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I. INTRODUCTION
The design of rotation electrical machines and other

electromagnetic devices (induction heaters, various actua-
tors, electrophysical devices, etc.) presents one of the
most challenging applied tasks since many different phe-
nomena and their interaction have to be considered. To
develop modern, effective and cheap design it is strongly
recommended to carry out complex investigations of
various physical processes and effects in the device under
consideration taking into account their complicated inter-
action. Such research works can be done by means of
relatively cheap computer simulation (in other words:
"coupled" [1-3] or "multiphysical" [4] numerical analysis)
instead of expensive full-scale experiments.

The operation principle of electrical machines and
other electrical devices is based on electrical and magnet-
ic fields, heating and the forces resulting from those
fields. In the process of designing an electrical machine or
another electrical device, one has to deal with electro-
magnetics, temperature distributions, structural mechan-
ics, thermodynamics, fluid dynamics and their often com-
plex interaction. Therefore, a reliable numerical simula-
tion of electrical machines, devices and apparatuses –
enable to tackle all aspects of the multiphysical approach
as well as fabrication, design and material tolerances – is
desirable and even mandatory in the frame of the design
procedure and operation of the equipment.

Coupled field modelling [1-3] (in other words: "mul-
tiphysical" [4], "multi-field" [5], "multi equations" [6] or
even "multi-nature" [7] simulation) of various electrical
machines and other electrical devices is one of most compli-
cated and, simultaneously, quickly developing areas of mod-
ern computational electromagnetics. In the author’s opinion,
multiphysical numerical analysis of electrical machines and
other devices should be based on results of intensive pure
research aimed to make a valuable contribution in the devel-
opment of modern fundamental (theoretical) principles and
basics of applied investigations in the field. Here, necessity
to design, manufacture, operate, and, therefore, simulate new
types of innovative electrical devices working on the base of
new physical principles requires to generalize basic princi-
ples of the coupled (multiphysical) numerical analysis of
electrical machines and other electromagnetic devices. The
author proposes and elaborates in this paper two "directions"

of generalization:
1 – determination of main interrelated multiphysical phe-
nomena and effects occuring during the operation of elec-
trical machines and devices as well as their representation
in graphical and table forms, and
2  –  determination  of  main  parameters  to  be  obtained  as
outcomes of the coupled computer simulation from prac-
tical point of view.

The author has wide experience of the various fun-
damental and practical problems solution regarding de-
sign and operation of the variety of innovative electro-
magnetic devices such as rotation electrical machines,
actuators, induction heaters, devices for pulsed magnetic
fields generation, resistance welding machines, etc. The
analysis presented in this paper is based on the author’s
experience as well as on research works carried out by
other researchers. In the author’s opinion the proposed
general view on the fundamentals basics of pure and ap-
plied research in the area of multiphysical numerical
modelling will be useful for two main "target groups":
1 – "pure" researchers working in the field;
2 – designers, manufacturers and even industrial operating
personnel as "users" of obtained numerical results and
proposed practical recommendations.

II. INITIAL GENERAL CLASSIFICATIONS
A. Main multiphysical phenomena to be taken into ac-
count in numerical analysis

The author tries to propose a relatively "complete" list
of interrelated physical phenomena and effects to be taken
into account in numerical analysis of electrical machines and
electrical devices. Of course, all readers working in the field
of multiphysics are invited to take part in this investigation in
order to extend the proposed list as well as to determine most
important effects and effects to be neglected.

Why the author says: "A relatively "complete" list?"
The answers are the following:
1 – at the first stage of the proposed wide discussion it is
intended to consider only electromagnetic, thermal and
mechanical (structural) phenomena. The author supposes
this is enough to start our analysis. Effects of fluid dy-
namics nature should be examined later.
2 – we suppose (from the point of view of classification
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of physical phenomena) acoustic that deals with the study
of mechanical waves represents a "branch" of mechanics
of solids [8], [9] and/or fluid mechanics [10]. Therefore,
here  we do not  consider  acoustics  as  a  separate  physical
effect (despite of increased interest to simulate noise and
vibrations of electrical machines as well as important
numerical results obtained [11]).
3 – naturally, the author is unable to find and describe all
existing multiphysical electromagnetic, thermal and me-
chanical phenomena. Therefore, in this paper we propose
the  "open"  list  of  such  effects  and  ask  our  colleagues  to
answer together the following questions: how many mul-
tiphysical phenomena do you know? who knows more?
which effects are important? which ones can be neglect-
ed? In this connection we divide all variety of known
physical effects into two groups:
 well-known phenomena to be currently taken into account

in numerical simulation of an electromagnetic device or
machine under research depending on its operation principle;
 phenomena which currently look like to be neglected or

even "exotic" ones. But modern science and technology
develop so fast. And ho knows? May be, in a few years
some "exotic" physical effects will lie in the base of the
operational principle of innovative machines, devices and
technological processes.

B. Main parameters to be obtained as outcomes of the
coupled computer simulation

Besides, the author elaborates a list of main parameters
to be recommended as outcomes of the multiphysical numer-
ical simulation of different electromagnetic devices from
practical points of view. Here this is useful to divide the
parameters of electromagnetic devices into a few groups
describing their practical utilization. It seems to us it is pos-
sible to determine three main groups of parameters:
1 – electrical parameters describing the devices’ operation
from "point of view" of external electrical circuits. This
group includes such quantities as voltage, current, fre-
quency, inductances, resistances, etc.
2 – operational or technological parameters describing
main characteristics of the devices’ operation including
technical data of technological equipment and processes.
This group includes torques, forces, temperatures, operat-
ing duration, main temporal operation parameters of elec-
tromagnetic devices and technologies, and so on.
3 – structural parameters describing main designers’ solu-
tions such as windings’ number of turns, air gaps, utiliza-
tion of ferromagnetic structural parts, design and parame-
ters of cooling system, etc.

Asserting the great importance of financial considera-
tions in the process of the design, production and operation
of various electromagnetic devices, the author currently does
not analyse financial aspects of some designers’ solutions
and changes in technological parameters.

III. GRAPHICAL REPRESENTATION OF COUPLING
A graphical form is extremely useful to clarify com-

plicated interactions of coupled phenomena and fields of
various  physical  natures.  As  an  example  we  refer  to  [5]
where a general representation of coupled problems is
presented. In this paper, a more detailed diagram includ-
ing a variety of known multiphysical electromagnetic,

thermal and mechanical processes is proposed (Fig. 1).
Drawing the diagram the author did not take the effects of
fluid dynamics nature into account and did not consider
acoustics as a separate physical effect (see section II). The
diagram (see Fig. 1) consists of three connected main
elements (or "physical domains" as put forward in [5])
representing electromagnetic, thermal and mechanical
phenomena. The numbers near the lines with arrows de-
pict physical processes and effects listed below (see sec-
tion IV). Naturally, the directions of the arrows demon-
strate which main physical domain influences each of the
others "by using" corresponding phenomena and effects
of various physical natures.

Fig. 1. Main "physical domains" of multi-physical simulations
and their interactions

IV. A LIST OF MULTIPHYSICAL PHENOMENA
On the base of generalization of the author’s experience

as well as of intensive analysis of research works carried out
by other researchers, we propose the author’s vision of the
"initial version" of the list of multiphysical phenomena (Ta-
ble I) to be considered in building the mathematical model of
an electrical machine or device. As it was mentioned in
section II, we consider well-known physical effects as well
as "exotic" ones. The numbers of items in Table I correspond
to the ones in Fig. 1.

Table 1
Multiphysical phenomena in electromagnetic devices

Well-known phenomena "Exotic" effects
1 – Joule losses [1, 3, 12-17] 9 – heat generation due to

plastic mechanical defor-
mations of metals [32]

2 – electromagnetic forces and
torque [1, 3, 16, 18-24, 27]

10 – heat generation due to
friction [33]

3 – the temperature distribution
which alters the mechanical
state of the structure [14, 25-28]

11 – contact phenomena (con-
tact thermal resistance) [34,
35]

4 – mechanical properties de-
pending on temperature [14, 26]

12 – contact phenomena (con-
tact electrical resistance) [36]

5 – electromagnetic properties
depending on temperature [14,
26, 29]

13 – coercive force depend-
ence on the state of mechani-
cal stress [37]

6 – temperature properties
depending on temperature [14,
26]
7 – new geometry of the structure
which influences the electromag-
netic field distribution [27]
8 – velocity of movement (de-
formations) [3, 17, 26, 30, 31]

So, at present we consider 13 multiphysical phenomena
of various physical natures (electromagnetic, thermal and
mechanical ones): 8 of them are well-known or "main" ef-
fects and 5 ones are "exotic". However, in some selected
applications regarding innovative electromagnetic devices it
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can be  necessary  to  take  into  account  one  or  even more  of
last ones. This is a subject of further discussions.

Besides, in addition to phenomena listed in Table 1
it is necessary to consider the following phenomena of
various physical natures:
– first of all, magnetostriction [38-40]
– magnetization losses [17, 41-46]
– dependence of magnetic properties on steel heat treat-
ment regimen (steel microstructure) [31, 47-49].

The author considers the presented list (see Table I and
Fig. 1) as a first attempt to determine the most important
effects to be taken into account in the numerical analysis of
electrical machines and electromagnetic devices as well as to
find phenomena which can be neglected. The author invites
all colleagues working in the field of multiphysics to discuss
and extend the proposed list.

IV. A LIST OF PARAMETRS TO BE DETERMINED
Electromagnetic, thermal, mechanical, fluid dynam-

ical processes and fields in electromagnetic devices are
described in general by corresponding equations of math-
ematical physics [50]. Solving them by using various
numerical methods [51] we obtain temporal and spatial
distributions of electromagnetic fields, current densities,
losses, temperatures, mechanical stresses and defor-
mations, and so on. However, it is obvious that from prac-
tical point of view it is not enough to have only the men-
tioned "pure" solutions of corresponding equations. The
reason is clear: distributions of various physical fields and
related quantities (such as losses) do not directly permit to
design and produce highly effective constructions of elec-
tromagnetic devices as well as to propose their optimal
operation modes. From industrial and technological view-
point the final goal of applied research is to determine
recommended rational structural and operational condi-
tions and parameters of designed equipment by using
intensive multiphysical computer simulation of the phe-
nomena in the device under consideration.

In Table II the proposed list of main parameters to be
recommended as outcomes of the coupled numerical simula-
tion of various electromagnetic devices from practical points
of view is presented. To carry out such an analysis a lot of
publications have been analyzed and generalized (some of
them are cited by the author). As it was mentioned in section
II all the variety of parameters is divided into three groups
(electrical parameters, operational or technological ones, and
structural or "pure" designer’s solutions).

We analyze most widely used types of electromagnet-
ic and other electrical engineering devices (see Table II):
1 – rotation electrical machines (an example of the struc-
ture under consideration: a synchronous turbogenerator
rotor [53] presented in Fig. 2);
2 – induction heaters (see, for instance, Fig. 3 [86]);
3 – actuators (Fig. 4 [25]);
4 – electrophysical equipment for high pulsed magnetic fields
generation (for pure scientific and technological purposes);
5 – selected electronic elements (an example is presented in
Fig. 5 [81]);
6 – resistance welding machines.

Naturally, electronic components (such as thermis-
tors and thyristors) and resistance welding technological
equipment are formally not "electromagnetic devices" but

the author decided to include them into the presented
analysis because of their importance and wide utilization
in modern industry and technology.

Fig. 2. A synchronous turbogenerator rotor [53]

Fig. 3. Induction heating at Steremat Elektrowärme
GmbH & Co. KG, Berlin, Germany [86]

Fig. 4. Arrangement of a thermoelastic actuator [25]

Fig. 5. One half of the axisymmetric model of the PTC thermistor [81]
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In the author’s opinion a list of electromagnetic and other
devices under consideration included in Table II could be
extended. We invite all colleagues working in the field of
applied electromagnetics to take part in such the analysis. And,
of course, we will be grateful for all colleagues’ proposals
regarding inclusion of additional parameters to be determined
as outcomes of multiphysical numerical simulation.

V. SUMMARY AND CONCLUSIONS
In this paper1 the author’s view on the possibility to

compile a relatively "complete" list of coupled multiphys-
ical electromagnetic, thermal and mechanical phenomena
to be taken into account in numerical analysis of electrical
machines and other electrical devices is presented. The
improved graphical representation of coupling is pro-
posed. A number of well-known and "exotic" effects are
listed and shortly described. Besides, the author proposes

a list of main parameters to be recommended as results of
the coupled (multiphysical) numerical simulation of vari-
ous electromagnetic devices from practical points of view.
Electrical, operational and structural parameters of elec-
trical machines, induction heaters, actuators and other
devices are listed. And, finally, the author invites all col-
leagues working in the field of multiphysics to discuss
and extend the proposed lists.
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Table 2
A list of main parameters to be recommended as outcomes of electromagnetic devices numerical simulation from practical points of view

Type of electromagnetic devices
Type of
parameters

Rotation electrical
machines

Induction heaters Actuators Electrophysical
devices for high
pulsed magnetic
fields generation
and technological
applications

Electronic com-
ponent s (thermis-
tors, thyristors,
thermoelectric
generators)

Resistance weld-
ing machines

Electrical • voltage and current
in the machine’s
windings (for motors
and generators) [13,
16, 52-57]
• machines’ electrical
parameters (e.g. re-
sistances, inductances)
[13,57-60]
• machines’ lumped
thermal model param-
eters (e.g. thermal
contact resistances,
thermal conductivities)
[61]
• efficiency [62]
• losses and their
minimization [63-67]

• operating voltage or
current in the inductor
[14, 27, 72-74 ]
• frequency of elec-
tromagnetic oscilla-
tions in the inductor
[27, 30, 74]
• power and efficiency
[27, 30]

• operating volt-
age or current in
the field coil [25,
34]
• frequency of
electromagnetic
oscillations in the
field coil [25]

• amplitude value of
operating voltage or
current in the induc-
tor (coil) [14, 27,
76]
• energy stored in
the capacitors [27,
77]
• frequency of
electromagnetic
oscillations in the
inductor (coil) [78]

• applied voltage
[79-82]
 and its time
evolution [82]
• current flowing
through the ele-
ment [79-82] and
its time evolution
[82]
• frequency of the
pulses [82]
• efficiency [80]

• voltage on
electrodes [83, 84]
• type of power
supply (DC, AC,
frequency) [85]

Operational
and
technological

• torque and forces
[3, 11, 20, 22, 52, 65,
69]
• temperature distri-
bution (don’t exceed
permitted working
temperature of the
insulation) [63-65,
68]
• level of noise and
vibrations [11, 69,
70]
• in-service time of
electrical machines at
some operating
conditions (for ex-
ample, at the turbo-
generator line-to-line
short circuit) [16, 63]

• temperature distribu-
tion in treated work-
piece [14, 27, 28, 30,
72, 73, 75]
• duration of heating and
cooling of treated work-
pieces [14, 27, 28, 30,
31, 49, 72, 73, 75]
• required (from techno-
logical point of view)
velocity of heating
and/or cooling [14, 31,
49]
• velocity of movement
of the treated workpiece
or inductor [17, 30, 31]
• mechanical stresses
and deformations of
treated workpiece and
inductor, including
absence or presence of
plastic ones [14, 28, 30,
72, 73, 75]
• temperature distribu-
tion in the inductor
(coil) to use appropriate
insulating materials [27]

• operation duration
[25, 34]
• forces and/or
torque values
[25, 34]
• mechanical
stresses and defor-
mations of struc-
tural parts [25, 34]
• temperature
distribution in
structural parts [25,
34]
• duration of heat-
ing and cooling of
the working part
[25, 34]
• velocity of heat-
ing and/or cooling
[25, 34]
• velocity of
movement of
structural parts [26]

• operation duration
[14, 27, 76]
• temperature dis-
tribution in the
inductor (coil) and
treated workpieces
[14, 27, 76]
• mechanical stress-
es and deformations
of the inductor (coil)
and treated work-
pieces [14, 27, 76]

• temperature
distribution (don’t
exceed permitted
working tempera-
ture of the ele-
ment)
[79-82]
• mechanical
stresses and de-
formations (to
prevent fracture)
[79, 80]

• temperature
distribution [83,
84]
• duration of
welding
[83, 84]
• duration of
cooling of weld-
ed parts [85]
• pressure on
electrodes [83,
84]
• mechanical
stresses and
deformations of
welded pieces to
prevent fracture
[84, 85]
• mechanical
stresses and
deformations of
electrodes [84]
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Continue of Table 2
Type of electromagnetic devices

Type of
parameters

Rotation electrical
machines

Induction heaters Actuators Electrophysical devic-
es for high pulsed
magnetic fields gener-
ation and technologi-
cal applications

Electronic compo-
nent s (thermistors,
thyristors, thermoe-
lectric generators)

Resistance
welding  ma-
chines

Structural
(for de-
signers)

• parameters and design
of air, water or hydro-
gen cooling systems of
stator and rotor of
various electrical ma-
chines
[16, 71]
• geometry of some
structural parts (e.g.
turbogenerator damper
system, rotor slot
wedges [13, 16])
• rational choice of
materials for some
structural parts (e.g.
turbogenerator slot
wedges in rotor and
stator [66])

• number of turns of
inductor and its
design
[27, 30, 72, 74, 75]
• air gap value and
geometry [27, 30,
75]
• type of quenching
media or coolants
(air, water, oil,
water-polymer
liquids) [31, 49]
• velocity of
quenching media or
coolants [31, 49]
• utilization of
ferromagnetic cores
[27, 30, 75]

• number of turns
of field coil and
its design [25, 34]
• rational choice
of materials for
some structural
parts [25, 34]
• type of quench-
ing media or
coolants (air,
water, oil) [25,
34]
• velocity of
quenching media
or coolants [25,
34]
• utilization of
ferromagnetic
structural parts
[26]

• number of turns of
inductor (coil) and its
design [27, 76]
• air gap value [27]
• type of quenching
media or coolants (air,
water, oil) [76]
• velocity of quench-
ing media or coolants
[76]
• utilization of ferro-
magnetic cores [27]

• geometrical pa-
rameters of the
element [79, 80,
82]
• ventilation pa-
rameters
[80, 82]
• utilization of
casing [80]

• geometrical
parameters of
electrodes [83,
84]
• type of
quenching
media or cool-
ants (air, water,
oil) [85]
• velocity of
quenching
media or cool-
ants [85]

VII. REFERENCES
1. Hameyer, K., Driesen, J., De Gersem, H., and Belmans, R.,
"The classification of coupled field problems," IEEE Transac-
tions Magnetics, vol. 35, pp. 1618-1621, No. 3, 1999.
2. van Riesen, D., Henrotte, F., Schlensok, Ch., and Hameyer,
K., "Coupled simulations in the design of electrical machines,"
Int. Conf. on Computational Methods for Coupled Problems in
Science and Engineering, COUPLED PROBLEMS 2005, Santo-
rini Island, Greece, 25-27 May, 2005.
3. Kumbhar, G.B., Kulkarni, S.V., Escarela-Perez, R., and
Campero-Littlewood, E., "Applications of coupled field formu-
lations to electrical machinery," COMPEL, vol. 26, pp. 489-523,
No. 2, 2007.
4. Jaindl, M., Kutschera, R., Köstinger, A., and Magele, Ch.,
"Numerical optimization framework for weakly coupled mul-
tiphysical problems," Proc. 14th Int. IGTE Symp. on Num. Field
Calc. in Elec. Eng., Graz, Austria, September 2010, pp. 344-
347, 2010.
5. Schmidt, E., "Finite element analysis of electrical machines
and transformers – state of the art and future trends," Proc. 14th

Int. IGTE Symp. on Num. Field Calc. in Elec. Eng., Graz, Aus-
tria, September 2010, pp. 398-405, 2010.
6. Du Terrail Couvat, Y., Gagnoud, A., Morandini, J., and
Triwong, P., "FEM modelling by multi meshes and multi equations
coupling," Proc. 13th Int. IGTE Symp. on Num. Field Calc. in Elec.
Eng., Graz, Austria, September 2008, pp. 235-239, 2008.
7. Vokas, Ch. and Kasper, M., "FEM implementation and p-
adaptation of coupled problems," Proc. 13th Int. IGTE Symp. on
Num. Field Calc. in Elec. Eng., Graz, Austria, September 2008,
pp. 336-340, 2008.
8. Stephens, R.W.B. and Bate, A.E., "Acoustics and Vibration-
al Physics," (2nd ed.), London: Edward Arnold, 1966.
9. Beltzer, A.I., "Acoustics of Solids," Springer, 1988.
10. Crighton, D.G., "Acoustics as a branch of fluid mechanics,"
Journal of Fluid Mechanics, vol. 106, pp. 261-298, May 1981.
11. van der Giet, M., Rothe, R., Gracia, M.H., and Hameyer, K.,
"A novel approach to estimate harmonic force excitation for
noise diagnosis of electrical machines," ICS Newsletter, vol. 16,
No. 1, March 2009.
12. Brauer, J.R., "Magnetic Actuators and Sensors," New York,
NY: Wiley, 2006.
13. Kulig, T.S., Buckley, G.W., Lambrecht, D., and Liese, M.,

"A new approach to determine transient generator winding and
damper currents in case of internal and external faults and ab-
normal operation," IEEE Transactions Energy Conversion, vol.
5, pp. 70-78, No. 1, 1990.
14. Pantelyat, M.G., "Coupled electromagnetic, thermal and
elastic-plastic simulation of multi-impulse inductive heating,"
International Journal of Applied Electromagnetics and Mechan-
ics, 9, pp. 11-24, 1998.
15. Shulzhenko, N.G., Gontarowsky, P.P., Matyukhin, Yu.I.,
Pantelyat, M.G., Doležel, I., and Ulrych, B., "Finite element
analysis of electromagnetic, thermal and stress-strain state of
joints during induction-heating based assembly and disassem-
bly," Proc. 11th Int.  IGTE Symp.  on  Num.  Field  Calc.  in  Elec.
Eng., Seggau Castle (Graz), Austria, September 2004, pp. 334-
339, 2004.
16. Klempner, G. and Kerszenbaum, I., "Handbook of Large
Turbo-generator Operation and Maintenance," IEEE Press Se-
ries on Power Engineering, (2nd ed.), Wiley, 2008.
17. Monzel, C. and Henneberger, G., "Temperature solver for
highly nonlinear ferromagnetic materials for thin moving sheets
in transversal flux induction heating," IEEE Trans. Magnetics,
38, pp. 937-940, 2002.
18. Schiffer, A. and Ivanyi, A. "Harmonic vibration calculation
and  measurement  of  transformer  sheets,"  Proc.  14th Int. IGTE
Symp.  on  Num.  Field  Calc.  in  Elec.  Eng.,  Graz,  Austria,  Sep-
tember 2010, pp. 412-417, 2010.
19. Yatchev, I.S., Gergova, Z.K., and Hinov, K.L., "Dynamic
simulation of a permanent magnet needle actuator," Proc. 14th

Int. IGTE Symp. on Num. Field Calc. in Elec. Eng., Graz, Aus-
tria, September 2010, pp. 348-351, 2010.
20. Pantelyat, M.G., Bíró, O., and Stermecki, A., "Electromagnetic
forces in synchronous turbogenerator rotor slot wedges," Proc. Joint
Conference 3rd Int. Workshop on Nonlinear Dynamics and Syn-
chronization (INDS’2011) & 16th Int. Symp. On Theoretical Elec.
Eng., Klagenfurt, Austria, July 2011, pp. 112-115, 2011.
21. Rausch, M., Gebhardt, M., Kaltenbaher, M., and Landes, H.,
"Magnetomechanical field computations of a clinical magnetic
resonance imaging (MRI) scanner," Proc. 10th Int. IGTE Symp.
on Num. Field Calc. in Elec. Eng., Graz, Austria, September
2002, pp. 151-156, 2002.
22. van der Giet, M., Franck, D., Henrotte, F, and Hameyer, K.,
"Comparative study of force computation methods for acoustic



34 ISSN 2074-272X. . 2013. 3

analyses of electrical machines," Proc. 14th Int. IGTE Symp. on
Num. Field Calc. in Elec. Eng., Graz, Austria, September 2010,
pp. 392-397, 2010.
23. Ren, Z., "Comparison of different force calculation methods
in 3D finite element modelling," IEEE Transactions Magnetics,
vol. 30, pp. 3471-3474, No. 5, 1994.
24. Fireteanu, V. and Tudorache, T., "Electromagnetic forces in
transverse flux induction heating," IEEE Transactions Magnet-
ics, vol. 36, pp. 1792-1795, No. 4, 2000.
25. Doležel, I., Karban, P., Ulrych, B., Pantelyat, M.G., Matyu-
khin, Yu.I., Gontarowsky, P.P., and Shulzhenko, N.G., "Limit
operation regimes of actuators working on principle of thermoe-
lasticity," IEEE Transactions on Magnetics, 44, issue 6, pp. 810-
813, 2008.
26. Doležel, I., Kotlan, V., Krónerová, E., and Ulrych, B., "In-
duction thermoelastic actuator with controllable operation re-
gime," COMPEL, vol. 29, pp. 1004-1014, No. 4, 2010.
27. Pasca, S. and Fireteanu, V., "FE analysis of successive
induction heating and magnetoforming of thin magnetic steel
sheets," Proc. 14th Int. IGTE Symp. on Num. Field Calc. in Elec.
Eng., Graz, Austria, September 2010, pp. 356-361, 2010.
28. Pantelyat, M.G. and Féliachi, M., "Magneto-thermo-elastic-
plastic simulation of inductive heating of metals," The European
Physical Journal Applied Physics, vol. 17, pp. 29-33, 2002.
29. Pantelyat, M.G. and Shulzhenko, N.G., "On approximation
for magnetization curves," Proc. 12th Int. IGTE Symp. on Num.
Field Calc. in Elec. Eng., Graz, Austria, September 2006, pp.
96-99, 2006.
30. Iatcheva, I.I, Stancheva, R.D., and Kumov, G.C., "Parame-
ters identification of induction heating systems," Proc. 14th Int.
IGTE Symp. on Num. Field Calc.  in Elec.  Eng.,  Graz,  Austria,
September 2010, pp. 352-355, 2010.
31. Barglik, J., Doležel, I., Karban, P., and Ulrych, B., "Model-
ling of continual induction hardening in quasi-coupled formula-
tion," COMPEL, vol. 24, pp. 251-260, No. 1, 2005.
32. Rusinek, A. and Klepaczko, J.R., "Experiments on heat
generated during plastic deformation and stored energy for TRIP
steels," Materials and Design, 30, No. 1, pp. 35-48, 2009.
33. Nijhuis, A., Noordman, N.H.W., Shevchenko, O.A., ten
Kate, H.H.J., and Mitchell, N., "Electromagnetic and mechanical
characterisation of ITER CS-MC conductors affected by trans-
verse cyclic loading, Part 3: mechanical properties," IEEE
Trans. Applied Superconductivity, 9, pp. 165-168, 1999.
34. Doležel, I., Karban, P., Ulrych, B., Pantelyat, M., Matyu-
khin, Y., and Gontarowskiy, P. "Computer model of thermoelas-
tic actuator solved as coupled contact problem," COMPEL, vol.
26, pp. 1063-1072, No. 4, 2007.
35. Schlykov, J.P., Gorin, B.A., and Cerevskij, S.N., "Contact
Thermal Resistance," Energia, 1977 (in Russian).
36. Takahashi,  N.,  Miyagi,  D.,  Shinagawa,  H.,  Doi,  Y.,  "Eddy
current losses of segmented Nd-Fe-B sintered magnets without
insulation under various conditions," Proc. 14th Int. IGTE Symp.
on Num. Field Calc. in Elec. Eng., Graz, Austria, September
2010, pp. 1-4, 2010.
37. Muzhitskiy, V., Popov, B., and Bezlyudko, G., "Estimation
of stress, fatigue and capacity of welds by measurements of
magnetic characteristic – coercive force," Proc. 16th World
Conference on Non Destructive Testing (WCNDT), Montreal,
Canada, August-September 2004, 7 p.
38. Boulassel, A., Mekideche, M.R., Belli, Z., Kimouche, A.,
and Bouchekhou, H., "Contribution of Magnetostriction to
Vibrations and Noises in Electrical Machines," in: "Computer
Field Models of Electromagnetic Devices," Amsterdam: IOS
Press, pp. 708-717, 2010.
39. Kaltenbacher, M., Meiler, M., and Ertl, M., "Physical mod-
eling and numerical computation of magnetostriction," Proc.
13th Int.  IGTE Symp. on Num. Field Calc.  in Elec.  Eng.,  Graz,
Austria, September 2008, pp. 141-146, 2008.
40. Belahcen, A., "Magnetoelasticity, Magnetic Forces and

Magnetostriction in Electrical Machines," Doctoral thesis, Hel-
sinki University of Technology, Laboratory of Electromechan-
ics, Report 72, Espoo 2004, 115 p.
41. Darabi, A., Ghazi, M.E., Lesani, H., and Askarinejad, A.,
"Calculation of local iron loss in electrical machines using finite
elements method," Engineering Letters, 15, No. 2, 2007.
42. Krings, A. and Soulard, J., "Overview and comparison of
iron loss models for electrical machines," the International
Conference and Exhibition on Ecological Vehicles and Renewa-
ble Energies (EVER 2010), Monaco, March 2010.
43. Kom za, K., López-Fernández, X.M., and Lefik, M., "Com-
puter modelling of 3D transient thermal field coupled with
electromagnetic field in three-phase induction motor on load,"
COMPEL, vol. 29, pp. 974-983, No. 4, 2010.
44. Kasai, S. and Amemiya, N., "Numerical analysis of magnet-
ization losses in finite-length multifilamentary YBCO coated
conductors," IEEE Trans. Applied Superconductivity, 15, pp.
2855-2858, 2005.
45. Flohrer, S. and Herzer, G., "Magnetization loss of nanocrys-
talline soft magnets," Journal of Physics: Conference Series,
144, No. 1, 2009.
46. Lambrecht, D., "Superconducting turbogenerators: status
and trends," Cryogenics, 25, No. 11, pp. 619-627, 1985.
47. Ryu, K.S., Nahm, S.H., Kim, Y.B., Yu, K.M., and Son, D.,
"Dependence of magnetic properties on isothermal heat treat-
ment time for 1Cr-1Mo-0.25V steel," Journal of Magnetism and
Magnetic Materials, issue 222, 128-132, 2000.
48. Ajus, C., Tavares, S.S.M., Silva, M.R., and Corte, R.R.A.,
"Magnetic properties and retained austenite quantification in
SAE 4340 steel, "Revista Matéria, 14, No. 3, pp. 993-999, 2009.
49. Doležel, I, Barglik, J., Sajdak, C., Škopek, M., and Ulrych, B.,
"Modelling of induction heating and consequent hardening of long
prismatic bodies," COMPEL, vol. 22, pp. 79-87, No. 1, 2003.
50. Tikhonov, A.N. and Samarskii, A.A., "Equations of Mathe-
matical Physics,"Dover Publications, 1990.
51. Binns, K.J., Lawrenson, P.J., and Trowbridge, C.W., "The
Analytical and Numerical Solution of Electric and Magnetic
Fields," John Wiley & Sons, New York, 1992.
52. Kisielewski, P. and Antal, L., "Transient currents in turbo-
generator for the sudden short circuit," Prace Naukowe Instytutu
Maszyn, Napedów i Pomiarów Elektrycznych Politechniki
Wroc awskiej, 11 pages, No. 63, 2009.
53. Drubel, O., "Die Berechnung der elektromagnetischen und
thermischen Beanspruchung von Turbogeneratoren während
elektrischer Störfälle mittels Finiter-Differenzen-Zeitschritt-
Methode," Electrical Engineering, vol. 82, pp. 327-338, 2000.
54. Stermecki, A., Ticar, I., Zagradisnik, I., and Kitak, P.,
"FEM-based design of an induction motor’s part winding to
reduce the starting current," IEEE Trans. Magn., vol. 42, pp.
1299-1302, No. 4, April 2006.
55. Yamazaki, K. and Watanabe, Y., "Interbar current analysis
of induction motors using 3-D finite element method consider-
ing lamination of rotor core," IEEE Trans. Magn., vol. 42, pp.
1287-1290, No. 4, April 2006.
56. Stermecki, A., Bíró, O., Preis, K., Rainer, S., and Ofner, G.,
"Modelling the electrical machine end-winding current excitation
using T,  formulation," Abstracts 14th Int. IGTE Symp. on Num.
Field Calc. in Elec. Eng., Graz, Austria, September 2010, p. 6, 2010.
57. Marco, A. and Arjona, L., "Parameter calculation of a turbogen-
erator during an open-circuit transient excitation," IEEE Transac-
tions Energy Conversion, vol. 19, pp. 46-52, No. 1, 2004.
58. Demerdash, N.A. and Nehl, T.W., "Use of numerical analy-
sis of nonlinear eddy current problems by finite elements in the
determination of parameters of electrical machines with solid
iron rotors," IEEE Transactions Magnetics, vol. 15, pp. 1482-
1484, No. 6, 1979.
59. Guo, Y.G., Zhu, J.G., and Lu, H.Y., "Accurate determina-
tion of parameters of a claw-pole motor with SMC stator core by
finite-element magnetic-field analysis," IEE Proc.-Electr. Power



ISSN 2074-272X. . 2013. 3 35

Appl., vol. 153, pp. 568-574, No. 4, 2006.
60. Garbe, E., Helmer, R., and Ponick, B., "Modelling and fast
calculating the characteristics of synchronous machines with the
finite element method," Proc. XVIII Int. Conf. on Electrical
Machines (ICEM’2008), Vilamoura, Portugal, September 2008,
DOI: 10.1109/ICELMACH.2008.4799912, 6 pages, 2008.
61. Mellor, P.H., Roberts, D., and Turner, D.R., "Lumped pa-
rameter thermal model for electrical machines of TEFC design,"
IEE Proceedings-B, vol. 138, pp. 205-218, No. 5, 1991.
62. du Peloux, B. and Lacombe, G., "Engineering-focused
software for the design of the drive of electrical machines,"
Proc. XVIII Int. Conf. on Electrical Machines (ICEM’2008),
Vilamoura, Portugal, September 2008, DOI:
10.1109/ICELMACH.2008.4800214, 4 pages, 2008.
63. Bhargava, S.C., "Negative-sequence currents, losses and
temperature rise in the rotor of a turbogenerator during transient
unbalanced operation," Electric Machines and Power Systems,
vol. 8, pp. 155-168, 1983.
64. Hammons, T.J., "Comparison of losses and heating in generator
rotors following severe supply system disturbances," IEEE Transac-
tions Energy Conversion, vol. 5, pp. 703-712, No. 4, 1990.
65. Bara ski, M., Demenko, A., yskawi ski, W., and Szel g, W.,
"Finite element analysis of transient electromagnetic-thermal phe-
nomena in a squirrel cage motor," Proc.XXI Symp. Electromagnetic
Phenomena in Nonlinear Circuits (EPNC’2010), Dortmund and
Essen, Germany, June-July 2010, 2 p., 2010.
66. Pantelyat, M.G. and Shulzhenko, N.G., "Finite element
analysis of electromagnetic field and losses in a turbogenerator
rotor," Proc. 6th International Conference on Computational
Electromagnetics (CEM’2006), Aachen, Germany, April 2006,
pp. 151-152, 2006.
67. Pantelyat, M.G., Saphonov, A.N., and Shulzhenko, N.G.,
"Finite element analysis of the electromagnetic field in synchro-
nous turbogenerator rotor slot wedges," Proc. 14th Int. IGTE
Symp.  on  Num.  Field  Calc.  in  Elec.  Eng.,  Graz,  Austria,  Sep-
tember 2010, pp. 76-80, 2010.
68. Tari, M., Yoshida, K., Sekito, S., Brütsch, R., Allison, J., and
Lutz, A., „HTC insulation technology drives rapid progress of
indirect-cooled turbo generator unit capacity," IEEE PES Summer
Meeting, Vancouver, Canada, July 2001, 6 pages, 2001.
69. Weilharter,  B.  and  Bíró,  O.,  "Computation  of  the  noise
radiation of an induction machine using 3D FEM/BEM," Proc.
14th Int.  IGTE Symp. on Num. Field Calc.  in Elec.  Eng.,  Graz,
Austria, September 2010, pp. 101-106, 2010.
70. Stermecki, A., Bíró, O., Lang, H., Ofner, G., Preis, K., and
Rainer, S., "Analysis of synchronous generator end-winding defor-
mations using 3-D time-harmonic FEM," Proc.  XIX Int.  Conf.  on
Electrical Machines (ICEM’2010), Rome, Italy, September 2010,
DOI: 10.1109/ICELMACH.2010.5608154, 5 pages, 2010.
71. Hettegger, M., Streibl, B., Bíró, O., and Neudorfer, H.,
"Measurement and simulation of the heat transfer on end wind-
ings of an induction machine," Proc. 14th Int.  IGTE  Symp.  on
Num. Field Calc. in Elec. Eng., Graz, Austria, September 2010,
pp. 97-100, 2010.
72. Zgraja, J. and Pantelyat, M.G., "Induction heating of large
steel disks: coupled electromagnetic, thermal and mechanical
simulation," International Journal of Applied Electromagnetics
and Mechanics, vol. 10, pp. 303-313, 1999.
73. Shulzhenko, N.G., Gontarowsky, P.P., Matyukhin, Yu.I., Pan-
telyat, M.G., Doležel, I., Ulrych, B., and Beneš, K., "Computer
modeling of induction heating-based assembly and disassembly of
shrink fits," Acta Techni a CSAV, vol. 49, pp. 169-183, 2004.
74. Iatcheva, I.I., Stancheva, R.D., Tahrilov, H.P., and Lili-
anova, I.T., "Comparative analysis of theoretical and experi-
mental investigations of induction heating device," Proc. 13th

Int. IGTE Symp. on Num. Field Calc. in Elec. Eng., Graz, Aus-
tria, September 2008, pp. 84-89, 2008.
75. Gontarowsky, P.P. and Pantelyat, M.G., "Low deforming induc-
tion heating of locomotive wheel: coupled electromagnetic, thermal

and mechanical simulation," International Journal of Applied Elec-
tromagnetics and Mechanics, vol. 16, pp. 91-98, 2002.
76. Pantelyat, M.G., "Numerical modeling of the thermal-
stressed state of cooled pulsed solenoids of electrophysical
apparatus," International Applied Mechanics, vol. 35, pp. 420-
425, No. 4, 1999.
77. Crepaz,  G.,  Lupi,  S.,  Ramous,  E.,  and  Tiziani,  A.,  "High-
frequency induction hardening with controlled capacitors-
discharge pulse-operation processes," IEEE Trans. Industry
Applications, vol. 22, pp. 216-222, No. 2, 1986.
78. Pantelyat, M.G., "Numerical Solution of Axisymmetrical
Magneto-Thermo-Mechanical Problems," (in Russian), Candi-
date of Science Thesis, Kharkov: IPMach, 151 pages, 1990.
79. Bíró, O., Preis, K., Dyczij-Edlinger, R., Badics, Zs., and
Riedler, H., "Coupled electric, thermal and elastic simulation of
BaTiO3 PTC thermisor," International Journal of Applied Elec-
tromagnetics in Materials, vol. 3, pp. 151-155, 1992.
80. Preis, K., Bíró, O., Dyczij-Edlinger, R., Richter, K.R.,
Badics,  Zs.,  Riedler,  H.,  and Stögner,  H.,  "Application of FEM
to coupled electric, thermal and mechanical problems," IEEE
Transactions Magnetics, vol. 30, pp. 3316-3319, No. 5, 1994.
81. Preis, K., Bíró, O., Supancic, P., and Ti ar, I. "FEM simula-
tion of thermistors including dielectric effects," IEEE Transac-
tions Magnetics, vol. 39, pp. 1733-1736, No. 3, 2003.
82. Doležel, I, Dvo ák, P., Kal ík, K., and Valouch, V., "Limit
operation regimes of selected power semiconductor elements,"
Proc. 12th Int. Power Electronics and Motion Control Confer-
ence (EPE-PEMC’2006), Portoroz, Slovenia, August-September
2006, pp. 50-53, 2006.
83. Pantelyat, M.G., "Resistance welding of metals: coupled
electric and thermal fields simulation," Proc. 8th Int. IGTE
Symp.  on  Num.  Field  Calc.  in  Elec.  Eng.,  Graz,  Austria,  Sep-
tember 1998, pp. 476-479, 1998.
84. Pantelyat, M.G., "Coupled electric, thermal and mechanical
finite element simulation of resistance welding of metals," Sym-
posium Record 5th Int. Symp. on Electric and Magnetic Fields
(EMF 2000), Ghent, Belgium, May 2000, pp. 49-50, 2000.
85. Hubbard, C.N., "High-frequency resistance welding of
structural shapes," IEEE Transactions Industry Applications,
vol. 10, pp. 485-495, No. 4, 1974.
86. http://www.sterematew.de
87. Pantelyat, M.G., "Multiphysics in electromagnetic devices
simulation and design: an attempt of generalization," Acta
Technica, vol. 57, pp. 127-142, No. 2, 2012.

Received 21.01.2013

Michael G. Pantelyat
Department for Electrical Apparatuses
National Technical University "Kharkov Polytechnic Institute"
Frunze Str. 21, UA-61002 Kharkov, Ukraine
e-mail: m150462@yahoo.com

Pantelyat M.G.
Multiphysical numerical analysis of electromagnetic devices:
state-of-the-art and generalization.
In this paper, an analysis of state-of-the-art and an attempt to
generalize the basic principles of multiphysical (coupled)
computer simulation of various electromagnetic devices
(electrical machines, induction heaters, actuators,
electrophysical devices, etc.) are presented. The analysis is
based on the author’s wide experience in solving various
practical problems regarding design and operation of a variety of
innovative machines and devices as well as on studies carried
out by other researchers.
Key words – electromagnetic devices, multiphysics, computer
simulation.


