coefficient of convection, Text is the average 
temperature of ambient air,  = 5.6707310–8 Wm–2K–4 is 
the Stefan-Boltzmann constant, C denotes the coefficient 
of emissivity (and may also include the influence of the 
multiple reflections or configuration factor) and, finally, 
Tr represents the temperature of the reflecting surface. 

Unfortunately, in most cases, the coefficients  and 
C occurring in boundary condition (4), cannot be deter-
mined accurately. That is why we use instead of (4) a 
simplified condition  
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where gen represents a generalized coefficient of the 
convective heat transfer respecting also the heat losses in 
the fronts of the active parts of the arrangement. This co-
efficient has to be usually determined by means of spe-
cific measurements. 
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NUMERICAL SOLUTION 
The material parameters are considered to be tem-

perature-dependent functions. This is an important reason 
why the system must be solved in the hard-coupled for-
mulation (monolithically); otherwise one could not avoid 
inaccuracies typical for the weakly coupled approach.  

On the other hand, such a system of nonlinear and 
nonstationary PDEs in a 3D domain is still practically in-
solvable by the available means; the main reason is a rela-
tively long time of heating (on the order of minutes). That 
is why a few simplifying assumptions had to be accepted: 

 the arrangement is considered sufficiently long in 
the axial direction, so that both magnetic and temperature 
fields are calculated only in its cross section, as is de-
picted in Fig. 4. This means that the task is solved as a 2D 
problem; 

 both computations and experiments confirmed that 
the temperatures of magnetic circuit and permanent mag-
nets remain relatively low (they not exceed about 65 °C). 
The material properties of the ferromagnetic ring and 
permanent magnets, therefore, can be considered inde-
pendent of the temperature. 

The numerical solution itself was carried out by our 
own code. This code called Agros2D [8] cooperating with 
the library Hermes [9] is based on a fully adaptive higher-
order finite element method [10]. Both the codes written 
in C++ are intended for the numerical solution of systems 
of generally nonlinear and nonstationary second-order 
partial differential equations (PDEs) and their principal 
purpose is to model complex physical phenomena. They 
are freely distributable under the GNU General Public 
License. Mentioned should be some of their unique fea-
tures such as: 

 solution of a system of PDEs may be solved in both 
weakly coupled and hard-coupled formulations. In the 
latter case the resultant numerical scheme is characterized 
by just one stiffness matrix; 

 there are three kinds of the adaptive algorithms im-
plemented in the code. Except for more common h-
adaptivity and p-adaptivity, also the most sophisticated 
hp-adaptivity may be used; 

 each of the mapped physical fields can be solved on 
a quite different mesh. For example, the temperature field 
is often highly smooth, so that it is not necessary to solve 
it on an unnecessarily dense mesh (such as in case of the 
magnetic fields). As far as the task is nonstationary, the 
meshes can evolve in time according to the results ob-
tained in the previous step; 

 the codes can work with the hanging nodes of any 
level, which leads to a substantial reduction of the degrees 
of freedom (DOFs); 

 besides classical triangles, the codes are able to mix 
even quadrilateral and curved elements. The curved ele-
ments are very advantageous for accurate modeling curvi-
linear boundaries and interfaces. 
 

ILLUSTRATIVE EXAMPLE 
The methodology was used for mapping the process 

of induction heating of an aluminum billet of diameter 60 
mm. The principal dimensions of the arrangement (in 
mm) are shown in Fig. 6. Its axial length is 300 mm. 

Input Data: 
 magnetic circuit: made of carbon steel CSN 12 040 

of the Czech make (its magnetization characteristic being 
depicted in Fig. 7). As its temperature is low during the 
process, its magnetic permeability is considered tempera-
ture-independent. 

 The permanent magnets VMM10 are of NdFeB type 
and their manufacturer provides the following parameters: 
remanence Br = 1.45 T, relative permeability in the sec-
ond quadrant µr = 1.21 and maximum allowable tempera-
ture is 80 °C. Their dimensions are 102040 mm. 
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Fig. 7. Magnetization characteristic of steel CSN 12 040 

 
 The thermal insulation is glass wool of very poor 

thermal conductivity ( = 0.12 Wm–1K–1). Except for the 
front effects, the process of heating of the billet is then 
almost adiabatic (which was also confirmed both compu-
tationally and experimentally). 

 Aluminum billet: as its manufacturer was not able to 
guarantee its exact chemical composition, its properties are 
described by the temperature-dependent parameters for 
pure aluminum. These are depicted in Figs. 8-10 (see [11]). 
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Fig. 8. Electric conductivity  versus temperature T for pure Al 

 

The principal parameters of the three-phase induc-
tion motor are as follows: P = 3 kW, cos  = 0.82, nnom = 
1420 rpm, U = 230/400 V. The initial temperature of the 
billet before heating (as well as the temperature of ambi-
ent air) T0 = 20 °C. 

A very complicated business was determination of 
the exact value of the coefficient gen, mainly because of 
the velocity of rotation, configurations factors, multiple 
reflections and surface properties. That is why this value 
was found using the experimental calibration consisting in 
the requirement that the calculated and measured surface 
temperatures of the billet are in the closest possible rela-
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tion. In this way we obtained gen = 125 Wm–2K–1, which 
respects all above items. 
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Fig. 9. Thermal conductivity  versus temperature T for pure Al 
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Fig. 10. Heat capacity cp versus temperature T for pure Al 

 
Results: 
Fig. 11 shows a substantial part of the discretization 

mesh covering the active area (at the end of the process of 
adaptivity) used for computation of magnetic field in the 
system. The numbers in the rectangles denote the degrees 
of polynomials in particular elements. 

 
Fig. 11: Discretization mesh: light lines – before adaptivity, dark 

lines – after adaptivity, numbers in right column show orders 
of corresponding elements) 

 
The billet is discretized using the triangular and cur-

vilinear elements. The regions in the neighborhood of the 

corners of the magnetic circuit representing the singular 
points are discretized by small triangles of low polyno-
mial orders while places with expected smooth regions 
are covered by large triangles of high polynomial orders. 

Fig. 12 shows the distribution of volumetric Joule 
losses wJ produced by the currents induced in the rotating 
billet. In accordance with theory, the highest (both posi-
tive and negative) values are generated in the surface lay-
ers of the billet. 

Fig. 13 shows the distribution of temperature in the 
billet after 180 s of heating. The temperatures over its 
whole cross section do not differ more than by a few de-
grees of centigrade. This is caused by a very good thermal 
conductivity of aluminum. 

 
Fig. 12. Volumetric Joule losses wJ in billet at beginning 

of process of heating 

 
Fig. 13. Distribution of temperature T in billet after 180 s 

of heating for nnom = 1420 rpm 
 

Fig. 14 compares the calculated and measured 
curves of the temperature evolution in the center and on 
the external surface of the billet. It is evident that the 
agreement is extremely good. 

Another important quantity characterizing the proc-
ess of heating is its efficiency . Its value was both meas-
ured and calculated. The experimental value was deter-
mined as the ratio  
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where QT denotes the heat used for the increase of tem-
perature of the billet and PL is the active power delivered 
to the loaded induction motor. Both values of PL and QT 
are temperature-dependent. Symbol tmax denotes the time 
of heating. The total active power was measured in all 
phases by a network analyzer. It decreases with time, be-
cause the electric conductivity of the billet decreases with 
temperature, which leads to subsequent decrease of the 
induced currents, heat power and also electromagnetic 
drag torque acting on the billet (see Fig. 15).  

 
Fig. 14. Comparison of measured and calculated time evolutions 

of temperature in axis and on surface of billet 

 
Fig. 15. Measured time evolutions of total active powers 

of loaded motor and unloaded motor 
 

The heat QT can be determined from the formula 

  
V

pT dVTTcQ 0 ,                      (7) 

where T is the distribution of the final temperature of the 
billet after ending the heating process and V denotes the 
volume of the billet. Both measurements and computation 
provide  = 78 %, which is much more in comparison 
with the classical process.  
 

CONCLUSION 
The paper present an alternative way of induction 

heating of nonmagnetic cylindrical billets consisting in 
their rotation in static magnetic field generated by high-
parameter permanent magnets. The process is modeled 
and the model is numerically solved by own code based 
on a fully adaptive higher-order finite element method. 

The principal results were verified on an experimen-
tal stand built in our laboratory that allows processing 
billets up to diameter 60 mm. The comparison between 

the measurements and simulations is very good and con-
firms a high efficiency of the process. 

Next work in the area will be aimed at the analysis of 
further possibilities of increasing efficiency of the process. 
Investigated will be also an inverse solution of the arrange-
ment with unmoving billet and a ring with permanent mag-
nets rotating around it (which will be built in near future). 
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